
PHYSICAL REVIEW B VOLUME 38, NUMBER 4 1 AUGUST 1988

Interface kinetics of freezing and melting with a density change
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The change in density between liquid and solid is shown to affect the interface velocity for rapid
solidification or melting. The effect is asymmetric, being much more pronounced for freezing than
for melting, regardless of whether the liquid is more or less dense than the solid. Freezing velocity
is limited by the rate at which a density excess can be transported away from or into the interface,
but melting speed can still approach the speed of sound or thermal velocity. It is argued that relax-
ation of the density excess should be viewed on the molecular level, whereby diffusive jumps take
place. This leads to a much slower removal of the excess than if it were propagated away as sound
and a corresponding much greater effect on the interface motion. A modified transition-state theory
is presented which incorporates the density change. Comparison is made with experiments on sil-

icon and with molecular-dynamics simulations of freezing of a Lennard-Jones liquid. Satisfactory
agreement is obtained, particularly in regard to the large asymmetry between freezing and melting

speeds observed near the melting point in silicon.

I. INTRODUCTION

The speed at which the liquid-solid interface moves
during heterogeneous freezing or melting has been a
problem of long-standing interest. ' In early work the
transformation rates were generally slow enough that
quasiequilibrium conditions could be assumed and con-
ventional transition-state theory' (TST) applied. In TST
the interface velocity v is driven by the difference between
liquid and solid free energies at the interface temperature
T, and v may also contain an activation factor if an inter-
mediate "transition state" is required whose free energy
is greater than that of the equilibrium liquid or solid.
More recent techniques of rapid solidification and melt-
ing have produced speeds, however, where the equilibri-
um conditions and thus TST can well be questioned. It
has been suggested, for example, that for pure metals v is
limited only by the speed of sound c.

Of particular note and concern here are the pulsed-
laser experiments ' on the melting and subsequent re-
crystallization of silicon. Although the reported speeds
are still an order of magnitude less than c, there is a strik-
ing asymmetry between freezing and melting which can-
not be explained by TST. (Asymmetry in this paper
means the difference in a property such as
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between
melting and freezing for the same absolute difference
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between T—and the melting point T~. ) Al-
though the melting speed is 190 m/s for what may be
only moderate overheating, v for freezing into the crys-
talline state is only 15 m/s at the 240-K undercooling
beyond which the amorphous phase is formed. More
dramatic asymmetry is found in the x-ray studies which
gave no evidence for overheating when ( 111) silicon me-
lts with v = —11 m/s but 110-K undercooling for a freez-
ing v=6 m/s. (The usual convention is adopted that
u & 0 corresponds to freezing and U & 0 to melting. ) These
data are shown in Fig. 1. Recent transient conductance
measurements have, however, failed to confirm the
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FIG. 1. Interface velocity vs temperature in silicon. Experi-

mental points are from Ref. 4. Point a is freezing velocity from
Ref. 6 at temperature below which amorphous phase is formed.
Dashed curve is a fit to normal TST adjusted to give agreement
at point a. Straight lines are guides to the eye only to emphasize
asymmetry of data from Ref. 4.

strong degree of asymmetry seen in the data of Ref. 4; so
there remains some question as to just how large the
asymmetry really is. If it is manifested over as narrow a
temperature range as the x-ray data suggest, it is difficult
to explain by conventional TST. This is because for such
small departures from the equilibrium crystal melting
point TM ——1685 K, the various kinetic coefficients of
TST should have negligible temperature dependence and
the free-energy differences should be much less than kz T
so that one would expect v ~ TM —T. That is, the speeds
for given small amounts of undercooling and overheating
should be the same, as seen for the TST curves in Figs. 1

and 3.
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The purpose of this paper is to show that asymmetry in
v of the size found in silicon, even for the data of Ref. 4,
might be accounted for by the sizeable change (8%) of
density between liquid and solid. To achieve this end, a
fairly detailed description is given of interface kinetics
when there is an accompanying density change. Particu-
lar attention is paid to the rather crucial question of just
how excess density is transported away from the interface
(or conversely how density is transported into a deficient
interface).

"fhe situation is postulated to be shown in Fig. 2(a).
The liquid is assumed to be much more compressible
than the solid, so when a layer of liquid converts to solid
in a substance such as silicon whose liquid is more dense
than the solid, an excess number of molecules are forced

into the liquid ahead of the interface. Displacements of
the order of the average intermolecular spacing a have
occurred in a time a/U. This is assumed to produce
"interstitial-like" defects (major molecular rearrange-
ments leading to locally closer packing) in the liquid
which cannot be relaxed by the small amplitude vibra-
tions of a sound wave. Rather diffusive jumps are re-
quired. The more common case of a liquid less dense
than the solid would lead, on freezing, to the formation of
"vacancies" in the liquid ahead of the interface, and to
the more familiar scenario of free-volume relaxation. In
either case, I assume, largely by analogy with the known
features of structural relaxation in glasses and free-
volume effects, that a few diffusive hops are required be-
fore either the defects annihilate or the rearrangement be-
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FIG. 2. Schematic of particle How at interface with a density change. Freezing of a substance whose liquid is denser than solid is

shown. (a) Arrangement of nz solid atoms and average of nL liquid atoms between planes separated by distance a. As interface
moves distance a in time a/U molecule shown as open circle has to move back into liquid to accommodate density change. Illustra-
tion is for liquid 20% denser than solid. (b} Flows in laboratory frame of reference. Solid is fixed to an immobile substrate, but liquid
has a free surface. JL and Jz are particle currents away from interface. (c) Same as (b) but in interface frame of reference. Currents
are now labeled as specific density times velocity.
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comes so slight that it can be relaxed by generation of
small-amplitude phonons. Consequently the time a /v for
the interface to traverse the distance a can be no shorter
than the order of a /D (D is the self-diffusion coefficient)
in order for steady-state conditions to apply; so the limit-

ing velocity is of the order of 0 /D. For relaxation of the
excess density by sound, it takes only a time a/c for the
interface density to equilibrate and thus the limiting ve-
locity is c. For typical values a =3 A, D =10 cm /s,
c=4X10 m/s, the time a /D is 2 orders of magnitude
larger than a/c; so diffusion provides a much more seri-
ous limitation.

