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Based on the connection between the q-state Potts model (QPM) and the q-state bond-correlated
percolation model (QBCPM), we have proposed percolation renormalization-group (PRG) methods
to ca1culate the free energy, the critical point, and critical exponents for the QPM. Our methods
are free from inconsistency in Larsson's method. We have carried out the A. &XA, l to A,2&A,2

renormalization-group (RG) transformations in our methods for several values of original cell sizes
A, l and final cell sizes A,2 with various boundary conditions. We find that such RG transformations
with large A,

&
and A,2 and periodic boundary condition usually give accurate physical quantities for

the QPM. The advantages and generalization of our approach are also discussed.

I. INTRODUCTION

Real-space renormalization-group methods
(RSRGM s) have traditionally been applied to Ising-like
spin models with spin states as variables and coupling
constants as renormalization parameters. ' Such
methods have the disadvantage that the number of spin
configurations in a unit cell of renormalization-group
transformations becomes very large when the number of
spin components for each spin is a large number, e.g., the
q-state Potts model ' for a large q. In a recent paper
Larsson extended a RSRG method for random-
percolation problems ' to the q-state bond-correlated
percolation model (QBCPM) which has been shown
or proposed "to be the percolation representation of
the q-state Potts model. @ ' Larsson's method6 does not
have the disadvantage of the traditional RSRGM's men-
tioned above. However, Larsson's method may not be
used to calculate the free energy for the QPM and its for-
mulation also contains some inconsistency which will be
discussed below.

In this paper in Sec. II we present two percolation
renormalization-group methods for the q-state bond-
correlated percolation model (QBCPM) ' correspond-
ing to the q-state Potts model (QPM). ' Our methods
may be used to calculate the free energy, the critical
point, and critical exponents of the QPM with q as a pa-
rameter, but it is free from inconsistency in Larsson's
method. In Sec. III we present our calculated phase tran-
sition points, critical exponents, and free energies for the
square lattice QBCPM and the QPM. In Sec. IV we dis-
cuss some advantages and generalizations of our ap-
proach.

II. CALCULATION METHODS

Following the derivation of Hu io, ~4, ~s we may write
the partition function for the QPM on a lattice G of N
sites and E nearest-neighbor (NN) bonds as follows:

ZN—
sl, s2' ', sN

exp K g 5(s;,si)
NN
I)J

x=1—e, y=1 —x=e—K (2)

It should be noted that E is related to the dimensionless
Ising coupling constant defined by Onsager ' as follows:

Kt=H =K/2 .

It follows from the Euler theorem that

n (G')=N b(G')+N, (G—'), (4)

where N, (G') is the number of closed loops in G'. From
(1) and (4), we find that Z)v may also be written as'

Z N E(eK+q 1)E y x b(G )y E b(G ) c (5)
O'CG

where

eK
Ke +q —1

y=l —x= q

eK+q

We may use either Eq. (1) or Eq. (5} to formulate RG
calculation method, the former will be called "cluster
renormalization-group method (CRGM)" [or method 1

(Ml}] and the latter will be called "loop renormalization-
group method (LRGM)" [or method 2 (M2)]. For each
method, we may use either the free boundary condition
(FBC), one-sided periodic boundary condition (I-PBC),

(
K

1
)b(G') (G')

G'C G

KE y Xb(G') E b(G') n(G')—
G'CG

where b(G') and n (G') are the numbers of occupied
bonds and clusters in G', respectively, and
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and two-sided periodic boundary condition (II-PBC).
For the sake of simplicity, in the following we consider
RG transformations on a.square (SQ) lattice. The exten-
sion to other lattices is straightforward.

