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We examine the theory of a kink’s random walk in the classical sine-Gordon continuum at tem-
peratures much lower than the kink’s rest energy. The description of the thermal bath in terms of
phonons or breathers is shown to yield identical results for the diffusion constant, provided the un-
derlying thermodynamic fluctuations are properly taken into account. We present molecular-
dynamics evidence for the occurrence of the soliton-diffusion phenomenon and discuss the relevance
of intrinsic discretization effects to numerical and experimental data.

I. INTRODUCTION

The sine-Gordon (SG) model has been of considerable
importance in the study of nonlinear phenomena. Its
classical continuum version is a prototype of a completely
integrable Hamiltonian system capable of supporting
kink- or breatherlike solitonic excitations. A variety of
real systems quite distinct in their physical origins—such
as Josephson junctions, charge-density waves, and one-
dimensional magnets— possess salient features which can
be described by the SG Hamiltonian.

Recent neutron spin-echo experiments"? with the one-
dimensional antiferromagnet (CD;),NMnCl; (TMMC)
have revealed signatures of diffusive dynamics. At tem-
peratures T much lower than the kink rest energy E in-
teractions between kinks are expected to be negligible
and the resulting single-kink dynamics should be dom-
inated by collisions with the low-energy excitations which
constitute the heat bath. Early theories’ > based on a
phonon picture of the thermal bath had predicted a kink
diffusion constant proportional to T?. More recently an
alternative description in terms of breathers® led to a
similar result, albeit with a different prefactor. The slight
disagreement was attributed by the authors of Ref. 6 to
the different underlying statistical properties of phonons
and breathers, respectively.

The discrepancy between the breather and phonon for-
mulations of the same phenomenon within a classical,
continuum, low-temperature approximation, i.e., in a re-
gime where the two descriptions have until now yielded
identical results,’ presents an interesting challenge to our
theoretical understanding of SG dynamics. If the results
of Refs. 3 and 6 are both correct in their respective con-
texts, we might obtain the means of identifying the
“true” character of low-energy excitations by performing
an appropriate low-temperature experiment or a numeri-
cal simulation; this would resolve the apparent phonon-
breather dilemma.” On the other hand, a careful con-
sideration of the development of equilibrium statistical
mechanics of solitons shows that until recently a theory
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of thermodynamic fluctuations, essential for the construc-
tion of dynamical phenomenologies and/or soliton kinet-
ics, had not been formulated.® One of the basic findings
of Ref. 8 (to be referred to as I in the rest of this paper) is
that small-amplitude breathers do not even approximately
obey Maxwell-Boltzmann statistics. Since both ap-
proaches (phonon,? as well as breather,® based) make im-
plicit use of the classical limit of statistical fluctuations,
we feel that a reexamination of soliton diffusion theory
might prove useful.

The purpose of this work is accordingly twofold. First
we present a brief derivation of the soliton diffusion con-
stant, taking the results of equilibrium fluctuation theory
as developed in I fully into account. We thus demon-
strate that both descriptions of the heat bath, i.e., in
terms of phonons or breathers lead to identical results.
The phonon-breather duality apparently persists beyond
thermodynamics—at least within the confines of classical
continuum theory as applied to the low-temperature re-
gime.

Our second aim has been to attempt a direct observa-
tion of soliton diffusion using a molecular-dynamics
simulation. Rather than evaluate the structure factor
and analyze it in terms of all possible competing scatter-
ing processes, we have chosen to follow the motion of a
single kink in real time. Our approach emphasizes the
microscopic dynamics and should be regarded as comple-
mentary to the structure factor studies.®!® Regarding
the particular issue of spin diffusion the concept is, in
principle, straightforward. If the individual-kink dynam-
ics is governed by elastic interactions with the heat bath,
as suggested by continuum SG theory, the kink should
have a constant average velocity over a long enough
period of time. By subtracting this uniform part of the
motion and taking the time average of the square of what
is left we should be able to detect any signature of
diffusive behavior and extract the corresponding diffusion
constant. Our numerical results suggest that things may
not be that simple.

