
PHYSICAL REVIEW B VOLUME 38, NUMBER 4 1 AUGUST 1988

Smooth Fourier interpolation of periodic functions
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The Shankland-Koelling-Wood Fourier interpolation scheme is altered by a more physical choice
of roughness function. Examples are presented demonstrating the improvement in the resulting
band-structure plots; a more critical application is to the computation of the transport properties of
crystalline solids which require second derivatives of the electronic energy bands.

and the idea is to use more expansion coefficients c than
data points (I&N). The interpolation function is re-
quired to pass precisely through all data points, with the
remaining freedom in the coefficients optimized to mini-
mize the roughness according to some given definition.

The mathematical problem is to minimize the rough-
ness R subject to the N constraints

f(k, )=c(k, ) . (2)

The sole difference in our implementation of this inter-
pretation procedure is in the choice of roughness func-
tion. Koelling and %'ood considered the form

QICoZ(k)+C, I
VZ(k)

I
+C~ I

V f(k)
I

+
Nk

M
= X Ic. I'p(R. » (3)

where Nk is the number of k points in the Brillouin zone,
R =

I
R

I
is the length of the lattice vectors in the mth

star, and

Shankland' introduced a method by which a periodic
function known at discrete set of points can be represent-
ed by a Fourier series which passes exactly through the
given points and yet remains smooth. Koelling and
Wood verified that the method was viable and illustrated
several characteristics of the procedure. In this paper we
point out a refinement of their implementation which can
be important, especially if accurate first and second
derivatives of the interpolation function are desired.

We consider the interpolation of N one-electron eigen-
values c(k, ) in a three-dimensional periodic solid. A
Fourier-series interpolation is employed, and the space-
group symmetry is incorporated by using "star func-
tions" S (k). The interpolation function is written

M
E(k)= g c S (k),

p(R )=Co+CiR +C,R (4)

This expression for p follows from the definition of the
star function

N

0=+ A,;,
together with the constraints of Eq. (2). Here p is
defined as p(R ). Since the formalism becomes different
from that of Koelling and Wood, we give a brief descrip-
tion. Choosing a particular data point, say i =N, Eq. (8)
can be solved for A,z and incorporated into (7) to give

N —1

c'p = g A., [S (k, ) —S (k~)] .

S (k)= —ge
A

where [ AI are the n point-group rotations in the space
group, and from orthogonality relations involving Bril-
louin zone (BZ) summations. The form (3) has the un-

desired effect of minimizing (with relative weight Co) ex-
cursions of the function Z(k) from zero, whereas the more
physical restriction is to minimize the excursions of f(k)
from its mean value c,. (Stars are ordered such that R~
is nondecreasing as m increases; R, =0.) This is readily
taken into account by omitting the m =1 term from the
sum in Eq. (3)

M

Ic Izp(R ), (6)
m=2

since the m = 1 contributions proportional to Cl and C2
[derivatives of Z(k)] vanish because R, =0.

Minimizing R in Eq. (6) subject to the constraints (2)
similar to the procedure of Koelling and Wood leads to
the set of linear equations

N
c'p =g A, S (k, ), m&1,
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N —1

b, c,, —:E(k ) —e(kN)= g HJ., A,; (10)

where

H;=
m =2

[Sm(k ) S~(k~)][S~(k() S~(k» }]
pm

Solvmg (10) for A,;, the expansion coefficients are given bn y

N —1

sm =pm X Ai~[S'(k, ) —S'(k~)], m &1, (12a)
i=i

Multiplying the complex conjugate of (9) b
[S (kj)—S (kN)]/p and summing m from 2 to I
gives

ty involves band velocity Vs(k) and the Hall coefficient
requires the inverse band mass tensor VVe(k) as well, it
was necessary to establish that the first and second
derivatives of the interpolation function (1) give reason-
able results. Using 135 equally spaced first-principles ei-
genvalues, the Koelling-Wood scheme using 679 stars
eads to the curvatures (second derivatives) plotted in Fig.
(a). Evidently there are oscillations, such as near the X

point, which are unphysical and would lead to uncertain-
ties in the zone sum, although the general behavior is
correct. Upon increasing the number of stars to 970, the
only noticeable change occurs near the I point along
X-I", and this change is small.

