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This paper concerns a large class of two-state stochastic cellular automata (SCA) with inhomo-

geneous transition probabilities, related to generalized directed percolation (DP) on lattices with

random linear defects along the preferred direction. These models were previously shown to have
universal critical behavior distinct from that of standard DP. Here, I analyze the relaxation to the
"vacuum, " the only absorbing state of such SCA. Asymptotic power-law decay with a variable ex-

ponent is derived for a substantial region in the parameter space of simple D =1 models. Disor-
dered SCA in D =2 and 3 are more complicated, but similar power-law decay is still established by
means of lower and upper bounds. The lang-tailed relaxation is due to rare, very slowly decaying
clusters. This is similar to the mechanism that causes the "Griffiths' phase " in disordered spin
models.

I. INTRODUCTION

Stochastic cellular automata (SCA) can be useful mod-
els for collective behavior and phase transitions in non-
equilibrium systems, capturing just the barest essentials
of large interacting systems. However, our present un-
derstanding of the statistical physics of SCA, lacking
Hamiltonians and detailed balance, is limited compared
to that of equilibrium spin models. This paper concerns a
broad family of SCA that model, e.g., autocatalytic prop-
agation phenomena in physics, astrophysics, chemistry,
and biology. Several types of SCA from this family have
been studied in recent years. ' All such SCA consist of
cells with two states (0,1} and have parallel dynamics
defined by transition probabilities depending on the states
of cells within a finite range. An essential characteristic
is the existence of exactly one global absorbing state (the
"vacuum", all 0's). An additional "active" phase can ex-
ist when the interactions between cells are large enough
for a finite density of 1's to propagate for unlimited
lengths of time.

If such SCA are restricted to have the translation in-
variance of a lattice in D-dimensional space, then their
critical behavior is in the universality class of directed
percolation (DP) on the (D + 1)-dimensional lattice form-

ing the discrete space-time of the SCA.' The most gen-
eral family of SCA models from which I start here can be
defined on networks with almost any fixed spatial struc-
ture. These general models are referred to as "DP-SCA"
since their histories (configurations in space-time) are
identical to those of generalized DP models in which the
site or bond densities are still homogeneous along the
preferred direction (time), but not along the (spatial)
directions perpendicular to it.

There are many possible choices of specific inhomo-
geneous spatial structures for DP-SCA. Here, I concen-
trate on random structures. It has been argued and
shown numerically in a previous paper' that fixed
("quenched"} spatial randomness in DP-SCA (random
bond or cell dilution, or differences in local transition

probabilities) leads to a new universality class with criti-
cal exponents clearly distinct from those of DP. This is
probably important for applications, since most practical
realizations occur in media with some form of structural
in homogeneity.

Here, I derive results for the relaxation of spatially
disordered DP-SCA to the vacuum. The asymptotic de-
cay is shown to be a power law in a large part of the
phase diagram. The value of the exponent depends on
the strength and type of the quenched disorder incor-
porated into the local transition rules. This is markedly
different from the relaxation of homogeneous DP-SCA,
which is exponential throughout the vacuum phase.
The nonexponential relaxation of the disordered models
has a simple physical basis: it is due to the long-lived
contributions from rare regions in which the local con-
nectivity or transition rules are accidentally above the
critical point for existence of an active phase in infinite
systems. A similar mechanism causes "Griffiths'
phases" ' in randomly disordered spin models, but the
effects on DP-SCA are quantitatively different because
the latter are nonequilibrium models.

The plan of the paper is as follows. In Sec. II, spatially
disordered DP-SCA are defined and their basic properties
summarized, setting the stage for the main problems and
results of the paper. In Sec. III, the relaxation of one-
dimensional disordered DP-SCA is analyzed, yielding ex-
act asymptotic forms for cell diluted models and useful
lower and upper bounds for more general types of disor-
der. In Sec. IV, the analysis is extended to disordered
DP-SCA in higher dimensions, which leads to slightly
more complicated but essentially similar results. The
conclusions are discussed in Sec. V.

