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Dynamical scaling, domain-growth kinetics, and domain-wall shapes
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The domain-growth kinetics in two different anisotropic two-dimensional XY-spin models is stud-

ied by computer simulation. The models have uniaxial and cubic anisotropy which leads to
ground-state orderings which are twofold and fourfold degenerate, respectively. The models are
quenched from infinite to zero temperature as well as to nonzero temperatures below the ordering
transition. The continuous nature of the spin variables causes the domain walls to be "soft" and
characterized by a finite thickness. The steady-state thickness of the walls can be varied by a model

parameter, P. At zero temperature, the domain-growth kinetics is found to be independent of the
value of this parameter over several decades of its range. This suggests that a universal principle is

operative. The domain-wall shape is analyzed and shown to be well represented by a hyperbolic
tangent function. The growth process obeys dynamical scaling and the shape of the dynamical scal-

ing function pertaining to the structure factor is found to depend on P. Specifically, this function is
described by a Porod-law behavior, q, where co increases with the wall softness. The kinetic ex-

ponent, which describes how the linear domain size varies with time, R (t) —t, is for both models at
zero temperature determined to be n =0.25, independent of P. At finite temperatures, the growth
kinetics is found to cross over to the Lifshitz-Allen-Cahn law characterized by n =0.50. The results

support the idea of two separate zero-temperature universality classes for soft-wall and hard-wall ki-

netics, and furthermore suggest that these classes become identical at finite temperatures.

I. INTRODUCTION

The domain-growth kinetics in systems undergoing or-
dering processes after thermal quenching is believed to be
governed by a few relevant properties of the systems,
whereas most other properties and material-dependent
details are irrelevant. ' Among the most likely candidates
for relevant properties are the ordering degeneracy p and
the nature of the conservation laws in effect. Recently,
it has also been suggested that domain-wall softness is a
relevant property which in some cases may even overrule
the relevance of the ground-state degeneracy.

The present status of the field of domain-growth kinet-
ics is, however, rather unclear. The reasons for this are
manifold: (i) Experimental studies are severely hampered
by insufficient time resolution and uncontrolled effects
due to sample impurities and inhomogeneities. (ii) It is
extremely difficult to construct a quantitatively reliable
far-from-equilibrium theory, ' ' in particular for multi-
fold degeneracy, ' ' which takes local features of the
growth mechanism into account. (iii) Computer simula-
tion studies are made difficult by unusual demands to the
statistics and, maybe more important, the numerical re-
sults are difficult to analyze due to the lack of appropriate
theoretical predictions. This is particularly true with re-
gard to temperature and early-time-regime corrections to
the asymptotic growth laws and the scaling functions.

Most of the present knowledge of domain-growth ki-
netics stems from computer simulation studies of two-

dimensional Potts ' ' and Ising ' ' models with
commensurate and incommensurate modulated struc-
tures of a variety of symmetries. From these studies it
now seems rather well established that the growth pro-
cesses obey dynamical scaling and that the scaling func-
tions, at least at late times, are rather insensitive to the
ordering degeneracy p. The corresponding asymptotic
growth law

l(t)-t",
which describes how the average linear extension of the
domains varies with time t, is found to hold with ex-
ponent values n = —,

' and n = —,
' for nonconserved and con-

served order parameter, respectively. In the noncon-
served case, which we shall restrict ourselves to consider-
ing in what follows, the classical I.ifshitz-Allen-Cahn7 s ~'

value n =—,
' seems to apply, independent of the value ofp,

at least for low values of p. For larger values of p, sys-
tematic studies' of isotropic Q-state Potts models

(p =Q) as a function of Q have provided some evidence
in favor of a Q dependence of n, with n monotonically de-
creasing to a constant value of n =0.41 for Q & 30. How-
ever, this result has been subject to some controversy and
it was suggested ' that the Q dependence of the exponent
is only apparent and that one, in the asymptotic growth
regime, recovers n = —,

' for all values of Q. Such a cross-
over has indeed been found in recent very extensive ca1-
culations on (Q =48)-state Potts model arrayed on
1000)(1000lattices. ' Thus it seems now established that
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the domain-growth kinetics for Ising and Potts models
with nonconserved order parameter falls into the same
universality class, independent of p and independent of
the conservation laws for other quantities. This class is
characterized by the classical Lifshitz-Alien-Cahn growth
exponent value n =—,'.