The problem we encounter within the context of (in-
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herently discrete) molecular dynamics is that although
“primary” effects of the lattice (e.g., pinning) can be elim-
inated by an appropriate choice of lattice constant,'!
“secondary” effects persist. There is simply no way to
eliminate the existence of slow zone-edge phonons from a
numerical simulation. It has been known for some time!?
that these phonons lead to inelastic scattering processes
and may in fact provide the necessary channel for
thermalization. Our numerical results underline the
qualitative importance of such effects and, at least to
some extent, serve to quantify them.

We have been able to detect soliton diffusion by
artificially suppressing zone-edge phonons—thus in-
directly attesting to the latter’s practical significance.
The results obtained are in agreement with the predic-
tions of continuum theory. However, in view of the cru-
cial role played by phonons near the Brillouin-zone edge
in providing a channel for the exchange of kinetic energy,
we have undertaken a systematic study of the fundamen-
tal inelastic scattering process involved. The numerical
results suggest that the only relevant parameter is the rel-
ative velocity of the phonon relative to the kink and can
be well described by analytical expressions derived within
second-order perturbation theory. On the basis of our
findings, we can give a rough theoretical estimate of the
time needed for the nearly integrable discretized version
of the SG system to reach thermal equilibrium. As ex-
pected, this time increases as the discretization becomes
finer and the temperature drops.

The qualitative picture which emerges from our nu-
merical work can be summarized as follows. At very
long times inelastic processes inherent to any discretiza-
tion procedure may result in a dissipative (conventional)
Brownian motion. From the experimental point of view
such time scales are probably irrelevant as long as the
spatial extent of the kink substantially exceeds the lattice
constant (although other extrinsic dissipative mechanisms
with similar formal structure, such as impurities, may
have measurable consequences). Intermediate time scales
are characterized by free (ballistic) kink motion, and only
at even shorter time scales does the nondissipative (anom-
alous®) diffusion dominate the dynamics. The anomalous
diffusion component would naturally reveal itself in the
high-frequency part of the dynamic structure factor.>®
Its detection via our “straightforward” real-time numeri-
cal procedure sets too-high demands on the system’s de-
gree of integrability. In this sense the “filtering out” of
zone-edge phonons is not as arbitrary as it might seem at
first glance; by suppressing zone-edge phonons it “simu-
lates the continuum;” by eliminating processes with ex-
tremely long time scales it produces a random walk pat-
tern which is per se artificial —yet its diffusion constant is
in fact the one that would be detected in an experiment
with a finite frequency resolution. We thus hope that the
real-time approach, once its limitations are properly as-
sessed, will contribute to the understanding of both soli-
ton diffusion and inherent discretization effects.

The paper is organized as follows. In the next section
we demonstrate the equivalence of the phonon and
breather approach to continuum kink diffusion. Section
IIT deals with the molecular dynamics of diffusion, Sec.
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IV with the effects of zone-edge phonons. Some conclud-
ing remarks can be found in Sec. V. Calculational details
of the theoretical part have been reserved for the Appen-
dix.

II. A KINK’S RANDOM WALK
IN THE SG CONTINUUM

We consider the SG equation in the form
$=cid —wising , (1

where the parameters ¢, and o, represent the limiting ve-
locity and phonon gap frequency, respectively. The kink
width is then given by d =cy/w, The basic physical
mechanism underlying the soliton dynamics of (1) at low
temperatures—beyond free propagation—is the elastic
scattering which occurs during a kink-phonon or a kink-
breather collision. Such a scattering process is elastic,
i.e., it gives rise only to a spatial shift of the colliding
partners without changing their velocities; at zero tem-
perature, the resulting evolution of any initial
configuration can be predicted by inverse scattering
theory. At finite temperatures, such an exact description
is not possible. However, we mention parenthetically
that an interesting perturbation theoretical approach
developed by Kaup and Osman'® primarily for the pur-
pose of describing the damped SG system should, in prin-
ciple, describe the conservative system (1) in the limit of
zero damping—although this remains to be verified to
second (i.e., leading nontrivial) order in 7.