To construct a RG transformation for the QBCPM on
a square lattice, we divide the square lattice of Fig. 1(a)
into A, )& A, cells. A typical A, X A, cell is shown in Fig. 1(b).
In the free boundary condition (FBC), we generate all
possible configurations of b occupied bonds and E—b
empty bonds on this cell, and give each configuration a
weight according to (1) for the CRGM and (5) for the
LRGM. Here E =2k, —A, is the total number of links
which connect NN pairs of sites in the cell and the A, sites
immediately above the cell. The links for the cell of Fig.
1(b) in the FBC are shown in Fig. 1(c).

In the one-side periodic boundary condition, when we
calculate the number of clusters n (G') and the number of
loops N, (G'), we assume that the bond configuration for
the top row of Fig. 1(c) is the same as the bond
configuration for the bottom row of Fig. 1(c).

In the two-sided periodic boundary condition, we gen-
erate all possible configurations of b occupied bonds and
E—b empty bonds on this cell, and give each
configuration a weight according to (1) for the CRGM
and (5) for the LRGM. Here E =2k.2 is the total number
of the links which connect NN pairs of A. sites in the cell,
X sites immediately above the cell, and A, sites immediate-
ly at the right-hand side of the cell. The 2A, links for the
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FIG. 2. Renormalization-group transformation from a
~~ X A,

&
cell to a A,2XA,2 cell. In this example A,

&

——4 and A, 2
——2.

(a) From a percolating configuration of a 4X4 cell with two-
sided PBC to a percolating configuration of a 2X2 cell with
two-sided PBC. The 4X4 configuration gives a contribution to
the sum in Eq. (8a) with b =19, n =3, and N, =3. Note that the
dotted "bonds" come from the PBC and two loops come from
the additional contribution of dotted bonds. (b) From a nonper-
colating configuration of a 4X4 cell with two-sided PBC to a
nonpercolating configuration of a 2 X 2 cell with two-sided PBC.
The 4X4 configuration gives a contribution to the sum in Eq.
(8b) with b =13, n =7, N, =2. Note that the dotted "bonds"
come from the PBC and one loop comes from the additional
contribution of dotted bonds.

I

I

I

o I o
I

I

o I ~
I

I

o I o
I

«+
o I o

~ I
I
I

~ I
I
I

I

I

~ I
I

o ~ ~

~ I
I

I

I
I

I

Io

I

~ I
I

0 0 ~ I ~

C)
CO

(a)

(b) (c)

I I I I

0
I I I It-+-+-+--

I I I

L 3 J K o C)
C)

0 F 00
I

I ~ 00 2 ~ 00 3-00
0

I I

4 ~ 00
I I

5-00 6 ~ 00

FIG. 1. (a) The square lattice is divided into A, Xk cells. In
this example A, =4. (b) A typical A, XA, cell. The dots (~ ) belong
to this cell and the open circles (0 ) belong to adjacent cells. In
this example k=4. (c) The links on the cell of (b) which are
considered to be occupied or unoccupied in the free boundary
condition and one-sided periodic boundary condition. The total
number of links F. is 2A, —A,. (d) The links on the cell of (b)
which are considered to be occupied or unoccupied in the two-
sided periodic boundary condition. The total number of links is
2A,2

FIG. 3. The fixed points (solid lines) as a function of q ob-
tained from A, &/A, 2 method 2 RG transformation for various
values of k& and A.2. The dotted line represents the exact solu-
tion. Near q =5, the curves from up to down positions are ob-
tained, respectively, from —, , —, , —, , —, , —,—,and —„PRG transfor-
mations. Note that when A, I or A, 2 becomes larger, we have more
accurate results.
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cell of Fig. 1(b) in the two-sided PBC are shown in Fig.
1(d). When we calculate the number of clusters n(G')
and the number of loops N, (G'), we assume that the
bond configuration for the top row (the rightmost
column) of Fig. 1(d} is the same as the bond configuration
for the bottom row (the leftmost column) of Fig. 1(d).