I have no proof at present for the assumption that
diffusive hops are required. Molecular-dynamics (MD)
simulations on relaxation of vacancies in undercooled
liquids show that diffusion time scales are involved. Al-
though there are numerous MD treatments of self-
diffusion in liquids, I am aware of none that specifically
answer the question of how rapidly an increased density
of molecules would be relaxed. That some diffusive hops
are required seems reasonable, and it is at least
worthwhile to explore the consequences on interface ki-
netics.

Heat flow' "can also limit the interface kinetics. But
the present work assumes throughout that heat flow is
sufficiently rapid and the necessary temperature gradients
maintained to keep the interface temperature at a con-
stant value T. This may seem inconsistent with the no-
tion that excess density in the liquid relaxes by a slow
diffusion process. The crucial point here is that, because
of the large electronic contribution, the thermal diffusion
coefficient of liquid silicon is estimated' to be almost 4
orders of magnitude greater than the self-diffusion
coefficient D.

The steady-state densities on the liquid and solid sides
of the interface are calculated in Sec. II by simple con-
siderations of mass flow. Salient features are that these
densities depend on v, and the dependence is asymmetric
such that there is a much more profound effect on freez-
ing than on melting. Section III presents a modified TST
which is essentially just normal TST with a v-dependent
free-energy difference. This dependence arises because
the pertinent free energies are functions of the steady-
state interface densities which depend on v as shown in
Sec. II. Both the symmetric and entropy-limited growth
versions of TST are discussed. Appendix B shows how
TST can further be modified to include fluctuations in in-
terface densities from their steady-state values. Section II
gives the density as a function p(v ) and Sec. III provides
an independent relation for v(p), so their combined equa-
tions can be solved numerically for v and the interface
densities (and thus pressure) at a given interface teinpera-
ture. Results are compared with experiment in Sec. IV
for both silicon and the freezing of a Lennard-Jones
liquid, the latter as obtained by molecular-dynamics
simulation. '

II. STEADY-STATE INTERFACE DENSITIES

The densities on the hquid and solid sides of the inter-
face, pL and ps, respectively, are derived in the steady-

state of the interface moving with velocity v as follows,
with the aid of Fig. 2. The crystalline solid side of the in-
terface consists of planes separated by a distance a. The
liquid side is divided into layers of thickness a. Unit area
is assumed. The language and sketches are explicitly for
freezing with pl &ps, but the resulting equations are
equally valid for melting and/or pL &ps.

Figure 2(a) illustrates that as the interface moves for-
ward a distance a, nI ——pI a molecules of liquid are con-
verted to ns ——psa molecules of solid. Conservation of
mass requires that nL —ns molecules flow away from the
interface. This excess is shown in Fig. 2(a) as all entering
the liquid, but Fig. 2(b) shows a more general case of the
excess as particle currents JL and Js into the liquid and
solid, respectively, measured in the laboratory frame of
reference. The sample, as shown, has a free surface
which has been melted by the laser pulse, while the other
surface which remains solid is fixed to an immobile sub-
strate. The free surface can move with velocity U but,
since it is under zero pressure, the density in the first few
atomic layers from the free surface must have the equilib-
rium value pL. (In order to separate out the effects of
density change only, temperature gradients are neglected
in this illustration, so no distinction need be made be-
tween equilibrium densities at temperatures of the inter-
face and surfaces. ) Steady-state conditions demand
JL ——PL U and Js ——0. The latter, which is a consequence
of the fixed substrate, gives the useful conclusion that, as
in Fig. 2(a), all excess molecules must go into the liquid if
steady state prevails. Figure 2(c) shows the flows as
viewed by an observer at rest with respect to the inter-
face. The current entering the interface from the liquid is
piv, while that leaving the interface into the liquid is

(pL —ps)v, since, from the above, all excess molecules
enter the liquid. The net flow from the liquid to interface
is thus psv. In steady state this is balanced by the current
entering from the free surface, which is pL(v —U) in the
interface frame of reference. Hence we obtain

U = ( 1 —p5/pL )v

for the free-surface velocity. Similar consideration of the
currents in the solid at the interface and substrate gives
simply

IPs=Ps

where ps is the solid density at the substrate, since no ex-
cess enters the solid and the substrate surface moves
away from the interface at v. Equation (1) is not used
here, but it would be a consideration if the free-surface
velocity could be measured in future experiments. Equa-
tion (2), however, is iinportant for subsequent comparison
with the x-ray data of Ref. 4. The implication is that, in
the steady state, any departure of ps from its equilibrium
value ps is uniform from the substrate to the interface.
That is, in the absence of temperature gradients, the solid
is under uniform compression or tension. Such is not
necessarily the case for the liquid. pL &pl implies a pres-
sure gradient which is possible since the excess molecules
drifting toward the liquid free surface experience a fric-
tion force which balances the pressure differential.
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Relaxation is accomplished by the defects or excess
density migrating away from the interface region until
they are annihilated or propagated away rapidly as pho-
nons. The excess density is assumed to relax toward its
equilibrium value at a rate I,

(pL ps )" /~ = r(pL pL } (4)

Departures of p& and pL from their equilibrium values

pz and pL imply nonzero pressure at the interface. I as-
sume this pressure p to be continuous on the liquid and
solid sides of the interface, just as the temperature is as-
sumed to be. Consequently one may write

ps ps—=r(pi p&—}, (5)

where, in the limit of small changes from equilibrium,
y=(psKL /PLKs) in which KL and Ks are, respectively,
isothermal bulk moduli of the liquid and solid. Use of
Eq. (5) in (4) gives, with some manipulation,

p p =u(p p )/[r~ —u(1 —7)]
for the increase in liquid density at the interface. Al-
though Eq. (6) was derived with language pertinent to
freezing (u & 0}and liquid denser than solid (pz —ps & 0),
it is also valid for pr —ps &0 and/or melting (u &0) pro-
vided account is taken of the sign of v. This may be seen
by noting that the right-hand side of Eq. (4) is the same
for melting or freezing while the left-hand side changes
sign on going from freezing to melting. The latter holds
because if the interface motion is reversed, a plane of
solid is converted to liquid in the time aiu, requiring
(p~ —ps )a molecules to be remoued from adjacent layers.