It is important to realize that the actual mechanism of
thermalization is left out of consideration in the present
discussion. Clearly in a real system effects extrinsic to
(1), such as discretization or impurity damping, are cru-
cial in establishing thermal equilibrium and may, depend-
ing on the exact circumstances, have more or less serious
consequences for the dynamics. In this section we will
consider the heat bath as a fact, i.e., a canonical ensemble
average over all possible realizations of the completely in-
tegrable system (1); accordingly we will operate within
the strict context of continuum SG dynamics and statisti-
cal mechanics; the diffusive dynamics of a single kink
placed in such a heat bath arises in a nondissipative
fashion as a random walk due to a series of spatial shifts
{A(k)} of the kink, brought about by a stochastic se-
quence of independent collisions with low-energy excita-
tions of type {k}. An illustration of the fundamental mi-
croscopic event is given in Fig. 1.

The assumption of independent collisions presents
some problems even within the strict context of continu-
um SG theory. At low temperatures the constituents of
the heat bath—whether we like to think of them as pho-
nons or as breathers—become more and more extended,
and might thus be characterized by a significant overlap.
We will return to this point in Sec. IV and present some
evidence supporting the hypothesis of statistical indepen-
dence.

Within the general framework outlined an elementary
kinetic theory of soliton diffusion can be presented as
follows.® Under the influence of n, (k) collisions with
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FIG. 1. Kink position during a collision of an initially resting
kink with a wave packet composed of relatively long-
wavelength phonons (g =0.27). The kink comes completely to
rest after the collision; the only asymptotic effect is a spatial
shift.

each heat bath constituent of type k, the position of a
kink which is initially at rest at the origin evolves within
the time 7 according to

X(r)=3 Alk)n (k) . ()
k

Note that we still reserve our option to specify the actual
type of excitation {k} giving rise to the random-walk
process (2). It is possible to convert the sum (2) into an
integral by introducing the appropriate density of states
function R (k); at this stage R is a function of the particu-
lar configuration of our heat bath (cf. I). The product
function p (k)=R (k)n_(k) is a further useful quantity.
In the context of our elementary kinetic arguments
p.(k)dk represents the number of times the kink collides
with heat-bath constituents lying between k and k +dk.
The integral form

X(r)= [ dk Atk)p (k) 2)

allows us to write down directly an expression for the
fluctuations with respect to (w.r.t.) the thermal average of
X (1)

8X (1)= [ dk Atk)8p (k) , 3

in terms of the deviations of the configuration {n(k)}
from its value at thermal equilibrium. Note that for our
particular choice of initial condition, i.e., a kink resting
at the origin, the thermal average (X (7)) vanishes. The
quantity we are interested in is the variance

([8X (NP = [ dk dk’ Ak)IAK")(8p,(k)Bp (k")) .
4)

If diffusive behavior actually occurs, the right-hand side
(rhs) of (4) should be proportional to 7; the proportionally
constant can then be identified with 2D, where D is the
kink diffusion constant.

At this point we face the traditional breather versus
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phonon dilemma. In order to illustrate the relevance of
the underlying theory of thermodynamic fluctuations it
will be useful to outline both the harmonic phonon and
the small-amplitude breather versions.

A. Harmonic phonons

The density of states is Ro(k)=Ro=L /27 and the
relevant fluctuations entering (4) are

<ap,(q)ap,<q')>=J”—(I’i’—ll<ap(q)ap(q')) (5a)
=”—(9L111R05<q —g'{[sn(@P) ,

(5b)

where v(q) is the group velocity of phonons with wave
vector g. Using (i) the continuum SG dispersion relation

0lg)=wi+clq?, (6)

(ii) the classical limit of Bose-Einstein statistics
2

1 , )

BE (q)

where E (q) is the energy of a phonon, and (iii) the known
expressions for the kink phase shift

E(q) 2d
Alg)= —,
q E() 1+d2q2

it can be shown that the rhs of (4) is indeed equal to
2D, 7, where the diffusion constant
2

([8n(9))?)=

(8)

A(q)
B(E)q

d
Dy=[3L1v(g)]

=2T2d2w8fiig_ v( )

27 w*q)

- d
=2T %% [ 24
wof . p(q)

ln
o

= T? 9)

<
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()

(0]

is expressed in terms of the dimensionless temperature
T=kyT/E,. The integrand I}, is shown in Fig. 6 and
compared to its discrete lattice counterpart (cf. the dis-
cussion in Sec. IV).