In each of above boundary conditions, we may classify
the bond configurations on a cell D into percolating
configurations Dz and nonpercolating configurations Df.
In the former case, there is a path of occupied bond
which connect a site in the lower boundary (bottom row)
to a site in the upper boundary (top row). In the later
case, there is no such path. Based on such classificaf, ion,
we may define the following partial sums:

(Dp ) E b (Dp ) & (Dp ) Nq(Dp )
R (D,xp, yp, ql, q2)

—= g xp ~ yp
' q, ' q2'

D QD

(8a)

b(Df ) E —b(Df ) n (Df ) N~(Df )
Q(D, xp, yp qi q2}= g Xp yp 'ql q2

DJDcD

(gb)

where the sum in (8a} is over all D' on D and the sum in

(8b) is over all Df on D; b (D~ ), n (D~ ), and N, (D~ ) are,
respectively, the number of occupied bonds, the number
of clusters, and the number of closed loops in D~, and
similar definitions for b (Df ), n (Df ), and N, (Df }.

Now consider a A, , X A. ) cell, denoted by D„to a A, 2 X A;z

cell, denoted by D2, RG transformation shown in Fig. 2,
where A, »)(,2. Such RG transformation will be denoted
as A, ) /A, 2 transformation. We propose that the RG trans-
formation equation may be written as

q& ——1, q2
——q, (13)

q
xp K & yp 1 xpe+q —1 e+q —1

K'
e —1xp= eK'+q —1

(14)

(15)

yp 1 xp
e K'+q —1

(16)

—K
xp ——1 —e

in the CRGM and by

(17)

In (12), (15), and (16), K' is the coupling constant for the
QPM after the RG transformation.

It should be noted that Eqs. (3.2a) and (3.2b) in
Larsson's paper correspond to (9a) and (9b) with A, 2 ——1,

I —K —K
Kp =0 q~ =q q2= 1 xp= 1 —e, yp ——e and in the
FBC. For q&1, usually one cannot find the solution with
x'+y'=1 from Larsson's RG transformation equations.
This is inconsistent with idea that variables before the
RG transformation and after the RG transformation
should have the same property. By introducing the pa-
rameter Kp, we remove such inconsistency and may find

the solution with xp+yp= l. In fact, as we will discuss
below we may also calculate the free energy for the QPM
from a series of background energies {Kp,K0', . . . ) com-

ing from step by step RG transformations. Since in actu-
al calculations, Larsson used the variable U =x ly, his
calculated fixed point u and critical exponent v corre-
spond the results of our CRGM with the FBC.

As in the usua1 real-space RG transformations' '

from the fixed point of (9), xp, we have the phase transi-
tion point K, (being JikE T, ) which is related to xp by

I

e R (D2, xp yp ql q2) ~ (Dl xp yp ql 'q2} (9a) K K
xp ——(e ' —1)/(e '+q —1), (18)

Ko I Ie Q(D2 xp yp q„q2)=Q(D„xp, yp, ql, q2) (9b)

(10)

where Kp is a constant which arises from the background
energy of the RG transformation and is similar to 6 in
Eq. (1.3) in the book of Burkhardt and Leeuwen. In the
CRGM (method 1},we choose

v

()X p
ln ln

Bxp xo=xo
(19)

in the LRGM. From the linearized RG transformations
near xp, we may calculate the scaling power yT and the
critical exponent v,

xp ——1 —e
—K

xp ——1 —e
—K'

—K
yp

—1 —xp ——e

—K'
yp ——1 —xp ——e

In the LRGM (method 2), we choose

(12)

At the fixed point, the average number of total lattice
sites in the largest percolating cluster of percolating
configurations for the original A. , &( A, , cell and final
)(,2 X)(,2 cell of Eq. (9a) are given, respectively, by

(S(D;,)&=

(S(D2 )) =

b(D) ) E —b(D) ) n(D) ) N (D) )

Di CDi
r

D» cD2

"o="o
[R(D) xp yp~ql q2)l

[~ (D2 xp yp ql 'q2)] ' ~ ~2

(20a)