II. DP-SCA MODELS, DEFINITION
AND BASIC PROPERTIES

The general family of fixed-structure DP-SCA can be
described as follows. First consider a D-dimensional lat-
tice with links between pairs of vertices lying within a
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fixed finite distance. An SCA "cell" is identified with
each vertex, and two "couplings" (one per direction) with
each link. Each cell i carries a two-state variable
s, E IO, 1 j, and z finite-range couplings c,j &0. The dy-
namics is defined by time-invariant transition probabili-
ties ("rules"}

with F, (x =0)=0 and 0&F,(x &0) &1. The restrictions
on the F,(x) guarantee strictly stochastic rules, except for
the single deterministic rule F(0)=0, giving a unique glo-
bal absorbing state: the vacuum, s; =0 Vi. Fixed
(quenched) disorder is represented by letting a set of ran-
dom parameters control the local rules via the F, or c,".
For instance, random-coupling dilution can be intro-
duced by taking c; =cr;, with fixed random parameters
r,"E (0, 1 j. Independently of the couplings, the total in-

put x of a cell can assume at most Z =2'—1 distinct posi-
tive values, so the specification of a generic DP-SCA
model requires Z values of F;(x &0) per cell. Formally,
one could do without the c;. altogether, specifying the
rules directly in terms of the Z nontrivial configurations
that can occur in each set of z neighbors. However, the
present notation is more perspicuous when additional
structure in the couplings reduces the number of indepen-
dent stochastic rules per cell. For example, strictly total-
istic models (c; =c;) have z such rules per cell, and DP-
SCA with spatial translation invariance [c; =c and
F,(x }=F(x)]have only z such rules for the whole model.

Below, the extensive number of parameters required in
defining a disordered model will be reduced to only a few
by specifying a distribution from which the local rule pa-
rameters are drawn at random, and interest will focus on
behavior averaged over the corresponding realizations of
the disorder.

If all c;J and F;(x &0) are close to 0, the vacuum is
eventually reached from all initial conditions. Clearly,
the rate of reaching the vacuum is a nonincreasing func-
tion of each parameter. In fact, the model can remain in
an active phase when its parameters are sufficiently close
to 1. This phase corresponds to an invariant probability
measure (additional to the vacuum) on states with a finite
density of 1's; this measure can be reached with a positive
probability from all initial conditions except the vacuum.
The part of the parameter hypercube in which an active
phase exists is separated by a critical hypersurface from
that in which only the (Dirac) measure on the vacuum
state exists. There could be more phases at higher pa-
rameter values, but this paper deals with phenomena at
or below the first transition. Presently, rigorous results
about DP-SCA exist only for regular (1 + 1)-DP (Ref. 4)
and the related "contact" model, but a considerable
body of results from numerical transfer matrix, Monte
Carlo (MC), and renormalization-group techniques, as
well as field theory, has accumulated over recent years. '

Naturally, the issue of characterizing universal features
of the phase transition in the various DP-SCA models
arises. The relevant results are summarized here to pro-
vide the background for the problem of nonexponential
decay to the vacuum in DP-SCA with quenched disorder.

For D&4, there are now two known universality
classes' within the general family of DP-SCA as defined
above. Membership in one or the other depends on the
presence or absence of spatial randomness. The more fa-
miliar class (which is identical to that of DP in space-
time) contains the models with spatial translation invari-
ance. This implies i independence and i-j symmetry of all
couplings c,. and rules F;, as well as the topology of a
periodic lattice. For example, choosing all F, (x ) =
1 —exp( —x) and c;J =c for nearest neighbors on a regular
(D) lattice yields bond-DP on a (D+ 1) lattice with bond
density 1 —exp( —c ), whereas one obtains site-DP with
site density p when taking, e.g., F;(x & 0)=p and c;.= l.
More generally, DP universality applies to the critical hy-
persurface lying strictly in the interior of the z-parameter
hypercube spanned by the z transition probabilities that
fully specify a DP-SCA model with translation invari-
ance.

By contrast, generic DP-SCA having uncorrelated ran-
domness in their local couplings or transition rules can-
not be in the DP universality class for D p 4, as has been
shown' by a Harris-type argument, adapted to fit SCA
models. Roughly speaking, one asks whether the spatial
correlation length of the dynamical patterns of 1's near
criticality diverges fast enough for the local differences in
the critical point due to the fixed disorder to become
averaged out. The answer is no (in D &4) if one assumes
that the standard DP exponents apply also to DP-SCA
models with a finite amount of disorder. Thus the as-
sumption must be inconsistent, raising the question of
whether the phase transition becomes smeared out, or
survives with other critical exponents, possibly forming a
new universality class of disordered DP-SCA models.