B. Breathers

In order to characterize the SG breather we must
specify its rapidity a, which fixes the canonical velocity
v(a)=cytanha and a parameter 0 (0<6 < /2), which
defines the internal frequency of oscillation w=wycos6.
Although breathers remain strongly interacting objects
even at low temperatures (since their total number is N /2
in a chain of N particles’ there is no dilute limit of the
breather gas) an important simplification does occur in
the harmonic (low-temperature) limit: Interactions are
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diagonal in the a subspace, hence only breathers with the
same velocity give rise to mutual phase shifts. This has
important consequences for thermodynamic fluctuations
as well as for our simple kinetic argument underlying (5).
The “breather alternative” of (5a) is given by

<5p(a,9)5p(a',e')>,=i”(—z)—ll(zsp(a,e)ap(a',e')> .

(10)

The linear dependence on 7 provides again the signa-
ture of diffusive behavior. Note, however, that in this
case we cannot claim a constant density of states R. The
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breather-breather phase shifts in the a subspace’ B —and
hence the correlation function on the rhs of (10)—is pro-
portional to 8(a—a'). The bars indicate that the corre-
sponding quantities are to be evaluated at thermal equi-
librium. For details the reader is referred to I. For our
purposes it is sufficient to point out that the hypothesis of
Maxwell-Boltzmann statistics for breathers is equivalent
to setting B equal to a & function in both a and 6 sub-
spaces and yields the wrong specific heat.

We now introduce the elementary steps of the random
walk, i.e., the kink shift due to its interaction with a sin-
gle breather

correlation function in the rhs of (10) can be formally ex- E(a,0)
pressed in terms of the elementary breather-breather Ala,0)=2d Eocoshla ’ (12)
phase shifts as [cf. Eq. (28) of I] 0
(8p(k)dp(k’)) = [ dk” p(k")B(k,k")B(k',k"), (1) where
where k =(a,8), and the function B(k',k"') contains in- E(a,0)=2Esinf cosha
formation about phase shifts and occupation numbers of
all breather modes; due to the diagonal property of the is the breather energy, and obtain

|

2d2 ‘ U(a)‘ = ' ITRV-IAY ) (Y n "o
D, = da da'da’d0d0' d0” p(a,0)E (a',6')E (a”,0")B(a’,0';a,0)B(a",0";a,0) .
R L= NI ’
(13)

The quintuple integral in the rhs of (13) looks rather
complicated, especially since the explicit form of B is not
known. However, as may be readily guessed by a com-
parison with (11) and confirmed by Eq. (36) of I, provided
B is diagonal in the a subspace (which is exactly the case
at low temperatures), this integral is closely related to en-
ergy fluctuations, i.e., to the specific heat associated with
a mode of a given rapidity a. Its exact value is

I(a)=T?*L cosha/2md .

Details of the evaluation are given in the Appendix. The
resulting expression

Db,=272codf%‘:—Ma—L (14)

cosh’a

coincides with the second line of (9) if we identify
qd =sinha.

This completes the demonstration of the breather-
phonon equivalence as far as their respective effects on
kink diffusion are concerned. The fact that D, =D, im-
plies that it is not possible to exploit the soliton diffusion
phenomenon in order to determine the consistency of our
heat bath. Any distribution function which describes the
specific heat correctly will yield the same diffusion con-
stant. Conversely, a theoretical description of kink
diffusion which yields values different from (9) in the clas-
sical, continuum, low-temperature regime fails to de-
scribe the underlying thermodynamic fluctuations prop-
erly.