A number of computer simulation studies of the
domain-growth kinetics in a different class of microscopic
lattice models " ' ' with nonconserved order parame-
ter have, with a few exceptions which will be discussed
below, ' identified a second and separate universality
class characterized by n =—,'. The models in this class are
distinguished from the Ising and Potts models in that
they are formulated in terms of continuous single-site
variables, such as rotors or XY spins. In contrast to the
sharp- ("hard-") domain walls produced by the discrete
variables in Potts and Ising models, the models with the
continuous variables support formation of wide- ("soft"-)
domain walls during the growth process. Certain aniso-
tropic high-Q Potts models with wide-domain boundaries
have also been found to belong to the soft-wall universali-
ty class.

From a theoretical point of view it is surprising and
somewhat unexpected that softness of domain walls could
influence the asymptotic behavior of domain growth. In
fact, field-theoretical descriptions of domain growth,
e.g., P theory, which is formulated in terms of continu-
ous order parameter fields, incorporate smooth walls with
the shape of a hyperbolic function. These theories lead to
n = —,

' for p =2. However, they have a serious shortcom-

ing in that they do not take local features of the growth
mechanism into account. On the other hand, Milchev
et al. recently studied by direct computer simulation a
microscopic square-lattice version of the p =2 P model
which does incorporate local features of the domain-wall
network. They found that their data for nonzero quench
temperatures complied with the classical exponent value
n =—,

' and argued that a separate universality class of
soft-wall kinetics may not exist and furthermore inferred
that previously studied models yielding n = —, might cross
over to n = —,

' at very late times. In addition, Milchev
et al. presented evidence for the P model that poor
quality of the pseudorandom numbers used to generate
the random fiuctuations in the domain walls could lead to
unreliable kinetic exponent values. In contrast, the
domain-growth kinetics in the p =2 Ising model was
found to be insensitive to the quality of the random-
number generator used. Milchev et al. speculated
that the larger configurational phase space of the model
with continuous site variables is responsible for the larger
sensitivity. It is crucial to note that the computer-
simulation study by Milchev et al. was carried out by
quenching to nonzero temperatures Tf in the P model as
well as in the Ising model. In fact, the quench tempera-
tures were close to the critical region. Therefore these
authors could argue that the quality of the random num-
bers is crucial because what is studied in the numerical
simulation is the amplification, by thermal fluctuations,
of the random fluctuations present in the initial unstable
system. In the previous studies of soft-wall kinetics yield-

ing n = —,', the quenches were performed at zero tempera-
ture. In fact, the models were carefully chosen so as to
support domain growth at T =0 in order to avoid
diSculties in interpreting data due to the lack of theories
accounting for temperature-dependent corrections to
dynamical scaling. Furthermore, the systematic study of
temperature effects in one of the models, the (p =6)-fold
degenerate herringbone model, demonstrated that
finite-temperature effective kinetic exponents could be
larger than —,

' and in fact close to n = —,
' for Tf -0.5T, in

the case of the herringbone model. Recently, van Saar-
loos and Grant proposed a reinterpretation of the kinet-
ic data for the soft-wall models and suggested that the
peculiar zero-temperature behavior may be replaced by
classical-growth kinetics (i.e., n =—,') at finite tempera-

tures. In reply to this suggestion, we showed in a prelimi-
nary report ' that such a crossover indeed takes place.

In the present paper we present the results of an exten-
sive computer-simulation study of the domain-growth ki-
netics of the two soft-wall models advanced in Refs. 3
and 5. These models are characterized by p =2 and

p =4. With reference to the brief discussion above, our
results present further evidence that the zero-temperature
soft-wall domain-growth kinetics may belong to a
separate universality class characterized by a kinetic ex-
ponent value of n = —,'. For finite temperatures, however,
there is a distinct crossover in both models to a different
universality class, the one described by the classical ex-
ponent value of n =—,'. This finding is corroborated by
the previously published data for the p =6 soft-wall her-
ringbone model.