Equation (6), which forms one of the foundations of the
theory, is thus quite general as long as the algebraic na-
ture of u is noted (i.e., u &0 for melting). Consequently
there is an inherent asymmetry between melting and
freezing. For the liquid relatively more compressible
than the solid, y & 1 (y= —,

' for silicon) so that the freez-

ing velocity u & 0 must be kept below I a/(1 —y ) to avoid
a catastrophic divergence. No such limit is imposed on
the melting velocity v &0, however. A physical interpre-
tation of this asymmetry is that for freezing the interface
and excess density are both moving into the liquid. The
excess will pile up at an unacceptable rate unless the in-
terface is slowed to an acceptable pace. On melting, the
interface moves away from the liquid; so the density can
only go to zero rather than pile up. This assumes most of
the density change occurs in the liquid (y & 1). The situ-
ation would be reversed, with the divergence occurring
for melting, if y ~ 1.

It is interesting to compare the above results which as-
sume simple relaxation of the excess density with those
for propagation and diffusion. If the excess propagates
away from the interface at speed c into the liquid, it is

0

dt
—p, = —r(p, —p, ) .

Equating the rate at which excess density enters a layer
of liquid from the interface to the rate at which it is
transported away from the layer yields the steady-state
condition

where 5p is the departure of liquid density from pL. The
resulting steady-state density when a source term is add-
ed at the interface is derived in Appendix A. A
noteworthy feature is that no steady-state solution exists
for pure diffusion, I =0, and a highly incompressible
solid.

III. TRANSITION-STATE THEORY
%"ITH DENSITY CHANGE

Section II gave an expression (5) for the steady-state in-
terface densities in terms of the velocity v. Since the goal
is to obtain v for a given temperature T, completion of
the theory requires a second, independent, relation for v

in terms of the densities and temperature. This is provid-
ed by rate equations which describe transformation of
molecules of liquid to solid and vice versa. The simplest
approach, taken here, is to use conventional TST but
with the liquid and solid free energies gL and g& evalu-

ated at the steady-state interface densities. It is first help-
ful to review briefly the salient features of TST, especially
since different forms of it have been shown ' to possess
different asymmetry —albeit not over the narrow temper-
ature range of the x-ray data on silicon. It is generally
agreed that the interface velocity is given by

u =a( WLs —WsL ),
where WLs ( Wsi ) is the rate to transfer a layer of liquid
(solid) of thickness a to solid (liquid), and that the rates
should be in the ratio

WL s / WsL ——exp[P(gL —gs )], (9)

with P= 1/ksT; and gL and gs are Gibbs free energies
per molecule of liquid and solid, respectively, evaluated
at the interface temperature T and pressure p. The latter
expression of detailed balance or microscopic reversibility
is not, however, satisfied by a recent modification" of
TST. Since only the ratio is given by Eq. (9), there
remains considerable flexibility which can lead, among
other things, to ambiguities in the limiting speeds of
freezing and melting. Two forms in common use are the
"symmetric" and "entropy-limited growth. " The former
takes

WIs ——vexp[ —P8(gs —gL )],
Wsi ——v exp[ —P8(gL —gs ) ] .

(10)

The function 8(x) is defined as 8(x ) =x for x &0 and
8(x)=0 for x &0. This definition guarantees that only
transitions which involve an increase of free energy are
activated so that the prefactor v represents a maximum
transition rate. Use of Eqs. (10) and (11) in Eq. (8) allows
the speed to be expressed as

easy to show that Eq. (6) remains valid with I =c/a.
This neglects reflection from the free surface back to the
interface and thus assumes an infinite medium. The case
of diffusion combined with relaxation is described by the
equation

a5p-Da'5p r5
2
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~

u
~

=voa exp( ~h)[1 —exp( —&I ~g I )] (12)

where hg =gL —gz and v has been written as
voexp( —Ph ) with h an activation enthalpy. We see that,
for temperatures such that Ph «1, the freezing and
melting speeds have the same maximum value v~ and
are the same for a given Pb,g; hence, Eqs. (10) and (11)
are called the symmetric version. For entropy-limited
growth it is assumed that there is an intermediate state
with free energy g*&g~,gI through which transitions
proceed. Thereby

IVLs =v exp[ P(g '—
gL, )]-

~sL, =v e"p[ —P(g gs—}]

(13)

(14)

In order to have g* &gL,gz at all temperatures requires
s* gs& and h* ~ hL, where the s's and h's are entropies
and enthalpies of the various states (hr &hs, sL &ss).
The frequency v is not necessarily the same in Eqs. (13)
and (14) as in Eqs. (10}and (11}. With some rearrange-
ment the velocity resulting from Eqs. (13) and (14) can be
written as

A final comment on conventional TST is that a factor
f &1 often multiplies vo in Eqs. (12) or (16). f is de-
scribed as a fraction of sites which participate in the tran-
sition, and is generally an adjustable parameter. No such
factor is included in the present work, i.e., f=1 is used
throughout; and I take vo=c/a unless noted otherwise.

A straightforward modification of Eqs. (12) and (16) is
to replace the free-energy difference b,g with gL(pL )
—gs(ps), i.e., evaluated at the steady-state interface den-
sities. For simplicity I assume the interface g's may be
calculated as if the liquid and solid were uniformly
compressed at the interface pressure p. This neglects the
fact that a more realistic picture might have gL (pL ) cal-
culated on the basis of interstitial-like defects, which
~ould result in a greater increase in gI fram its equilibri-
um value for the same average interface density. That is,
it generally costs more energy to change the volume of a

u =voa exp( —)6)h)Iexp[ —(sL —ss)) —exp[ —P(hL —hs))l

(15)

with vo=vooexp(s' —ss), h =ho —hr +h', where voo and
h 0 are, respectively, prefactor and enthalpy associated
with v in Eqs. (13) and (14), and the s's are in units of ks.
Equation (15) is highly asymtnetric in that, for Ph «1,
the ratio of maximum melting speed [obtained for
P(hL —hs)«1] to maximum freezing speed [P(hL
—hs) »1] is exp(sL —ss) —1=35 for silicon. As noted
above and seen in Fig. 1, Eq. (15) is, however, symmetric
near TM The fac. tor avo in either Eq. (12) or (15) is a
maximum speed and therefore usually taken as either the
speed of sound c or proportional to the thermal velocity.
Although Eq. (15) is useful for displaying the asymmetry,
it is more convenient for subsequent discussion to factor
out the entropy term and rewrite it as

u=voa exp( —Ph)exp[ —(sL —ss))[1—exp( —Phg)] .