III. MOLECULAR DYNAMICS
The discretized form of (1)
b1=c3(d; 1 +¢_1—2¢,)—ofsing, (15)

is integrated subject to the boundary condition
¢N+I=¢l+27r (16)

for a chain of N =1000 particles using the Verlet!* algo-
rithm with a time step At =0.01. We have taken the pa-
rameter values ¢3=29.22 and wy=1. Time is thus mea-
sured in units of 1/w, and distances in multiples of the
lattice constant. Thermalization is produced by
Langevin forces following the example of Schneider and
Stoll.>!> The reader is referred to their work for details.
The form of the boundary condition guarantees the ex-
istence of an odd number of kinks and/or antikinks; in
the temperature range of interest in this work this practi-
cally restricts us to single-kink configurations and thus
facilitates the task of detecting the kink’s position defined
by the value of the displacement field ¢ =m. The fast os-
cillations of the kink position during the course of a col-
lision event (Fig. 1) can be eliminated by appropriate
averaging.

In order to study the nondissipative time evolution of
the kink’s position we turned off the Langevin forces
after achieving thermalization. Contrary to what one
would expect from the continuum SG model (cf. our dis-
cussion in the previous section) the kink does not propa-
gate with a constant average velocity over long periods of
time (Fig. 2). We have attributed this property to the de-
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FIG. 2. The trajectory of a kink injected into a SG lattice at a
reduced temperature T =0.15, followed for approximately 400
time units. Although the typical time scale involved in inelastic
scattering processes is smaller than the observation time, it is
apparently not short enough to bring out a thermalization of the
kink (defined by demanding that the time average of the velocity
should be equal to zero). Thus although the kink fails to meet
the strict demands of continuum SG theory, it cannot be treated
as the usual Brownian particle at these finite time scales.

viations of the discrete version (15) from its completely
integrable continuous counterpart (1). The microscopic
mechanism behind the change in (canonical) velocity has
been investigated long ago'? and was shown to be related
to interactions with zone-edge phonons, for which an il-
lustrating example can be seen in Fig. 3. We will present
some additional results concerning this point in the next
section. For present use, being interested in simulating
the continuum we apply the following technique in order
to eliminate the influence of such effects inherent to the
discretization procedure. At distances far from the kink
(> 8d) we produce a thermal bath via the usual Langevin
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FIG. 3. Kink position during a collision of an initially resting
kink with a wave packet composed of near zone-edge phonons
(g =0.97). The kink does not come to rest after the collision,
but suffers in addition to the spatial shift a velocity shift. This
should be contrasted to the collision with a continuumlike pho-
non as in Fig. 1.
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algorithm. In the vicinity of the kink we turn off the ran-
dom force while retaining the small friction of the
Langevin extensions of (15). Strictly speaking the aver-
age energy of our system is thus not quite constant, since
a small portion of the chain violates the fluctuation-
dissipation theorem. The small energy losses, however,
come mainly from the damping of slow zone-edge pho-
nons which are dissipated before they reach the kink.
The small friction (I'=0.02 in our dimensionless units) is
not enough to damp out faster excitations, which reach
the kink, contribute to its random-walk dynamics, and
are then “regenerated” by the Langevin forces which are
still active far from the kink. The regeneration is a major
advantage of the Langevin molecular-dynamics formal-
ism® versus the pure Newton’s equations (15), since it cir-
cumvents the recurrence problem which would start to
occur in our chain after 1000/cy,~ 185 time units, i.e.,
well within our time scale of observation.

We believe that this somewhat unconventional pro-
cedure allows us to unmask the basic features of continu-
um SG dynamics. At the same time, the fact that we
have to resort to such means underlines the significance
of intrinsic discretization effects—at least over the rela-
tively long time scales needed to perform a reliable sta-
tistical averaging of our data.