In a previous paper, ' this question was studied for
D=1 and 2 models through extensive MC calculations.
The second-order transition was shown to persist and
new critical exponents were found. Universality was
confirmed within numerical accuracy for models with
various types and strengths of structural disorder. Note
that the active phase ceases to exist at all if the disorder
cuts the network of SCA cells into finite clusters, since
each of these has a finite probability per time step of
reaching the vacuum state.

III. RELAXATION OF D=1 MODELS

The structure of one-dimensional DP-SCA is simple
enough to allow exact results to be obtained for the
asymptotic relaxation behavior of models with random
cell dilution. More general types of disorder lead to simi-
lar behavior, but the analysis usually yields only lower
bounds to the decay function, supplemented by upper
bounds in favorable cases.

A. Cell dilution: Exact asymptotic forms

The simplest disordered D= 1 DP-SCA are exemplified
by models with nearest-neighbor couplings e, =1 for

~

i j~ =1, and —F;(x &0)=cr, , where the r; C IO, 1 j are
fixed random variables chosen from the distribution

f(r) =p5(r —1)+(1—p )5(r). This represents random
cell dilution, splitting the model into random-length
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T=g g nP„M„(t)=g nP„Q M„(t) -g nP„T„,
t n n n

where the n sums exclude the infinite connected network
that may be present in some of the diluted D p 1 models
to be treated later.

For the cell diluted D = 1 model, the sums can be done
easily,

T-(1—p) g2n( pA)"= pA( —I p) . g (Ap)"
d( Ap}

strings of nearest-neighbor connected SCA cells for any

p &1. The probability of occurrence of n-cell strings is
P„=p"(1—p) . One recovers regular D= 1 DP-SCA on
the edge p= 1 of the p-c phase diagram, with a (DP-class)
phase transition occurring at c =c'. The general-p mod-
els relax to the vacuum not only for (p= 1, c & c'), but for
all (p & 1, c & 1) as well, because a finite-length DP-SCA
string has a finite chance per time step of reaching the
vacuum. In fact, there are two time scales "' when
1&c &c'. In a few time steps, a string of length n ~&1
settles into a metastable form of the active phase (carry-
ing a finite density of 1 s), while —on a macroscopic time
scale —it decays to the vacuum through rare, exception-
ally large fiuctuations. The probability that an n string
has not yet reached the vacuum at time t is "
M„(t)-exp( —t/T„), with T„ex-p(an)= A", where
a =in( A ) & 0 depends on c. Although a (c) is not general-
ly available in closed form, one can verify that it is in-
creasing on the interval c ~

& c & 1, diverges as a (c)
——ln(1 —c) for c~ 1, and vanishes as a(c)

-(c—c'} ' for c~c' (the latter is from finite-
size scaling). Note that T„only depends exponentially on
n for c & c', where an infinitely long string could support
an active phase. For c gc', T„ tends to a finite value

v /v-g, for n »g„whereas T„n' -' for c=c'. I will

now show that the exponential growth of T„with n for
c g c' gives rise to the slow phase, a region in parameter
space where the model relaxes via a power law.

The quantities of interest are the decay function
M(t) =g„nP„M„(t), defined as the fraction of cells with

s;(t)=1 when started from s;(0)=l Vi, and the el'ective

decay time T=+,M(t). Thus one has

M(t)-(at lb) "~'In(at lb), t~ac . (5)

If ab & 1, then the discreteness of n in Eq. (3) becomes no-
ticeable, resulting for ah ~ cc in a log-periodic stepwise
decay, but with envelope as in Eq. (5). In any case, M(t)
can be said to show power-law decay with exponent

b la —The .exponent is finite and negative inside the pa-
rameter region (0&p &1, c'&c &1), which proves the
existence of the slow phase for this simplest model.
Moreover, b /a vanishes continuously if c~ 1 or p —+ 1,
and diverges if c~c' or p ~0, controlled by the respec-
tive behaviors of a(c) and b(p). The logarithmic next-
to-leading factor in M(t) may appear hard to verify in an

experiment or numerically, but it is directly related to the
exponent 8 describing the divergence of T for a ~b. This
can be shown by integrating functions similar to the tail

(5) of M(t),

f dt t '(lnt) = f dxx~expt[1 (b/a)]x—I
1 0

=1(q+ 1)[(b/a) —1] ' ~, (6)

using the substitution x=lnt Clear. ly, the logarithmic
factor must occur with q=1 to recover the exact ex-
ponent 8= —2 of the decay-time divergence.