(16)

fixed number of particles by forming defects than by hav-
ing uniform contraction or expansion. As might be ex-
pected from the general principle that nature always con-
spires against you, the magnitude of the driving force

~
bg

~

=
~ gr (pL ) —gs(ps) ~

is always less than the equi-
librium

This may be seen from the relation dg = Vdp at constant
temperature and the fact that the pressure p is continuous
across the interface. (V=volume per molecule= 1/p. )

It follows that for changes 6pL,' 5pz in interface densities
at fixed temperature T resulting in a pressure change 5p,

&(gI. gs)=—(PI. Ps L(&PL. PL, } (17)

( +L /PL }(~PL /PL )(PI. /Ps (18)

to first order in the density change. The expression (5)
may then be used to obtain a relation between hg and v

which, when inserted into Eq. (12) or (16), provides a
transcendental equation for the interface response u(T)
in the symmetric or entropy-limited model. The prefac-
tor in Eq. (16}contains an explicit thermodynamic term
sL —sz whose density dependence is given by the rela-
tion' (t}s/r)V)r=aE with a the coefficient of thermal
expansion and K the bulk modulus. But since the density
dependence of the prefactor is not overly important and
since the original prefactor voexp( —Ph ) may well have as
strong a density dependence as has exp[ —(sL —ss)], I
choose simply to ignore density dependence except as it
occurs in b,g.

The above gives a prescription for calculating u(T) in
what might be called the average density scheme. That
is, there is a tacit assumptian that liquid at average
(steady state) density pr transforms directly to solid at
average density ps&PL without going through intermedi-
ate densities. Or at least the rate can be calculated

TABLE I. Signs of terms in Eq. (17) for change in free-energy
difference with velocity [see also Eq. (6)].

Denser phase Transition Ag (pI
' —ps ')5pL 5

~
hg

~

Liquid
Liquid
Solid
Solid

Freezing
Melting
Freezing
Melting

where KL is the isothermal bulk modulus of the liquid
and, as noted under Eq. (5), use has been made of

op =&L&pL/pL =&s~ps/ps .

For the example most used here of freezing a liquid with

pL & ps, Eq. (6) shows that 5PL &0 so that the right-hand
side of Eq. (17) is negative. But freezing requires gL &gs,
so the net effect is a decrease in

~

bg
~

. Table I lists the
signs for all combinations of freezing or melting and
liquid or solid being the denser phase. As seen, Eqs. (6)
and (17) give a decreased

~
4g

~

in all cases. Integration
of Eq. (17) together with the above relation between 5ps
and 5PL gives
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without having to consider such effects. A possibly more
realistic model is treated in Appendix B. There fluctua-
tions in density are allowed, and transitions occur by a
molecule of liquid (solid} at some local density p' trans-
forming to solid (liquid) at the same local density p'. The
local density of newly formed solid (liquid) then relaxes to
the steady-state value. Numerical results from this
method do not differ significantly from those of the
simpler average density scheme, however.

IV. COMPARISON WITH EXPERIMENT

Comparison is made below both with the pulsed-laser
experiments on silicon ' and molecular dynamics "com-
puter experiments" on a Lennard-Jones (LJ) system. ' In
both cases rapid interface motion has been studied, but
only in the former has both freezing and melting been ob-
served so that asymmetry could be investigated. The
former provides an example of liquid denser than solid,
whereas the latter has the solid denser than the liquid.
Thus both positive and negative density changes can be
compared and contrasted. The following notation is em-
ployed for the theoretical curves: u(O, sym) and
u(O, asym) are Eqs. (12) and (16), respectively, with
hg =kg, i.e., densities at their equilibrium value, and al-
lowing for a finite activation enthalpy h; u (p, sym } and
u(p, asym) are Eqs. (12) and (16) with hg given by Eq. (18)
and 5pL given by Eq. (6) and always having h =0.

A. Silicon

Various curves are displayed in Fig. 3 for the interface
velocity versus temperature computed for silicon. All
these have limiting speed voa=c, the speed of sound.
Figure 3(a) shows u(p, sym) and u(p, asym) together with
data from Refs. 2 and 4. Values of parameters used are
given in Table II. Where possible, these parameters are
taken from experimental data on silicon. In the case of
the liquid diffusion coefficient D, where data do not exist
to my knowledge, values have been taken from a recent
molecular-dynamics simulation of silicon. ' The relaxa-
tion rate in Eq. (6) has been taken as I =D/A, a . A, thus
represents approximately the distance in units of the
average intermolecular spacing which must be diffused
away from the interface' in order to relax the density
fluctuation, and is the only adjustable parameter used in
the fit. Its value was fixed by requiring the freezing veloc-
ity to be about 15 m/s at 1450 K, the observed u at the
point where the liquid freezes to the amorphous rather
than crystalline state. Neither U for the liquid-amorphous
transition nor the important question of why the amor-
phous state should form under these conditions are con-
sidered in this paper. Strong asymmetry of u(p, asym) is
apparent for

~

T T~
~

&40 K, but—it should be noted
that the theory is symmetric very near TM (i.e., the slope
of u versus T is continuous at T~ ).

An ironic twist seen in Fig. 3(a) is that when the "sym-
metric" Eq. (12) is used with a density-dependent bg, it
produces a much more asymmetric curve than when the
"asymmetric" Eq. (16) is used. The reason is that, except
very near T~, the freezing velocity is approximately the
limiting value given in Eq. (6) as I a/(I —y), and in-

D =D( TM )exp[ E,(P —PM )]— (19)

is used. The activation energy for diffusion E, was corn-
puted in Ref. 17. Over the temperature range of interest,
there is almost negligible difference between using Eq.
(19) and a constant D, as long as A. is adjusted to maintain
the fit at 1450 K, as indicated in the figure caption. Such
is not the case for the large temperature range over which
freezing of the LJ liquid is studied in the following sub-
section.