We have followed the time evolution of a kink initially
at rest for approximately 10° time steps, averaged the
square of the fluctuation of its position, and obtained the
results shown in Fig. 4 exemplarily for the case T=0.1.
The pattern of the motion is manifestly diffusive at least
up to times of the order 1/I" and allows us to extract the
value of the diffusion constant. We have repeated the nu-
merical experiment at five different temperatures and ob-
tained the temperature dependence of the diffusion con-
stant shown in Fig. 5. The parameter-free fit to (9) pro-
vides a convincing demonstration of the theoretical
framework presented in Sec. II within its original context,
i.e., the continuum low-T limit. At the same time the lim-
itations of the theory, if it is to be applied to any real
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FIG. 4. The plot of the averaged fluctuation in kink position
(AX}) vs time t for T=0.1 exhibits manifestly diffusive behav-
ior after the suppression of slow phonons. The dashed line is a
linear fit, the slope being two times the diffusion constant.
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FIG. 5. Temperature dependence of the kink diffusion con-
stant. Numerical results are shown for five different tempera-
tures along with error bars assuming a 10% uncertainty. The
dashed line represents the predictions of continuum theory
based on either the phonon (9) or the breather (14) picture.

discrete system, become apparent. The ideal nondissipa-
tive diffusive-kink motion envisaged in Refs. 3—6 was ob-
served over long time intervals only after artificial
suppression of zone-edge phonons.

In Sec. IV we will present some additional results on
the subject of zone-edge phonons. This should help us as-
sess both the fundamental significance of residual discret-
ization effects and their actual impact on observable dy-
namics.

IV. RESIDUAL (INTRINSIC) EFFECTS
OF DISCRETIZATION

It has been recognized for a long time that whereas
some physical effects of the lattice, such as the Peierls
barrier, or its influence on certain thermodynamic prop-
erties of solitons may be eliminated by decreasing the lat-
tice constant a, others persist even in the limit d /a >>1,
being intrinsic to the discretization procedure. There is
no a priori reason why the collision of a kink with a lat-
tice phonon of arbitrary wave vector should be elastic. It
turns out'? that for both ¢* and SG models the majority
of collision events maintain their elastic property to
second order in the phonon amplitude, although the nu-
merical values of the phase shifts deviate appreciably
from those obtained in the continuum limit. Further-
more, a small minority of phonons (from the immediate
vicinity of the zone edge) gives rise to inelastic scattering
(cf. Fig. 3).

There are, therefore, two possible intrinsic effects of
discretization which we have to discuss. We begin with
the simplest. Even if we neglect inelastic scattering
events, in view of the substantial deviations of the
discrete phonon phase shifts from their continuum coun-
terparts, to what extent can we regard the numerical
value of the diffusion constant obtained by the continuum
formalism as reliable? To obtain a reasonable estimate
we must look at the integrand I in (9), rather than the

NIKOS THEODORAKOPOULOS AND ERICH W. WELLER 38

individual phase shifts. The presence of the velocity fac-
tor in I, suggests that the slower discrete phonons, in
spite of the larger phase shifts they cause, may not con-
tribute decisively to the diffusion constant. This is
verified in detail in Fig. 6, which demonstrates that the
dominant contributions come from a relatively narrow
band of long-wavelength (g ~0.057) phonons. Thus we
may reasonably expect continuum theory to yield a
correct numerical value of D.

Returning to the issue of the independence of collision
events raised in Sec. II, we conclude from a comparison
of Figs. 6 and 7 that the phonons which actually contrib-
ute to the diffusion process are relatively fast. A relative-
ly narrow band of fast-collision partners is not expected
to lead to significant overlap and the assumption of sta-
tistical independence seems justified.