Different asymptotics for M(t) and T apply to the
edges of the p-c diagram, but the results are trivial or well

known, except on the line (c=c', 0&p &1). Then
v, /vT„n' * -for large n, leading to stretched exponential

decay of M ( t }-jo"dn n exp [ bn t lT„—]. One—obtains

ln[M(t)]- —t ' (7)

the asymptotic behavior of the integral being determined
(Laplace) by the maximum of the square bracket occur-
ring at

M(t}-f dn n exp[ —bn t—exp( —an }]
0

where b = —ln(p), (4)

enables the large-t behavior to be found via Laplace's
method. The square bracket in Eq. (4) has its quadratic
maximum at n =(1/a}ln(atlb), with second derivative

ab—. Thus, to justify the transition from (3) to (4), one
needs to have t »(Ab)/a and ab «1. Only the latter
condition can be restrictive. Supposing for the moment
that ab « 1, one obtains

M(t)=g nP„M„(t)-g np "exp[ t exp( an )] . ——(3)

Tentatively replacing the sum by the integral

T-Ap(1 —p) (1—Ap), p &1/A

One can view the divergence of T for p~l/A as a
genuine dynamical phase transition, ' with critical ex-
ponent 8= —2, and occurring on a critical line p = 1/A,
which connects the points (p =0,c = 1) and (p = 1,c = c '

)

in the p-c phase diagram and goes as p -(1—c ) for p ~0
Dv

and as 1 —p-(c —c'} ' for p~1.
The asymptotic behavior of M(t) can be obtained as

n = [(v, t )l(v, b )] '

Algebraic next-to-leading factors in M ( t) have been
dropped from Eq. (7).

B. General disorder: Power-law bounds

Less complete but useful results are obtained for mod-
els with more general disorder. Asymptotic power-law
lower bounds for M (t) can be found in all cases, but these
bounds are not usually tight throughout the phase dia-

grarn. In some cases, power-law upper bounds can also
be found. For example, take random dilution of cou-

plings: F;(x &0)=c Vi, c;i=r,, only if ~i j~ =1, wit—h

the r; - again drawn randomly from the distribution
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f(r)=p5(r —1)+(1—p)5(r). To get a lower bound
M'(t), one counts only the contributions to M(t} coming
from strings in which each cell carries both couplings.
The decay of these internally homogeneous strings has al-
ready been analyzed in Sec. III A. The only difference is
that n-cell strings now occur with a probability P„-p ",
because two r; per c. ell equal 1. Thus M'(t) also decays
as in Eq. (5), but with exponent b'/—a, where
b'= —21n(p) and a is as before. An upper bound M"(t)
is found by considering the strings ending in cells without
any couplings, and overestimating their decay time by
taking it equal to that of a homogeneous string of the
same length. Thus M"(t} again decays algebraically,
with exponent b" /a—, where now

b"= —in[1 —(1—p) ],
and a is as before. Note that 0&b" &b'. The true
asymptotic decay M (t) (modulo any staircase ripple) then
must be a power law with exponent b/a, —where
6"&b &b'.

For most models, useful upper bounds are very hard to
obtain analytically, contrary to lower bounds. This can
be illustrated already in a simple model having weak and
strong cells instead of dilution. Take c;~ = 1 for