The predictions of conventional TST, u(O, sym), and
u(0, asym) are compared with the present theory,
u(p, sym), and u(p, asym), in Figs. 3(b) and 3(c). u(O, i ) is
shown both for h =0 and h chosen so as to make U =15
m/s at 1450 K, which gave h =0.59 and 0.14 eV for the
symmetric and entropy-limited models, respectively.
Both u(O, sym) and u(O, asym) can fit the data of Ref. 2
shown in Fig. 3(a} as the point a and line b provided h is
properly chosen. However, it was argued in Ref. 2 that
only u(O, asym) could also account for melting of the
amorphous phase (not considered here). This led the au-
thors to favor the entropy-limited-growth model and re-
ject u(O, sym). Use of a finite h in u(O, i) (i=sym or
asym) gives about the same results for freezing as the
present theory u(p, i ) with h =0; so the advantages of
this work might be questioned, at least for treatment of
solidification only. My defense would be that the density
effect provides a physical basis for the low freezing veloc-
ity, whereas the physical origin of the largely phenome-
nological h is not well understood. It is also clear that
the density effect combined with the symmetric model has
a chance of explaining the very large asymmetry seen in
Ref. 4, which is not possible with normal TST.

The interface densities and pressure are shown in Fig.
4. Here, as with calculation of the Gibbs functions, a
linear pressure versus density relation was assumed. The
deviation from linearity results' in about a 20% increase
in pressure for ps/ps ——1.03. As noted in connection
with Eq. (2), the solid density is predicted to be uniform,
and thus the solid under uniform compression for freez-
ing and uniform tension for melting. But the liquid den-

dependent of the prefactor. But the density change has
much weaker effect on melting, so the melting speed is al-
most the same as in normal TST [see Figs. 3(b) and 3(c)].
Thus asymmetry defined as the ratio

~

u „, ~ /u&„„, for
the same P ~

b,g ~

is nearly proportional to the melting
speed calculated with normal TST. Although the limit-
ing melting speed is the same in both Eqs. (12) and (16),
the melting speeds are seen to be in the ratio

u „,(O, sym/u „,(O, asym)=exp(sL —ss)exp( —P
~
bg

~
),

which, for small overheating, is much greater than unity.
Hence the symmetric" theory turns out to give the
greater asymmetry when u(O, i) is replaced by u(p, i) (i
stands for "sym" or "asym").

Thermal activation of D makes I decrease with de-
creasing temperature and thus accentuates reduction of
the freezing velocity. In order to see how big an effect
this aspect of the temperature dependence has, curves are
shown both in which D is held at its value D(T~ ) for the
melting point and in which an activated form
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TABLE II. Parameters for calculating v in silicon. Values
are experimental found in standard references and tables except
where noted. Only values actually used are quoted, thus ac-
counting for blank spaces.

Property

Difference
Liquid Solid between liquid
value value and solid

Density p
(10 ' atoms/cm')
Intermolecular distance
a=p '/3 (A)
Bulk modulus K
(10' dynes/cm )

Sound velocity
c (10' m/s)
Free energy gL —gz
(eV/atom, T& ——1685 K)
Diffusion coeff. at
T~, D(T~) (10 ' cm')/s
Activation energy for
diffusion E, (eV)

5.38 4.98

2.65

0.36 1.0

3 79'

6.9

0.42'

0.52(1 —T/TM )

'Calculated from bulk modulus.
From molecular-dynamics calculation of Ref. 17.

'From Ref. 17 and converting normalized units there to eV. Dr.
Broughton is acknowledged for enlightening me on this point
and providing data not given in Ref. 17.

50

sity decays to its equilibrium value at the free surface.
Although vo=c/a was used whereby the speed of

sound represents maxirnurn interface speech, an equally
plausible choice for vo could be the inverse of the average
time for a molecule going at thermal velocity to travel
from the center of a random position within the unit cell.

This was used in Ref. 13 to estimate

voa =2.5(3k' T/m )' =3.2X 10 m/s

for silicon at T~, not significantly different from the
c =3.8)&10 m/s used here. In any event, as noted, the
freezing velocity is quite insensitive both to vo and to the
assumed dependence of free energy on density, since it is
controlled by the rate I at which excess density is trans-
ported from the interface.

B. Lennard-Jones (argon)

Broughton, Gilmer, and Jackson' (henceforth referred
to as BGJ) did a molecular dynamics simulation of rapid
solidification of an LJ fluid, usually taken as a good mod-
el for argon, from which the interface velocity for freez-
ing was deduced. Other features of the LJ liquid needed
for comparison with theory have also been calculated
by MD. The BGJ data are shown in Fig. 5. A striking
feature is that v is quite large for reduced temperature T'
as low as 0.1 (dimensionless MD units as found in Refs.
13 and 20 are also used in this subsection to facilitate
comparison with BGJ). Since MD gives'3' an activated
D=Doexp( —T,'/T') with Do ——0.9 and T,'=2. 1, BGJ
reasonably argued that the limiting frequency vo would
be many orders of magnitude too low if it were related to
diffusion. A similar problem occurs in the present
theory. If I were so strongly activated as suggested by
the above D, the density catastrophe in the denominator
of Eq. (6) would much too severely limit the freezing ve-
locity at T'=0. 1. BGJ were thus led to fit the data to
Eq. (12) using the above-mentioned

voa =2.5(3k+ T/m )' f
(converted to MD units), h =0 and the "availability fac-
tor" f taken as 0.27 for a best fit, shown by the dashed
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sponding to solid curves in Figs. 3(a) and 3(b).

FIG. 5. Interface velocity for freezing of Lennard-Jones
liquid. Experimental points are data of Ref 13 (BGJ), and
dashed curve is BGJ's fit to data. Solid curve is v(p, asym) with
D as discussed in text and parameters given in Table III; and
voa=2. 5(3K&T/m)' . Dash-dot curve is same as solid curve
except for voa =c.
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TABLE III. Parameters for calculating v in Lennard-Jones
system. Values are in normalized units defined in Refs. 13 and

20, and are taken from results quoted in Ref. 20 for the modified
LJ potential P except where noted. Only values actually used
are shown.