We now proceed to discuss inelastic scattering events.
Perturbation-theoretical calculations'?> and preliminary
numerical results!® have indicated that a kink which is in-
itially at rest may acquire kinetic energy by colliding with
a near zone-edge phonon. We have extended the scope of
our numerical work to include moving kinks; our findings
suggest, in accordance with the Galilean invariance of
(15) that (as long as relativistic corrections can be neglect-
ed) the only relevant parameter for the kink’s velocity
change Av is the relative velocity of kink and phonon
Ve =V(g)—v prior to the collision event. In Fig. 8 we
plot the velocity change against the initial relative veloci-
ty for various configurations of initially static or moving
kinks. The corresponding expression obtained in
second-order perturbation theory is

sinh%(27v )
cosh?mV7/2

This relation implicitly assumes a constant v, during a

E(q)
E,

Av=—-2v, (17)

(0] 0.1 0.2 0.3 0.4 0.5
q/m

FIG. 6. The diffusion integral I,(q), as defined in (9), deter-
mines the contribution of any given phonon mode to the
diffusion constant. The dominant contribution arises from a rel-
atively narrow band of long-wavelength phonons. Furthermore,
due to the compensating presence of the velocity factor (cf. Fig.
7), continuum theory (---) agrees quite well with the results for
the discrete lattice ( ).
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FIG. 7. Phonon group velocity v vs g. Lattice phonons
( ) are slower than their continuum counterparts (---). The

decisive contribution to the diffusion phenomenon, however,
comes from phonons with a wave vector of the order of 0.05,
which can be well approximated by continuum theory.

collision, i.e., Av <<v,,. To fit the numerical data in Fig.
8 one has to take into account corrections to this idealiza-
tion. The numerical data are well fitted by substituting
Vg in the rhs of (17) by v, +Av /2 (i.e., the arithmetic
mean of initial and final relative velocity) and then deter-
mining Av self-consistently.

The inelastic scattering event described above provides
the only mechanism-—except for boundary or finite-site

o.o i Il Il 1 1 1 B E—

IVrelI

FIG. 8. Change Av, in the kink velocity as a result of a
kink-phonon wave-packet collision. As described in the text,
after taking into account corrections to the bare theory (17)
(dashed line) the numerical results are well fitted by the theoret-
ical prediction. Curve 1 is for E,,/E;=0.15, + are the nu-
merical results for different initial kink velocities, ¢ that for
different wave vectors, i.e., group velocities, of the colliding
phonon. Curve 2 is for E;, /E, =0.3, O are the corresponding
numerical results for different phonon wave vectors. This
demonstrates, that as long as the phonon energy E,; is much
lower than the kink energy E; and relativistic effects are negli-
gible, the (initial) relative velocity v, of kink and phonon is the
only relevant parameter.
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effects—that can lead to a change in the state of motion
of a kink in the almost integrable system (15). Thus its
importance extends beyond, in fact mainly beyond, the is-
sue of soliton diffusion and into the fundamental question
of how and after how long small deviations from complete
integrability can bring about thermal equilibrium. As a
first step one might use a simple kinetic-theory argument
similar to the one presented in Sec. II, where now the mi-
croscopic input is the shift in the kink’s velocity (17)
rather than in its position. This leads to a conventional
(dissipative) Brownian motion with a typical thermaliza-
tion time 7, (given by the inverse of the friction constant
y) of the order of wy !T ~!(d/a)’. At very long times
t > 7y, as the kink loses memory of its initial velocity,
this implies a temperature-independent diffusion constant
of the order Dy ~c3wqy '(d /a)’.

This diffusion constant is several orders of magnitude
larger than (9). Its relevance, however, is restricted to the
extremely long time scales necessary for thermalization of
the almost integrable system (15). In a system with
d/a >>1, the features of the dynamical structure factor
determined at low temperatures and with finite frequency
resolution will reflect (9) in the high-frequency tail.>®
Any influence of the Brownian particlelike behavior
would be restricted to an undetectably narrow region
around 0 =0.

Although our numerical simulations are consistent
with the rough estimate of the thermalization time 7,
above (resulting in 7, ~1000/w, for our simulation pa-
rameters d/a=>5.4 and T=0.15) in the sense that
significant changes of the kink velocity occur in time in-
tervals of that order, a quantitative verification of the
thermalization process and the associated diffusion con-
stant D, would by far exceed our computational capaci-
ties.