(20b)
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(S(D„))
(S(D;p))

(21)

Since

Here S(D', ) and S(D z ) are the number of lattice sites
in the largest percolating cluster of D }p and D2p, respec-
tively, and D is the fractal dimension of the system,
which has been shown ' to be the same as the magnetic
scaling power yi, . From (20}, we may calculate D and yi,
from the equation:

k2

fL(x q)= lim —ln g x 'y +
N-~ N G cG

N (G')
Xq ' (24b)

z 1 Ifz(x—, q) = lnq ——ln(1 —X}+
~2 a=i

28

E"0

Using a procedure similar to that used to derive (23}, we
find that after a large number (I) of RG transformations
f, (x,q) may be approximated by:

R(DI xo go qi q2}AR(D2»0 yo qi q2»

Eq. (21) is not the same as Eqs. (3.6) and (3.7) in Larsson's
paper even in our CRGM with FBC.

In the CRGM (i.e., Ml), the free energy per lattice site
may be calculated from (1):

21
2

lnq, for T &T,

0, for TgT, ,

(25a)

(25b)

1 z—fI(x, q)= lim —lnZiv = E+f,—( xq},
2

(22a)
O
EO

where z is the coordination number of the lattice and

f,(x,q) is given by

f,(x,q)= lim —ln g x ' 'y ' 'q"'1

N

(22b)

O
os ~

CI

It follows from (9}that f,(x', q) may be written as

1f, (x,q) = Eo+ f,(x',q), (22c)

CI

where f,(x', q) is the free energy per lattice site calculat-
ed from the transformed variable x'. Equation (22c} is
similar to Eq. (1.6) in the book of Burkhardt and
Leeuwen.

We may iterate (22c) up to the 1th RG transformation
so that the system approaches the high-temperature fixed
point in which x ~0 and each spin has the free energy
lnq or the low-temperature fixed point in which x~1
and each spin has zero free energy. It follows from (22a)
and (22c) that fI(x,q} may be approximated by

O
CI

0.00

(b)

O
IO a

CI
Al

I

1 ~ 00
I

F 00 3.00 4.00 5.00 6.00
0

I
2Q

z 1 2f, (x,q) = EC—+ g — E(')'
g

2
I T)Tlnq, fo

+ ' }

0, for T&T, ,

(23a)

(23b)

Z=lnq ——ln(1 —x )+fL (x,q}, (24a)

where

where Ko"——Ko and in general Ko' is the constant aris-
ing from the ath iteration in the CRGM.

In the LRGM (i.e., M2), the free energy per lattice site
may be calculated from (5):

fz(x, q}= lim ——lnZN
1

N

IO m

O

O

O

I

4-00
I

1.00
I I I

F 00
I I

5 F 00
O I I I

0 F 00 3 F 00 6 F 00
0

FIG. 4. (a) The fixed points (solid lines) as a function of q ob-
tained from

2 method 1 (M1) and method 2 (M2) RG transfor-
mations with various boundary conditions. The dotted line
represents the exact solution. Near q =5, the curves from up to
down positions are obtained, respectively, from

z (M1), 2
P

(M1), 2
PP (M1), 2 (M2), z P(M2), and

2
PP (M2) PRG trans-

formations. (b) The fixed points (solid lines) as a function of q
obtained from M3 RG transformatiohs. The dotted line
represents the exact solution. Near q =5, the curves from up to
down positions are obtained, respectively, from —, , —', , —, , —', , 2, —', ,
and 4 PRG transformations.
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where E0"——K0 and in general E0' is the constant aris-

ing from the ath iteration in the LRGM.
In method 1 with the free boundary condition, if we

consider n (D~ ) of (8a) and n (Df') of (8b) to represent, re-
spectively, the numbers of percolating clusters and non-
percolating clusters in the ce11 D, which do not connect
to sites of the upper cell (e.g. , top open sites of Fig. 2),
then the RG transformation of (9) will be difFerent from
the original transformation. Such new PRG method wi11

be called "reduced cluster renormalization-group method
(RCRGM)" or method 3(M3). The calculations of the
critica1 point, the critica1 exponent, and the free energy in
M3 are similar to those in M1. When the idea of M3 is
applied to the one-dimensional QPM, the PRG transfor-
mation is exact. We expect M3 wi11 give qualitative
good results for the square lattice QPM.