~

i —j ~

=1 and F;(x &0)=cr, , where the r, have dist. ri-
bution f(r)=p5(r —1)+(1—p)5(r k) wit—h 0&k &1.
Observe that the decays M'"'(t) of any pair of such mod-
els which are identical except for their k values are or-
dered in the sense that k &E implies M'"'(t) & M' (t), as
long as M' '(t)&0. This follows from the fact that the
space-time sites with s;(t) =1 of the k model are a proper
subset of those of the E model. Similarly, a p ordering
exists for models with the same k, but different p. These
orderings are helpful in the construction of bounds and in
restricting the parameter space where long-tailed relaxa-
tion can occur. Specifically, no such slow phase can exist
for c & c * in any k & 1 model, since the decay of the k = 1

model provides an exponentially decaying upper bound.
On the other hand, for c & c', the decay of the k =0
(cell-dilution} model gives a power-law lower bound [Eq.
(5)] for the M(t) of all k &0 models. This suffices to
prove the existence of a slow phase for c & c * in the k & 0
models, provided that they relax to the vacuum at all.
However, this condition is false for some of the models,
e.g., the ones with c &c'/k at any p. These support an
active phase, since their decay is bounded below by that
of the same model with p =0, which is identical to a p=1
(standard DP) model with c & c'. This narrows down the
parameter region for the slow phase to c '

& c & e ' /k
with 0&p & 1. Are there any models in this region that
decay to the vacuum? Heuristic arguments based on the
k and p ordering of M(ao ) in the active phase suggest
that the active phase disappears for c below a critica1 line
C(p) in the c-p diagram, where C(p) is smooth and strict-
ly decreasing between the exactly known end points
C(0)=c'/k and C(1)=c', but no explicit calculation of
C(p} is available. Attempts at constructing a lower
bound for C(p) have worked only for k,p «1 so far, and
are hardly worth pursuing here. However, numerical
(MC) evidence' strongly indicates the existence of a re-
gion within the rectangle (0 &p & 1, c*& c & c*/k ) where

the models decay to the vacuum. This region then is the
slow phase.

DP-SCA with coupling or cell parameters drawn from
a continuous random distribution can also be shown to
have decay bounded below by a power law. For example,
take F;(x}=1—exp( —x) Vi and c;1 =cr,j for

~

i —j ~

=1,
with the r; chosen from a smooth distribution f (r), with

f(r) & 0 for 0 & r;„&r & r,„,scaled so that ( r ) = 1, and
having standard deviation d. Standard bond-DP is
recovered in the special case d =0. For d & 0 one still ex-
pects to find a transition between an active and a vacuum
phase, occurring at a value of c depending smoothly on d.
MC results reported previously' support this, and yield
new critical exponents characteristic of D=1 disordered
DP-SCA. Lower bounds M'(t) for these models are ob-
tained by considering the decay of supercritical strings of
cells, i.e., strings in which all couplings have r; &R, for
an R & c'/c. The set of such "Sstrings" is nonempty if
c &c /rm» The .probability of occurrence of S strings
of length n is P„-exp( bn), —where now
b = ln fg d—r f(r}. The decay M„(t) of an n-cell S string
is bounded below by the decay M„'(t) of a homogeneous
n-cell string in which each r,~j R The latter strings have
M„'(t)-exp( t /T„)—, where T„-exp(an), with a & 0. As
long as the set of S strings is nonempty, b is finite and a
power-law lower bound M'(t), of the form of Eq. (5), is
derived for the decay of the S strings, which in turn is a
lower bound for M(t) of the whole model. If an explicit
form of f (r) and a(R) is known, then R can be chosen
variationally, optimizing the lower bound by minimizing
the value of b/a. In any case, b and a are increasing
functions of R, with b =0 at R =r;„and b= ao at
R =r,„, while a =0 at R =c'/c and a ~~ as R ~~.
In general, the bound is not expected to be tight and it
will become irrelevant if an active phase occurs for c
above a critical line C(d) in a region of the c-d diagram
where S strings exist. On the other hand, the bound will.
become tight near the lower edge of the slow phase at
c~c'/r, „The slow .phase occupies the whole phase
diagram if f (r) has an unbounded upper tail. It may,
however, be difBcult to see this in practice since the
power-law tail of M(t) has a large exponent for c «c'.

IV. RELAXATION OF D & 1 MODELS

Exact analysis of disordered DP-SCA in D & 1 is prohi-
bitively difficult. For D&4, one expects only trivial
effects of quenched disorder on the critical exponents
since the model is above its upper critical dimension.
D=4 is an undecided marginal case. However, nonex-
ponential relaxation effects are expected in any D, and
appropriate bounds will be derived despite the problems
preventing a full analysis. As in Sec. III, models with
dilution-type spatial disorder are analyzed in some detail
first. Lower and upper bounds with asymptotic power-
law decay are found. Finally, the occurrence of similar
effects in DP-SCA models with more general types of dis-
order is indicated.