It is, however, worth noting that for our type of sys-
tem, where d /a is much larger than unity, the power-law
behavior of 7, leads to small but observable conse-
quences (even if we neglect other thermal forces) as op-
posed to what one would expect from the exponentially
vanishing lattice friction. !’

V. CONCLUDING REMARKS

We have shown that the random walk of a kink in the
SG continuum chain can be described in identical fashion
for both versions of the small amplitude constituents of
the continuum heat bath. Breather® and phonon?
descriptions of the heat bath lead to the same kink
diffusion constant, provided the underlying thermo-
dynamic fluctuations are fully incorporated into the
theory. The persistence of phonon-breather duality in
the context of a dynamical phenomenon suggests that it
may prove extremely difficult to determine the true con-
sistency of a finite-temperature SG chain.”"®

Our numerical simulation confirms the validity of con-
tinuum theory insofar as it reveals diffusive kink behavior
at short time scales after the filtering out of inelastic pro-
cesses due to zone-edge phonons. The diffusion constant
extracted is in full agreement with the predictions of con-
tinuum theory.
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On the basis of our numerical results it is possible to
assess the qualitative and quantitative importance of re-
sidual discretization effects. The qualitative significance
lies in the fact that discretization—with the ensuing in-
elastic scattering processes—provides an important
mechanism via which a kink may reach thermal equilibri-
um in the pure SG chain. Although according to our es-
timates this would only take place on a very long time
scale—beyond our present computational capacities—
the fundamental importance of verifying the ergodic be-
havior of a prototype near-integrable system should not
be underestimated. '8

The quantitative aspects of such discretization effects
yield a more favorable prospect for the practical success
of continuum theory. Kink diffusion due to elastic
scattering processes dominates the short time scale of the
dynamics, whereas discretization effects become observ-
able only at relatively long time scales. A dissipative
Brownian motion, during the course of which a kink
loses memory of its initial velocity, is estimated to occur
at a time scale three orders of magnitude longer than the
typical phonon or breather oscillations. Thus an experi-
ment which determines the dynamical structure factor
with a finite frequency resolution should only detect, at
the high-frequency tail, the nondissipative random walk
predicted by continuum theory.

APPENDIX

Using the compact notation k =(a,8) we may rewrite
the quintuple integral in (13) as

I(a)= [ dodk’ dk" p(a,0)E (k')

XE(k")B(k',k)B(k" k) . (A1)

Due to the Lorentz invariance of the SG equation we
have (cf. I)

E (k)A(k,k')=E(k")A(k', k) (A2)
and

R (k)
Ry(k)

[ dk’ E(k")B (k',k)=E (k)
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where R(k) is the bare density of states, i.e., the one
available to a single breather in the absence of any others.
Inserting (A3) in (A1) allows us to perform the integra-
tions over k' and k’’. The result is

R(a,0)

Ry(a,0) A4

Ia)= [ "d6p(a,0)E¥a,0)

Introducing the occupation number 7 (a,6) and recogniz-
ing that

pla,0)=R(a,0)n(a,b)

we further obtain

w2 R(a,0)
I(a)= [ ""dén(a,0)Ry(a,0)EXa,0) |5~
(a) . fila,0)Ry(a,0)E“(a,8) Ry(a,0)
(AS)
In the case of the SG breather gas
2L .
Ry(a,0)="= | —
ola,0) 7d | 7y sinf cosha , (A6)

and the occupation number’ and density of states® are
given by

(1Bfiwgcosha)?

n(a,0)= (A7)
sinh’[ 1BE (a,6)]
and
R(a,0) 2
——————=coth[1BE(a,0)] — =,
Ro(a,6) coth[1BE (a, )] BE (6.0) (A8B)
respectively.
Inserting (A6)-(A8) in (AS) and defining
x =BE /2=BE,sinf cosha
gives us in the classical, low-temperature regime
fiwg<<kgT <<E,
— (-] —_— 3
I(a)=3£T2cosaf dx(x—co.th_xz__l)_
27 0 sinh“x
__L 2
5md T “cosha . (A9)
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