In Sec. II we present the microscopic interaction mod-
els on which the present paper is based. The models are
anisotropic XY models arrayed on square lattices. The
ground states are (p =2)- and (p =4)-fold degenerate, re-
spectively. The principles of thermal quenching by com-
puter simulation are outlined in Sec. III. In Sec. IV re-
sults are given for the zero-temperature domain-growth
kinetics of the p =2 models as it is monitored by different
measures of length scale and interfacial energy. The
dynamical structure factor is analyzed and evidence for
dynamical scaling is presented. In particular, the kinetic
growth law, Eq. (l), is found to hold with n =0.25, in-

dependent of the degree of softness of the domain walls.
The shape of the walls is demonstrated to be described by
a tangent hyperbolic function. The scaling functions per-
taining to the structure factor are for large wave vectors
shown to comply with a Porod-type law with a decay ex-
ponent which is dependent on the softness of the walls.
Section V describes the results obtained from quenches to
finite temperatures below the ordering transitions. A
comparison is provided between soft-wall models with

p =2, 4, and 6. The paper is concluded in Sec. VI by a
discussion of soft-wall domain growth kinetics.

II. MODELS

We consider the two classical XY-spin models
governed by the Hamiltonians
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and

H, (p =2)=J g cos(P; —P )

i,j (i &j)
(NNN)

P—g cosP, cosP,
i j(i&j)
(NN)„

H~(p =4)=J g cos(P, —P, )+J g cosP, cos(()
i,j(i &j) i,j(i&j)
(NNN) (NN)~

(2)

thickness, i.e., the walls are soft and they mediate a
smooth gradient of the order parameter across the
domain boundaries. The P terms of both models control
the width and softness of the walls: The smaller the value
of P/J, the softer and wider are the walls. In the limit of
large P/J, both models become hard-wall models of
discrete single-site variables, (t);=0,m. We shall not be
concerned with this limit here, but restrict ourselves to
finite and moderate values of the softness parameter P/J.

+J g sin(t);sin((). Pg—(cos P;+ sin P )

ij(i&j) i
(NN)

(3)

with J &0 and P p 0. P, is the polar angle of a classical
two-component spin. The models are arrayed on square
lattices with next-nearest-neighbor interactions (NNN)
and nearest-neighbor interactions (NN) along the x and y
axes. The repulsive pair interactions serve to stabilize
(2 X 1) antiferromagnetic ground states with the propaga-
tion vector along the sublattice magnetization. In H, the
P term breaks the cubic symmetry of the (2X 1) ordering
and singles out the x direction, thus leading t'o an n =1
component Ising-type order parameter. The model is in
the static universality class of the two-dimensional Ising
model and is expected to have a critical ordering transi-
tion with Ising critical exponents. In Hz the anisotropy
induced by the crystal-field-like P term preserves the
n = twofold degenerate (2 X 1) ordering with discrete
symmetry. The model belongs to the static universality
class of the pl@nar XFmodel with cubic anisotropy and is
thus expected to have a critical poinf associated with
nonuniversal critical exponents.

At low temperatures, the two models have p =2 and

p =4 thermodynamically degenerate (2X1) antifer-
romagnetically ordered domains. The two order-
parameter components are pictured in Fig. 1. The sym-
metries of these types of ordering are the same as that of
atomic oxygen chemisorbed on the (112) and (110) sur-
faces of tungsten.

Due to the continuous nature of the planar spin vari-
ables of the models, the walls which may be formed be-
tween different types of ordered domains have a finite

III. COMPUTER SIMULATION
OP THERMAL QUENCHING

The temporal evolution of the ordering process is con-
structed by Monte Carlo computer simulation using a
Glauber-type single-site excitation mechanism according
to the Metropolis algorithm. In most runs, the spins
are visited at random, and in each attempted excitation
the spin is rotated through a random angle. In some
runs, the spins are visited sequentially. By the Glauber
excitation mechanism, the order parameter is a noncon-
served quantity. The initial configuration is chosen as
random corresponding to an initial temperature of
T, —Oc. Th.e system is then assigned a new temperature,
'lf, and the time evolution is followed on a scale given in
units of Monte Carlo steps per spin (MCS/S). The simu-
lations are carried out on finite lattices, with N =L XL
spins, subject to toroidal periodic boundary conditions.
Finite-size effects are considered by simulation on a series
of different lattice sizes, N =100, 200, 300, and 500 .
Ensemble averages at each time are obtained by averag-
ing over several independent quenches using different
random-number sequences. The random numbers used
for the present work have been checked very carefully in
order to avoid problems of the sort discussed by Milchev
et al.