Property

Density p
at Tjg
at 0 K

Bulk modulus E
Sound velocity v

Free energy gL —gz
Di8'usion coeff. ,
prefactor Do

Liquid
value

0.83
1.02

10.7
5 7'

0.86

Solid
value

0.95
1.07

23.8

Difference

between liquid
and solid

'From D. Levesque and L. Verlet, Phys. Rev. A 7, 1690 (1973).
Given as a polynomial in T by expression in footnote 12 of Ref.
13.

curve in Fig. 5.
In order to salvage the theory, I argue that the activa-

tion energy for I can be considerably smaller than that
for D in a system, such as the LJ, which contracts on
freezing. D refiects the rate for a molecule to jump in an
environment which is randomly fluctuating. It is general-
ly accepted that such a jump cannot occur until the
"cage" which contains the molecule opens up by a free-
volume fluctuation or such a fluctuation allows the cage
as a whole to move. ' Thus a major contribution to the
activation energy for D is that required to form the free
volume. But for the scenario of freezing a liquid to a
denser solid state, the arguments of Sec. II show that
molecules must diffuse into a density-deficient region,
that is one which effectively contains vacancies. Thus a
more reasonable estimate of the activation energy for I
might be obtained by considering the time for a molecule
to migrate into a region containing vacancies. Such MD
studies have been performed on a supercooled LJ liquid.
No quantitative estimate was given for the activation en-
ergy, but the authors state that after 40 time steps (88 ps)
of the MD: "At 6 K there was no net displacement
of the atoms. At 12 K there is a considerable motion,
and. . . 24 K shows most of the vacant volume has an-
nealed out. " I deduce from this that the relaxation time
for vacancies to anneal out is of the order of 40 time steps
at 12 K. By assuming diffusion into a vacancy has the
same prefactor Do as quoted above from Ref; 20 and con-
verting their units, I thereby conclude that the reduced
activation temperature should be T; =0.37 instead of
2.1.

The solid curve in Fig. 5 is u(p, sym) with T; =0.37
and A, = l. 3 chosen to reproduce the maximum u at
T' =0.3 (A, is defined in the same way as described above
for silicon). Other parameters such as densities and
compressibilities are taken from Ref. 20 for the modified
LJ potential and shown in Table III. The solid curve has
vcr =2.5(3k' T/m )' =4.3/T' in MD units, as used by
BGJ. For comparison, voa =c =5.7 in MD units is also
shown. As noted above in the discussion on silicon, there

is not much difference since the freezing velocity is con-
trolled by the rate I at which the density change can be
relaxed. By modifying the activation energy as discussed
above, the theory is seen to give reasonable agreement for
T/TM greater than about 0.3 (T' &0.2), which is likely
to include any undercooling possible for "real" studies of
interface motion. But only a virtually nonactivated I
could explain the MD data for T' ~0. 1, and this is in-
consistent with the results of Ref. 9 on vacancy relaxation
in the supercooled liquid.

V. SUMMARY AND DISCUSSION

The change of density between liquid and solid has
been shown to impose a severe limitation on interface ve-

locity v for heterogeneous freezing but not for melting.
Consequently there can be a sizable asymmetry (defined
as the difference between freezing and melting speeds for
the same

~
T TM

~
) —between freezing and melting. If

the excess density can be propagated away from the inter-
face at the speed of sound c, such asymmetry is not mani-
fested unless the interface itself moves at close to c. But
freezing velocity is much more strongly affected if the ex-
cess must initially relax by diffusive jumps. I have argued
that this may be the case if a molecular, rather than hy-
drodynamic, viewpoint is taken, and developed the
theory accordingly. The interface densities pL and p&
were shown to depend on v and the rate I for relaxation
of the excess density. This dependence was incorporated
into transition-state theory to yield v as a function of tem-
perature T.

Comparison was made with the pulsed-laser experi-
ments on silicon and molecular dynamics simulation on a
Lennard-Jones system. Strong asymmetry was shown to
occur for silicon, in rough agreement with the x-ray data
and much stronger than found in conventional TST. The
only adjustable parameter was the average distance A. a
molecule had to diffuse away from the interface in order
to relax the excess density. To obtain the observed freez-

ing speed in silicon of u =15 m/s at 1450 K, the tempera-
ture below which the amorphous phase is formed, re-
quired A, =0.9 in units of the average distance between
molecules. The very large asymmetry occurred by using
a modified form of the "symmetric" TST. Modification
of the entropy-limited model produced much less asym-
metry.

Agreement with MD data on freezing of the LJ liquid
down to temperatures less than TM /2 was possible if the
activation energy for I was substantially less than that
found in the MD simulation of diffusion. I argued that
this was not unreasonable in view of the fact that, for
freezing of the LJ liquid, I is characteristic of the rate for
a molecule to hop into a region in which vacancies have
already been formed. The present theory, however, can-
not explain the apparent total lack of an activated pro-
cess evidenced by the large freezing velocity at very low
temperature.

Direct confirmation of this theory would require rnea-

surement of the liquid density profile. Departure from
equilibrium of about 14% at the interface is predicted for
silicon at 14SO K. A more feasible study might be that of
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the density on the solid side of the interface. For silicon
this density is predicted to be decreased by about 2% be-
tween freezing at 6 m/s and melting at 11 m/s. These are
the velocities at which x-ray measurements were made
to deduce the amounts of undercooling and overheating.
Some comment is in order on whether the expected densi-

ty changes should have been observed in Ref. 4. Strain,
the difference between interatomic spacing near the inter-
face and its value at the substrate, was monitored in that
experiment. If a 1% change in lattice constant between
U =0 and a few m/s were manifested as strain, it would
have easily been detected —indeed overwhelmed the ob-
served thermal strain from the temperature gradient. But
as discussed in connection with Eq. (2}, theory gives a
uniform density change in the solid and hence no strain.
Thus an absolute determination of the lattice constant is
needed.

Another test might be to measure the free-surface ve-
locity U. As given in Eq. (1), if ps were increased over its
equilibrium value ps by 5%, corresponding to freezing in
silicon with U =15 m/s, U would be reduced from about
1.2 m/s to 0.5 m/s.