Now we discuss how we actually carry out RG trans-
formations of Eq. (9} with computers. The functions
R (D,xp, yp, q, , q2) and Q(D, xp, yp, q, , q2) of (8) and (9)
may be written as

R(Dxpypq|qg)=QQN(Dbn)
6=0 1}=0

Xxpyp 'q", q,"+' ", (26a)

E
Q(D xp yp q, ,q2)= g g Nf(D, b, n}

6=08 =0
b E b—nqn+b —n (26b)

where n equals A, and is the total number of sites in the
A, XA, cell, Nz(D, b, n) and Nf(D, b, n) are, respectively,
the total number of the percolating configurations D~ and
the nonpercolating configurations Df with b occupied
bonds and n clusters. For a large A, , it is very time con-
suming to calculate N~(D, b, n) and Nf(D, b, n) directly
To reduce the computing time, we cut a A, gA. cell into
A,, XA, and A.b XA. cells where A,, +A,b=A, , and obtain
configuration statistical data for such small cells. Using
such data, we calculate N (D, b, n) and Nf(D, b, n). The
detail of such calculation method will be reported else-
where. Right now, we do not have powerful computing
facilities. We use only a PC-AT computer to calculate
N (D, b, n ) and Nf (D, b, n ) for A, up to 5. Once we have

N~(D, b, n) and Nf(D, b, n) for A, , and A, z, the calculations
of critical points, critical exponents, free energies for
various q and E do not need much CPU time. We use a
CDC computer to carry out such calculations.

TABLE I. Fixed point for the Ising model El calculated by (a) method 1 and (b) method 2 for vari-

ous boundary conditions and cell sizes. When A,2 ——1 the transformation is called cell to site transforma-

tion. Exact Ei ——0.44068. ..

Free BC
One-sided

Periodic BC
Two-sided

Periodic BC

0.6322
0.5769
0.5474

0.5288

0.5298

0.5120
0.5003

0.4949
0.4861

0.4775

2 p

1
P

4 p

q
P

4 p

4 p

(a)
Cell to site

0.6322
0.5755

0.5455

Cell to cell
0.5275

0.5093

0.4916

PP
PP

2
PP

0.5987
0.5462

0.5026

0.5216
0.5031

0.4912
0.4832

3 p
4 p

(b)
Cell to site

0.4853
0.4797
0.4744

PP
PP

0.5113
0.4892

0.4865
0.4779
0.4720
0.4695
0.4650
0.4606

P
4 p

4 P

Cell to cell
0.4744

0.4691

0.4639

PP 0.4674
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TABLE II. Critical exponent v for the QPM with (a) q = I, the conjectured exact value:

31.333. . . ;(b)q= 2, the exact value:1;(c)q= 3, the conjectured exact value:6=0. 8333. ~ ~;(d)

q =4, the conjectured exact value: —,=0.666. . .