The growth process is followed in time by several
methods. Snapshots of microconfigurations provide a
qualitative overall picture of the evolving domain pattern
and are useful to gauge the topology of the domain-
boundary network and the morphology of the domains.
More quantitative measures of the growth use the
dynamical structure factor calculated along the modulat-
ed directions, e.g. , for the p =2 model

N 2

s(q, ()=N ' z cos[p (t)]e '
lj=1

with Bragg condition q =0. From the moments of S(q, t )

k (t)= g ~ q ~
S(q, &)/QS(q, &), (5)

FIG. 1. (2&(1) antiferromagnetic ordering on a square lat-
tice. ((, and P, are degenerate order-parameter components for
the p =4 model, Eq. (3), and l(), is the one-component order pa-
rameter of the p =2 model, Eq. (2).

where q =2' I~N, j= &N /2, . . . , 0, . .—. , &N /2
measures of length can be obtained, e.g. , as k, '(t) and

kz ' (t). Another measure of length is the average
linear domain size, R (t), derived directly from the
domain-distribution function, assuming that R (t) scales
as the square root of the domain area. For low values of
p, the domain pattern is highly percolative and R (t) be-
comes a less reliable length measure. From the intensity
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of the structure factor at the Bragg condition yet another
length scale, L (t), may be obtained,

(6)

where f( Tf ) is the equilibrium value of the order param-
eter at Tf. Since L(t) is determined by the degree of
symmetry breaking between the different ground-state
domains, it is subject to large fluctuations from quench to
quench. ' ' It is therefore difficult to estimate L (t), in
particular for small values of p. A final length-scale mea-
sure is obtained from the excess internal energy

vestigated by systematic variation of the lattice size. The
simulation results to be reported below are derived by
combining data obtained from different system sizes in
such a way that the thermodynamic limit is approached.
The time evolution is stopped when finite-size elfects set
in.

The major part of the quench studies to be reported
below refer to global quench es. A few selected
controlled-growth studies have also been conducted using
special initial domain-pattern geometries in order to
study domain-shape functions.

KE(t)=E(t) E(T—f ) (7) IV. ZERO-TEMPERATURE GROWTH

associated with the entire domain-wall network. E(t) is
the nonequilibrium energy at time t and E(Tf) is the
equilibrium energy. According to a simple scaling argu-
ment advanced for sharp-wall Ising models hE '(t)
has the property of a length scale. We expect this argu-
ment to hold for the present soft-wall models as long as
the domain-wall thickness is small compared to the size
of the domains. It is anticipated that the argument will
not remain valid at higher temperatures where thermal
excitations broaden the walls to sizes comparable to the
domain-well extension.

Milchev et o!. have recently pointed out the impor-
tance of lack of self-averaging for the kinetics of domain
growth. A quantity is said to lack self-averaging if the
statistical error pertaining to that quantity does not de-
crease by increasing the system size, ¹ Examples of
such quantities include the length scale L(t) in Eq. (6)
which therefore has to be averaged over a substantial
sample of different quenches in order to reduce the fluc-
tuations. However, a number of quantities are self-
averaging, e g , EE(t. ),. R(t), and the moments of the
structure factor. These quantities can therefore be es-
timated accurately by studying fewer quenches on larger
systems. The results of the present paper are obtained us-
ing hE '(t), k& '(t), and k2 '~ (t) as length-scale mea-
sures for which reliable statistics may be gained from
samples of the order of ten quenches on large lattices,
N & 100 . Possible subtle finite-size effects have been in-

Results for the zero-temperature domain-growth kinet-
ics have previously been reported for the p =4 model for
a variety of P/J values and for the p =2 model in the
case of a single value, P/J =5. For the P =4 model, the
growth process was found to be described by Eq. (1) with
n =0.25, independent of the domain-wall softness. For
the p =2 model, the growth process was shown to obey
dynamical scaling and the same growth exponent value
n =0.25 was found as for the p =4 model. The results
suggested that the zero-temperature domain-growth ki-
netics of these soft-wall models is described by a special
universality class which is separate from the hard-wall
Lifshitz-Allen-Cahn universality class with n= —,'. All
these results, together with the corresponding results
from the wide-wall Potts-model studies, suggest that at
zero temperature the domain-wall softness may be more
important than the degeneracy of the ground state for a
possible universal classification of domain-growth kinet-
1cs.