The theory has treated steady-state conditions only.
Higher velocities could be obtained before the interface
density grows to produce the limiting effects. The
characteristic rate for the interface density to build up to
its steady-state value is I —v /a = 5 X 10' s ' from the fit
to silicon for freezing at 15 m/s at 1450 K. This should
be fast enough to have allowed steady state in Refs. 2 and
4 where the time scale was 10-100 ns. But it would not
allow density to build up in pulse experiments on the ps
time scale. It is thus interesting and perhaps suggestive
to note that significantly higher freezing velocities have
been reported for pulsed experiments in the 10 ps range.

A final caveat is that the most appealing feature of this
theory is probably its ability to produce large asymmetry.
The major evidence for such asymmetry comes from the
data of Ref. 4, and very large asymmetry was also indi-
cated in Refs. 2 and 5. However, the most recent tran-
sient conductivity results do not show much asymmetry.
Thus it is not clear whether a theory which gives high
asymmetry near T is really needed. But in any event it
seems useful to quantify the density effect which at the
very least has to be important for the very high interface
velocities approaching the speed of sound which have
been postulated for simple metals.
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APPENDIX A: COMBINED DIFFUSION-RELAXATION

We consider solutions to the diffusion-relaxation Eq.
(7). With addition of a source injecting particles into the
liquid (x & Ut ) it becomes

8'5=D —I 5p+R5(x —ut)
Bx

(A 1)

for x ~ ut. The condition that there is no current of ex-
cess particles into the solid is expressed by 5p =const for
x & ut. Here x and ut are, respectively, positions of a par-
ticle and the interface measured in the laboratory frame,
and the rate R is given by R =(pL —ps )U, consistent with
the left-hand side of Eq. (4). In the steady-state 5p is a
function only of z =x vt —whereby Eq. (A 1) reduces to

d2D" p+U" p —r5P= —R5(o) .
dz2

'
dz

The solution for z & 0 is 5p =C exp( —gz }with

(=—U /2D+ [(U /2D )'+ I /D]'

(A2)

(A3)

since only a decaying exponential is allowed. The con-
stant C is determined by integrating Eq. (A2) from 0 to
0+ (called 0) and using d5p/dz

~

=0 since there is no

current into the solid z &0; and 5p(0 )=y5p(0) as in
Eq. (5). Thus

C=R/I[v /4+I D]' —v(l —2y)/2I . (A4)

With C=5p(0) and, from above, R =[(1—y)5p(0)
+pL —ps ]v where, as in the main text, y =5ps/5PL, Eq.
(A4) becomes

5P( )="(P~L, Ps)/[I R —U(1 —y)1

with

l,s=(I D+v /4)' /a —v(1 —2y)/2a .

(A5)

(A6)

Equation (A5) is the same as Eq. (6) with I replaced by
I,s. For U « (2I'D )

'~ and, as in the main text,
I =D/A. a', we have I,a=I A, . The limiting velocity for
which the denominator of Eq. (A5) goes to zero is

U,„=I Da '/(2 —6y+4y )'~

For either D =0 or I =0, the denominator of Eq. (A5)
is negative unless y & —,

' which means that no steady-state
solution is possible for a relatively incompressible solid
(y «1). D must be nonzero since otherwise there is no
transport away from the small region into which the
finite excess of particles is injected. That I must also be
nonzero means that diffusion by itself is ineffective. This
is because of the well-known property of one-dimensional
diffusion that the probability of a particle remaining at
the origin decays only as t ' . It follows that if parti-
cles are continuously injected at a stationary plane, the
number remaining at the plane grows as t ' instead of
reaching a steady-state value. If the plane (interface)
moves into the medium in which the particles are inject-
ed, and no density is allowed to build up on the other
side, the rate of growth of density at the origin plane can
only be greater. This differs from the case, as in heat flow
with both the solid and liquid having finite thermal con-
ductivity, where the excess can build up freely on either
side of the plane, which corresponds to y =1 here. Then
a steady-state solution is possible for finite u, but not for
u =0. This is because excess can now move ballistically
away from the moving source into the medium behind it,
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as is known from the problem of heat Aow into a moving
medium.

9

APPENDIX 8: TRANSITION THEORY
WITH DENSITY FLUCTUATIONS

We assume here that not only are the steady-state den-
sities altered from equilibrium as in Eq. (6), but fluctua-
tions cause the local density in the region of a molecule
undergoing transition to depart from the steady-state
value. This latter effect is similar to the free-valume fluc-
tuations important for diffusion and structural relaxation
in disordered systems. I therefore write, analogous to
Eqs. (10) and (11),

(b)

WLS (p
'
}=v exp I PRg—s (p' } gL (p—'

}] t

WsL (P }=v e"P I 13~[gL—(p' }—gs (p' }] I

(Bl}

for transition rates when the local density is p'. Note that
the individual transitions are assumed to take place
without a change in density. That is, the local density
stays at p', as rejected by the arguments of the g's, dur-
ing the local phase transformation. The density
difference is rejected in the different dependences of gL
and gz on p'. For example, at the assumed constant in-
terface temperature and pressure corresponding to steady
state, gI (p') is a minimum when p'=pI while gs(p') is
minimized for p'=ps. Consequently gs(p') —gL (p') can
have either sign, thus making the 0 functions necessary,
even though the steady-state difference gI (pI ) —gs(ps) is
fixed to be positive or negative by the respective condi-
tions of net freezing and net melting. The condition of
transition at constant density gives rise to an effective ac-
tivated transition state for the following reason, illustrat-
ed in Fig. 6. Consider freezing and suppose first that the
g difference in Eq. (81) was the steady-state gs(ps)
—gI (pI ), contrary to what is given. This difference is
negative for freezing, so there would then be no activa-
tion barrier or transition state. But the difference given
in Eq. (81), gs(p') —gI (p') can well be positive and thus
produce an activation barrier. This is most evident for
small density Auctuation, p' =pL, and a highly in-
compressible solid, as seen in Fig. 6. In such cases the
solid would have to be formed at liquid density at a large
cost in free energy, i.e., gs(pI ) &gL (pI ) even though

gs(ps) &gL(pI ), owing to the assumed strong density
dependence of gz for a relatively incompressible solid.
Figure 6 also illustrates that a barrier does not have to be

I

FIG. 6. Free energies vs density. (a) Freezing. Shaded re-
gion corresponds to region 1 for the integrations in Eqs. (86)
and (B7). (b) Melting.