Free BC
One-sided

periodic BC
Two-sided

periodic BC

3
2
4
2
5
2
4
3
5
3
5
4

1.428
1.380

1.363
1.355

1.305

1.303
1.305

1.301

1.306
1.311

2 p
3 P
4 P

—P
—P

4 P

(a)
Cell to site

1.428

1.380

1.363

Cell to cell
1.305

1.303

1.301

PP

1
PP

PP

1.368
1.322

1.249

2
1

3
1

4
1

5
1

3
2
4
2
5
2
4
3
5
3
5
4

2
1

3
1

4
1

5
1

3
2
4
2
5
2
4
3
5
3
5
4

1.251

1.176
1.146

1.130

1.054
1.042
1.037
1.023
1.020
1.015

1.312
1.220

1.179

1.157

1.090
1.072
1.062

1.046
1.040
1.033

2 p
3 P
4 P

P
4 P

4 P

2 p
3 P
4 P

3 P
—P

4 P

(b)
Method 1

Cell to site
1.213
1.146

1.121

Cell to cell
1.031
1.025

1.012

Method 2

Cell to site
1.173

1.132

1.115

Cell to cell
1.067
1.062

1.054

PP
PP

PP

2 Pp
PP

PP

1.176
1.103

0.9968

1.152

1.134

1.106

2
1

3
1

4
1

5
1

1.108

1.047
1.021
1.007

2 p
3 P
4 P

(c)
Method 1

Cell to site
1.068
1.010
0.9905

PP
PP

1.042

0.9691
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TABLE II. (Continued).

Free BC
One-sided

periodic BC
Two-sided

periodic BC

0.9015
0.9012
0.8973
0.8799
0.8774
0.8718

—" P

4 P

Cell to cell
0.8854

0.8832

0.8709

PP 0.8547

1.241

1.131
1.082
1.055

P
3 P
4 P

Method 2
Cell to site

1.041

1.002
0.9863

1
PP
PP

0.9912
0.9775

0.9811
0.9577
0.9451
0.9248
0.9163
0.9049

3 P
P

4 P

Cell to cell
0.9391
0.9340

0.9250

2
PP 0.9647

1.016
0.9686
0.9480
0.9364

0.8222

0.8153
0.8127
0.7936
0.7915
0.7852

2 P
3 P
4 P

3 P
—P

4 P

(d)
Method 1

Cell to site
0.9846
0.9319
0.9154

Cell to cell
0.7977
0.7980

0.7856

PP
PP

PP

0.9638
0.8936

0.7700

1.191

1.072
1.019
0.9896

0.9117
0.8862
0.8722

0.8494
0.8396
0.8260

2 P
3 P

P

P
—P

4 P

Method 2
Cell to site

0.9582
0.9200
0.9047

Cell to cell
0.8579
0.8524

0.8422

PP
PP

Pp

0.8988
0.8811

0.8619
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FIG. 5. The thermal scaling power yT (solid line) as a function of q calculated by (a) method 1, (b) method 2, and (c) method 3. (a)
near q =0 the curves from up to down positions are obtained, respectively, by ~ PP, —, P, z, —, , and 4 PRG transformations. (b) Near

q =0 the curves from up to down positions are obtained, respectively, by 2
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ergies and their first and second derivatives for the QPM
are shown in Figs. 7-9, respectively.

The above results usually show the following behavior.
(I) Accuracy increases with A, , and A,2. (2) Periodic
boundary condition improves the accuracy. (3) In the
calculation the global property, methods 1 and 3, gives
more accurate results in the region K ~ K, while method
2 gives more accurate results in the region K &K, [cf.

Figs. 7(a) and 7(b)). (4) In the calculation of critical ex-
ponents, method 2 gives more accurate results in the re-
gion q & 1 and method 1 gives more accurate results in
the region q & 1.

Table II shows that the differences between our best
values for v and the probably exact values of v are only
1.5% for q =1 and q =2. For q =4 the difference be-
tween our best value (0.7700) for v and the den Nijs
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conjectured value 0.666. . . is about 16.5%%uo. Such behav-
ior is similar to Dasgupta s variational RG calcula-
tions. ' When Nienhuis, Riedel, and Schick (NRS) en-

larged the space of the simple Potts Hamiltonian to that
the Potts lattice gas (PLG) and still used the variational
RG method, they obtained critical exponent v very close
to den Nijs conjectured value even at q =4. We may
map the q-state PLG into a q-state site-bond-correlated
percolation model" (QSBCPM) and extend our method
of Sec. II to QSBCPM so that we may calculate the phys-
ical quantitied, e.g., v, for the q-state PLG. It is possible
that the accuracy of critical exponents obtained by our
methods may be improved by considering PLG as in the
work of NRS.