The effect of omitting the R =0 (m =1) term in the
roughness function results in the curvatures plotted in

M

e, =e(k~) —g e S (kN) .
m =2

(12b)

p =(1—C)X~ ) +C2X (13)

where X =R /Rm/Rm;„and Rm;„ is the smallest nonzero
lattice vector. The X term will help to suppress small-
amplitude, short-wavelength wiggles.

The relevant band in La2Cu04 (band 17, which crosses
the Fermi level) is shown in Fig. 1. Since the conductivi-

The improvement resulting from the omission of the
m =1 star from the roughness function was discovered
while calculating transport coeScients for the
La MCO2 „„Cu04 (M=Sr,Ba) superconducting oxide sys-
tem. To define an appropriate roughness function, we
noted that at the top of the band where e(k) —e»0, the
second derivative V e(k) should be predominantly nega-
tive, and the roughness is reduced most effectively by
minimizing some combination of e(k}—e& and V e(k).
At the bottom of the band where s(k) —s, &0, V s(k)
should be encouraged to be positive. These considera-
tions are symmetric around the band center and can be
accomplished by minimizing [s(k) —s&+C& V e(k)]
with C, positive. The roughness function which results,
whose overall scale is irrelevant, is given by Eq. (6) with

p given by
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FIG. 1. Band 17 in LLa,Cu04 along symmetry directions.
Kinks occur in the bands at band crossings which
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FIG. 2. Va rious curvatures of the band shown in Fig. 1. (a)
Results obtained using the Koelling-Wood roughness function

R=
including the R =0 term. (b) Results obtained by omitting the

=0 term from the roughness functions.
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Fig. 2(b). Not only is the unphysical oscillation greatly
reduced (as occurs over most of the lowest curve) but oth-
er behavior becomes more regular. This is evident partic-
ularly for the upper curve near X, as well as for the lower
band near Z which changes sign when the m = 1 term is
omitted. Again, increasing the number of stars (fitting
parameters) to 970 produces no significant change. Fig-
ure 2(b) resulted from values C, =Cz ——0.25 in Eq. (13).
Tests with C, =Cz ——0.05 and C&

——C2 ——0.75 also pro-
duced no noticeable change, consistent with the finding of
Koelling and Wood that the fit is very insensitive to the
magnitudes of the constants in the roughness function.

We note one other feature (which may not be related to
the specifics of the roughness function) which refiects
favorably on the Shankland-Koelling-Wood (SKW)
scheme. It is known that band crossings in multiband
systems, which induce nonanalytic kinks in a given band,
can lead to "ringing, " i.e., oscillations which extend well

away from the kink. In Fig. 1 two kinks can be seen,
with small sections of the next lower band shown by
dashed lines. Coinplete band plots (given in Ref. 4)
demonstrate that the Fourier series does a good job of ap-
proximating these kinks. To investigate the importance
of possible "ringing" efFects, the first-principles k points
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FIG. 3. Band structure plots along high symmetry directions in the basal plane (k, =0) for a model YBa2Cu30& compound (non-
self-consistent). Curves are constrained to pass exactly through the calculated eigenvalues at the high symmetry points I, F, S, and X
and at the intermediate points denoted by vertical dashed lines. (a) Shankland-Koelling-Wood method. (b) Modification with R =0
term excluded from the roughness function. (c) Results from rigid shifting of bands as described in the text. (d) Shankland-
Koelling-Wood method, but using only 85 Fourier coefficients, similar to conventional practice.
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nearest the two kinks were omitted from the data and the
Fourier coefficients were redetermined. Although the
curvature near the kinks was drastically reduced (as ex-
pected), well away from the kinks the change in curva-

ture was negligible. This indicates the curvature result-

ing from interpolation is determined locally, as desired.
As a result, velocities and curvatures on the Fermi sur-
face are not influenced inordinately by band crossings as
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long as they do not occur very near the Fermi level.
As another example of the difference resulting from