Cell diluted DP-SCA models in D & 1 can be defined
similarly to those in D= 1, e.g., by setting F;(x}=0with
probability 1 —p, leaving a fraction p of cells with
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F;(x &0)=c, and taking c; =1 for i —j within a finite

range. In terms of a DP problem on a (D+ 1) space-time
lattice, one removes timelike lines of sites. An important
feature in D & 1 is the existence of a critical p =p below
which the fixed random network of remaining SCA cells
no longer forms a statically percolating structure. " For
p &p*, the structure contains at least one path to infinity,
guaranteeing that the model has an active phase at least
for c &c&, the critical point of the p=1 model in D=1.
One expects the active phase to disappear for c below a
critical line Co(p) that decreases smoothly to the DP-
class critical point cz at p=1. This has been confirmed

by MC results, ' and new critical exponents were found
for the transition along the line for p*&p &1. With
respect to the relaxation, one expects a slow phase only
for c&cz. For p&p* its upper boundary must be the
critical line Co(p}, whereas it would exist up to c= 1 for

p &p*. It is easier to analyze the slow relaxation behav-
ior for p &p' where no active phase can occur, but the
lower bounds that will be derived next are also applicable
to p &p'.

To find nonexponential asymptotic lower bounds for
M(t}, consider the relaxation of exceptionally dense,
roughly spherical n-cell clusters on which the DP-SCA
model decays to the vacuum on a time scale growing as
T„-exp( an) for c & co. Such exponential growth occurs
because a (locally) supercritical cluster decays only
through coherent fluctuations involving all its cells, in-

stead of via a diffusing domain wall as in an Ising model
(cf. Sec. V). Such compact clusters occur with probabili-

ty ln(P„}= bn b'm—+O—[ln(n ) ], where b ——lnp,
b' —ln-(1—p), and m =n' " . The three factors in

P„stem from contributions of the (dense) bulk, the (emp-

ty) outer surface and the multiplicity of cluster shapes
with the same T„. The long-tailed relaxation of these
dense clusters gives a lower bound M'(t) for M(t),

M'(t) =g nP„exp( t /T„)—
n

—f dn exp[ —bn t exp( —an }—b'n' —"~ ],
0

where algebraic factors in the integrand can now be
neglected. Again using Laplace's method, one finds the
asymptotic forms determined by the maximum of the
square bracket, occurring at n = (1/a)ln(at /b)
+O[(lnt) ' ]. This yields

ln[M(t)] & ln[M'(t)]

(b /a )ln(at /b—)+[(1/a )In(at /b )]'o

(9)

The dominant contribution to M'(t) is the same power
law as in D=1, but the next important factor now is not
logarithmic, but an intermediate form that may perhaps
be called "stretched power law. "

Related to this is the equally unusual behavior of the
corresponding lower bound T' of the decay-time T

T & T'-g nP„T„—f dn expt(a —b)n —b'n'
n

+0[in(n)] [, (10)

V. DISCUSSION

It has been shown that power-law relaxation is a gen-
eral feature of the decay to the vacuum state in DP-SCA
models with quenched disorder. The basic physical
mechanism underlying this power-law decay is simply the
existence of large clusters of cells in which the interac-
tions are above the critical point at which an infinite sys-
tem can support an active phase in addition to the vacu-
um. The number of such clusters falls off exponentially

from which one sees that T' now goes to a finite value
(depending on b') as a ~b from below, and then jumps
discontinuously to ~ for a & b. Note the possibility that
T already diverges for smaller values of p and c than
those giving a =b, due to contributions from other less
dense clusters than have been taken into account here.
One could even wonder whether the leading factor of
M(t) might be slower than a power law. To disprove
this, one can construct a power-law upper bound M"(t)
with exponent b" /—a where 0 & b" & b for all c & c ~ and

p &p*. The idea is to count all the clusters, instead of
just the compact ones, and to use the decay time of the
slowest (compact} n cluster as upper bound for the decay
time of the unrestricted n clusters. For any p &p', the
number density of (unrestricted} n-cell clusters decreases
exponentially for large n." Thus ln(P„)- b "n w—ith
0 & b" & b. The decay time of any n-cell cluster is bound-
ed above by the usual T„-exp( an) of a compact cluster
of the same mass. Hence M"(t) has the same form as Eq.
(4), leading to the power-law upper bound announced
above. The asymptotic decay of M(t) (modulo any stair-
case terms) then also is a power law, but a finite range of
exponents is left open. Note that the M"(t) upper bound
does not exist for p &p', where it is swamped by contri-
butions from the infinite cluster. The lower bound M'(t)
becomes irrelevant for c & Co(p}.