In the limit q ~0, the exact fractal dimension D of the
percolating cluster at Tc approaches 2, but our calcula-
tions give values smaller than 2. This is due to the fact

that in the small cell the number of occupied bonds at Tc,
which is 0.5E on the average, may not connect all cell
sites in the same percolating cluster, therefore D is small-
er than the space dimensions. When cell sizes become
larger and larger, we expect that the calculated D will ap-
proach space dimensions d as q ~0 and the solid curves
of Fig. 6 will become closer to the dotted line.

From Fig. 1 it is easy to observe that in the free BC the
contributions of closed loops in the boundary between
cells are not taken into account and this will cause errors
especially in the loop renormalization-group method
(LRMG, method 2) in the low-temperature regions. Such
observation is confirmed in Fig. 7(a) in which —, PP re-
sults of method 2 are much better than —', P and —,

' results
of method 2 in the low-temperature region.
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IV. DISCUSSION

There have already been several renormalization-group
or finite-size scaling numerical methods which may be
used to study the q-state Potts model, e.g., Kadanoff vari-
ational method, ' Migdal-Kadanoff method and its
modifications, ' Blote, Nightingale, and Derrida
method, ' Suzuki coherent anomaly method, etc.
However, it should be noted that our methods have all of
the following advantages.

(I) The number of spin components q enters the calcu-
lation scheme as a parameter and may be continued to
noninteger values. When q is increased to large numbers,
the complexity of calculation does not increase.

(2) In the A. , X)t,
&

cell to A,2XA,z cell RG transforma-
tiohs, A, , and A,2 may be increased to obtain more accurate
results when better computer hardware or languages be-
come available.

(3) The free energy may be calculated from the step by

step RG transformations and therefore it may display
both the singular behavior near the critical point and the
global property of the system from high temperatures to
low temperatures. See Figs. 7-9.

Reynolds, Stanley, and Klein have proposed a large
cell Monte Carlo method (LCMCM) for random-
percolation problems. We may extend this method to the
q-state bond-correlated percolation model (QBC PM).
However, to simulate equilibrium bond configurations for
the QBCPM on an L XL lattice with traditional
method +' is much more diScult than to simulate bond
configurations for the random-bond percolation on the
same lattice. To overcome this problem, recently
Swendsen and Wang proposed a new Monte Carlo
simulation method which violates dynamic universality
at second-order phase transition, producing very small
values of the dynamic critical exponent. Therefore we

may use Swendsen and Wang's method to simulate equi-
librium bond configurations and clusters for the QBCPM
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on an L )&L lattice and calculate p'(L) at which incipient
percolation clusters appear. We then use the well-known
formula

~ p (L) p—, ~

'-L to find the critical point p,
and exponent v which is related to scaling power yz by

yr ——1/v. From the percolating clusters at p'(L), we

may calculate the fractal dimension D which equals the
scaling power ' y&. Thus the large-cell Monte Carlo
renormalization-group (or finite-size scaling) method for
the QBCPM is also available.

Using the subgraph expansion method, Hu have ob-
tained percolation or cluster representations of a lattice
model of hydrogen bonding, a lattice model of sol-gel
phase transition, an Ising model with multispin interac-
tions, and an Ising model with antiferromagnetic in-
teractions, ' dilute q-state Potts model" which in-
cludes Potts lattice gas and Blume-Emery-Griffiths
(BEG) model ' as special cases, etc. Such percolation or

cluster problems may be studied by the percolation
renormalization-group methods of Sec. II and the large-
cell Monte Carlo renormalization-group (or finite-size
scaling) method discussed in the previous paragraph.
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