WI s = fdp'WLS(p')~L(p'»

WSL ——fdp'W (SpL')Ps(p') .

(83)

(84)

These average rates satisfy microscopic reversibility (8),
as now shown. The probabilities are given by

P, (p') =exp[ —Pg, (p'}]/Z, , (85)

where the subscript i is either L or S and the partition
function is Z; = fdp'exp[ —Pg;(p')]. The integrations in

Eqs. (83) and (84) are over regions I and 2 where, re-
spectively, gL (p') &gs(p') and gI (p') &gs(p'). Use of
Eqs. (Bl), (82), and (85) thereby gives

present for melting, leading to a further source of asym-
metry.

The average rates are obtained by weighting with the
respective probabilities PI (p'} and Ps(p') of finding the
molecule in an initial state of local density between p' and
p'+d p' for the LS and SL transitions and summing over
all possible initial states. Thus we have

2
WIS ZL f dP e"p[ I gL(P )1+f dP exp[ PgL(p }lexPI P[gs(p'} gL—(p')11—

L

I 2
WsL Zs f dP'exP[ ~gs(P') ]exP I P[gL(P') gs(P—' }]I + f "P—'e"P[ —&gs(P') ]

L

(86)

(87}

WI.s/WsI ——Zs/ZI ——expÃ(G GLs)] . (Bg)

In the second equality GL and Gz, are, respectively,

where the superscripts on the integrals refer to the re-
gions 1 and 2. The terms in large parentheses are seen to
be identical so that

I

Gibbs free energies per molecule of liquid and solid evalu-
ated at the steady-state interface temperature T and pres-
sure p, and the fundamental thermodynamic relation'
between Gibbs free energy and partition function of a
constant p, T ensemble has been used. An unfortunate
feature of the notation is that, if density rather than pres-
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sure is used as the thermodynamic variable, GL (pL }

&gL (pL ). The right-hand side is the local free energy per
molecule of a region whose density p' is allowed to fluctu-
ate but happens to have exactly the steady-state value
p'=pl, the left-hand side is the average free energy on
the liquid side of the interface whose average density pL
is related to the steady-state p and T by an equation of
state. Similar statements apply to Gs(ps) and gs(ps).
The above Eq. (B8} is the proper realization of micro-
scopic reversibility or detailed balance (8) when density
fluctuations are accounted for.

Use of the average rates given by Eqs. (B3) and (B4) is
valid only if the density p' fluctuates rapidly compared
with the net rate WLz —Wzl . The fluctuation rate for p'
is characteristic of equilibrium fluctuations within liquid
or solid regions within a layer and might be much faster
than the previous I which is the rate for a "drastic" den-
sity change to bt: relaxed by motion out of a layer. With
rapid variation of p', the molecule experiences many
different local densities during the course of transition,
and it is appropriate to consider the average rate. Use
below of Eqs. (B3) and (B4) should be valid for a/l freez-
ing velocities because of the severe limitation Eq. (6) im-
poses when U & 0 and for melting speeds suSciently great
to illustrate the large asymmetry which is the main point
of this paper. More careful analysis may be required for
melting at still greater speeds when the rate to transform
a layer becomes comparable to the rate at which density

I

fluctuates within a layer.
Analytic expressions for WL+ and W+L in terms of pI

are possible if departures from equilibrium are small
enough that the approximations

gI. (i '}=gL,(i L }+4(i'/pL 1—)'

gs(p'}=gs(S s)+bs(C'/t s 1}'—

(B9)

(B10)

bL ——KL /2p (B1 1)

and similarly,

bs=Ks!2ps ~ (B12)

where, as in connection with Eq. (5), KL and Ks are, re-
spectively, bulk moduli of the liquid and solid. The result
of using Eqs. (B9) and (B10) in Eq. (B6) is

can be made. As mentioned under Eq. (B2), the density
fluctuations take place at the steady-state pressure p for
which gl and gz are minimized at pI and pz, so terms
linear in p'/pL —1 and p'/ps —1 must vanish. That is, p'
is a parameter in the expression gL (p'}=FL(p')+pV
which is minimum at the fixed p and T when p'=pL (FL
is the Helmholz free energy and V = I/p'), with a similar
statement for gs(p'). Since BF/BV= —p in equilibrium
at constant temperature, the same interpretation of
gL (p') shows that

(B13)

(B14)

p(GL —Gs )

WLs v(erf[A——L(x~ —1)]—erf[AL (x„—1)]+e I erf(As ) —erf[A&(1 —qx „)]+erfc[As (qxz —1)]I } .

Here AL s (Pbr s)'——, q =pL /ps, and x„and xz are the lower and upper values of p'/pl which satisfy gL (p')=gs(p').
They are given by

e&s 4+ [[g—i(pi ) gs(ps }](—q'hs &~ )+b,—b, (q 1)'I '"—
+B, A

q bs —bL

If Eq. (B14) has no real solutions, either region 1 or re-
gion 2 in Eq. (B6) shrinks to zero, whereby the result is
simply

WL.s=vexp[ —P(Gs GL)]

[gs(p') &gL (p') for all p', which is likely for melting] or
Wrz v[gs(p'}&——gL, (p') for all p', which should not
occur for freezing if the liquid is more compressible than
the solid]. It is assumed that the g's of Eqs. (B9) and
(B10)are large enough at p' & 0 that the integration in Eq.
(B6) may be extended to the unphysical region
—ao ~p' &0 without affecting the results. With this un-
derstanding, if Eq. (B14) gives a real x„&0, it may be
used in Eq. (B13). Equality of pressures on the liquid and

I

solid sides of the interface shows, as in Eq. (5), that only
pL is an independent variable in the above expression for
WLz. The rate W+L is obtained from the condition of mi-
croscopic reversibility (B8).

The above example is specifically for modifying the
symmetric version Eq. (12). The entropy-limited version
Eq. (16) would be handled in a similar way with similar
final expressions. Although inclusion of fluctuations and
having transitions take place without an immediate densi-
ty change might seem to be quite a different physical pic-
ture than the average density approach described in the
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