Models with coupling dilution can be attacked by a
combination of the methods just used for cell dilution
with those for coupling diluted D= 1 models. It may
therefore suf6ce to explain the strategy without repeating
the details of the calculations.

A power-law lower bound can be derived by consider-
ing compact clusters in which each cell carries all its z
couplings. A similar upper bound is found by counting
all clusters in which a cell is considered connected to
another if their common link carries at least one of its
(directional) couplings. The decay time for a cluster is
again overestimated by taking it equal to that of the clus-
ter having the same cells, but each carrying all z cou-
plings. Note that this upper bound exists only for p
below the critical point of static diode percolation. '

The D & 1 inodels with disorder variables drawn from
continuous distributions can be treated by analogy with
those in D=1. Again, one obtains weaker results than
with dilution, but still finds power-law lower bounds for
c & c*/r,„
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with their size, but their characteristic decay time grows
exponentially.

This mechanism is similar to the one responsible for
the Griffiths' phase in disordered spin models. However,
the analogy in the phenomena caused by it is not very
strict, due to the lack of symmetry between the vacuum
and the active phase in SCA. There is no clean distinc-
tion between the coupling of disorder variables to the lo-
cal values of the transition point or the order parameter
(the density of 1's). Therefore in DP-SCA one cannot
clearly distinguish the equivalents of either random-field
or random-coupling models as one can in Ising systems.

The actual shape of the relaxation tails is also different:
disordered Ising models such as diluted ferromagnets or
spin glasses in their Griffith's phase relax as
in[M(t)]&(lnt) ~' ", faster than a power law, but
slower than a stretched exponential. ' A recent deriva-
tion for m-vector spins in the m ~00 limit yields
Kohlrausch-type stretched exponential decay. Compar-
ing SCA to Ising systems, the difference can be traced to
the fact that a "droplet" in a spin system overturns by
the movement of a domain wall across it. The rate-
limiting step is the creation of the wall, requiring a free
energy that scales as the (D —1)th power of the droplet
diameter. In SCA, one needs a coordinated fluctuation
involving essentially all the cells in the locally supercriti-
cal cluster to bring it to the vacuum state. Even moving
a wall across it has to go against the positive average

growth speed of the local active phase, which requires a
coordinated sequence of local fluctuations. One can also
look at the configurations in D+1 space-time (the his-
tories of the model). Any SCA defines a Hamiltonian on
its set of histories, ' which can thus be viewed as equilib-
rium configurations of a special Ising (or Potts) model,
usually with multispin interactions, on a D+ 1 lattice. In
our case, a cluster of DP-SCA cells becomes a corre-
sponding bar-shaped (D + 1) volume, and decay to the
vacuum is equivalent to creation of a D-dimensional
domain wall across the bar. Its free-energy cost, which
translates back for SCA as the logarithm of the decay
rate to the vacuum, scales with the number of sites in the
wall. This makes the decay-time scale grow exponential-
ly with the D volume of the SCA cluster. In the vicinity
of the critical point, the D volume of the cluster gets re-
scaled by the spatial correlation volume g, .

Experimental observation of slow relaxation of spin
models in the Griffiths' phase is notoriously difficult, but
this may be much easier for some of the DP-SCA studied
here. Numerical work on strongly diluted DP-SCA in
D=2 showed very strong tails, ' with T & 10, exceeding
the limitations of available computer time. Also, in view
of the possible application of DP-SCA as models of repli-
cating organisms or autocatalytic chemical reactions, one
may hope that the phenomena analyzed here could be of
relevance to realistic systems in which such entities sur-
vive for long periods in inhomogeneous media.
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