our modifications, we provide a case in which the
difference in the expansion procedure can be seen in the
bands themselves. The system we choose is a model of
YBa2Cu307, a complicated crystal which has orthorhom-
bic Pmmm space-group symmetry. Each interpolation of
the bands is based on the same 32 first-principles k points
and 416 expansion coefficients. The bands in Fig. 3(a)
were calculated using the SKW procedure, while those in
Fig. 3(b) resulted from the present modification. To illus-
trate more graphically the undesirable results which can
occur from including the R =0 term, we shifted the first-
principles eigenvalues upward rigidly by 3 Ry, carried
out the SKW procedure, and then shifted the resulting
bands downward rigidly by 3 Ry, obtaining the bands
shown in Fig. 3(c). In each of Figs. 3(a)—3(c) the vertical
dashed lines indicate the positions of the calculated input
eigenvalues (identical for each case).

From Fig. 3(b) it is clear that eliminating the R =0
term results in smooth bands, in spite of using over an or-
der of magnitude more Fourier coefficients than calculat-
ed points. The SKW procedure results in bands which
display additional wiggles [Fig. 3(a)], typically near the
input points, which are reproduced exactly in each case.
Figure 3(c) illustrates in an exaggerated way what is
occurring: Between each of the input points the freedom
afforded by the large number of Fourier coefficients is be-
ing used to minimize the band energy s(k), rather than
the magnitude of its curvature or its distance from the
average band position. This "drooping" of the bands
from the input (constrained) points is exaggerated by
shifting the input eigenvalues upward before determining
the Fourier coefficients. This last feature also graphically
illustrates the undesirable dependence of the results of
the SKW procedure on the energy scale itself (that is, an
additive constant), a dependence which is eliminated by
omitting the R =0 term in Eq. (3).

The unacceptable results of Fig. 3(c) would not occur
in most applications of the SKW scheme as applied in the
past, since it is not the practice to use more than 2-3
times more expansion coefficients than input eigenvalues.
This is illustrated in Fig. 3(d), where the SKW scheme is
applied with only 85 coefficients rather than 416 as in
Figs. 3(a) —(c). The resulting bands are fairly smooth, al-
though not quite as smooth as obtained using our
modified scheme with equal variational freedom. In try-
ing to get smooth velocities and curvatures, however, it is
natural to increase the variational freedom of the Fourier
representation, and Fig. 3(c) illustrates a pitfall. In recent
work we have found it useful to generate realistic densi-
ties of states (DOS) for several model (i.e., non-self-
consistent) systems~ with large unit cells, and this is much

more efficient if only a relatively small number of k points
need to be calculated. Cases have been encountered in
which the SKW scheme gives unacceptably poor DOS
curves, whereas the present modification has been reli-
able.

As an illustration of how our modification can affect
critical point structure in density of states calculations,
we present in Fig. 4 results near the Fermi level from our
self-consistent linearized augmented plane-wave (I.APW)
studies of the high-temperature superconductor
YBa2Cu307. These results are all based on 147 input k
points in the irreducible Brillouin zone, which represents
a rather fine mesh for such a large unit cell (small Bril-
louin zone). In Fig. 4(a) these 147 points are used directly
in the linear tetrahedron scheme without the use of any
Fourier interpolation whatever. Figures 4(b) and 4(c)
show the results of the SKW method and our
modification, respectively, with 2123 expansion
coefficients used in each case. The tetrahedron method is
used with 400 extrapolated k points (which corresponds
to 2527 k points and 11 664 tetrahedrons in the full Bril-
louin zone). The structure of the oxygen-related peak at
approximately —0. 1 eV is smeared by the SKW pro-
cedure, indicating that superfluous wiggles have been in-
troduced into a band which is very flat when our method
is applied. Direct tetrahedral integration [Fig. 4(a)] of
the original 147 points reproduces this critical structure
better than the SKW scheme.

In summary, we have presented a variation of the
Shankland'-Koelling-Wood interpolation scheme which
incorporates a more physical definition of roughness.
Numerical tests indicate curvatures are greatly improved.
Even the appearance of plotted bands can be changed ap-
preciably, and certain sensitive properties such as the
density of states near critical points should also be im-
proved.
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