In this section we give a detailed account of zero-
temperature quenching studies for the p =2 model for a
wide range of P/J values. New results for the p =4 mod-
el will be reported in Sec. V on finite-temperature growth.

A. Domain growth

In Fig. 2 a series of snapshots is given of the domain-
wall network as it evolves in time for the p =2 model

=2 MODEL

a) g~

D+ "Pc g

t=500
FIG. 2. Zero-temperature domain-wall network at differen times t (in units of MGS/S) for the p =2 model with P/J =2 on a lat

tice with ~ =2002 spins. The two ordered ground-state domains are indicated by white and grey regions separated by the black wall
spins.
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=2 MODEL

P/g =O. P/) =1 P/j = p/g = 5 P/g =1

FIG. 3. Snapshots of zero-temperature domain-wall configurations for the p =2 model at t =500 MCS/S for different values of
P/J. The model contains N =100 spins.

with P/J =2. A spin is determined to belong to a wall if
its angle deviates more than m/15 from a ground-state
angle. ' The domain pattern is very ramified and per-
colative. At very early times a spanning cluster is
formed. Still, the domains are compact at small length
scales. When p is increased, the boundary-network topol-
ogy plays a larger role and for p =4 and 6, the domain
pattern becomes more regular with vertices. ' Similar
observations have been made for Ising ' and Potts mod-
els."

The late-time domain-wall thickness as a function of
P/J is illustrated qualitatively in Fig. 3. It is seen that
the wall thickness decreases as P/J is increased. This is a
significant effect, e.g., the wall thickness decreases by an
order of magnitude for P/J going from one to ten. In the
case of P/J =0.3, the limiting domain-wall size has not
been reached. Figure 3 reveals another important prop-
erty of the p =2 model: At T =0, two types of walls can
be discerned —a wide-wall type roughly along the lattice
diagonals and a sharp-wall type along the preferred x
axis. Having once been formed, the latter wall type will
remain infinitely sharp. The distinction between the
walls becomes less pronounced as P/J is lowered. An
analysis of the wall shape will be presented in Sec. IV D.

It is also seen from Fig. 3 that the larger the value of
P/J, the earlier the system develops "slab
configurations" which will eventually pin the walls to the
lattice and the growth will cease. This is a finite-size
effect induced by the periodic boundary conditions and it
is similar to that commonly observed in Ising antifer-
romagnets on square lattices. ' ' The time at which
finite-size slab effects become important is conveniently
determined from a systematic comparison between
growth data for different system sizes.

The dynamical scaling properties of the ordering pro-
cess are studied via the scaling functions

F (x)=k i S(q, t), (8)

200- ODEL
P/J=5

+ 150-
lK
O
O

~ 100-

D
I

I
u) 50-

where x =qk ' is the scaling variable. In Figs. 5 and
6 the scaling functions I'

j and I'2 are given pertaining to
the structure factor in Fig. 4. The corresponding F2 for
P/J =2 is displayed in Fig. 7. These figures show that
the structure-factor data for T~80 are accurately de-
scribed by a single scaling function, be it F, or F2. Thus
the growth process obeys dynamical scaling. At low
values of

~ q ~

we are unable to perform a critical test of
dynamical scaling. The reason for this is that the indivi-
dual structure factors, of which the average in Fig. 4 is
composed, have very complicated patterns of peaks due
to scattering from the inhomogeneous random-domain-
wall networks. The averaging requires more statistics
the smaller the value of the wave vector

~ q ~
. The low-

B. Structure factors and dynamical scaling

Results for the zero-temperature dynamical structure
factor Eq. (4) for the p =2 model in the case P/J =5 are
shown in Fig. 4 for a selected series of times. As time
elapses, a peak of increasing intensity is built up around
the Bragg condition q =0. The width of the structure
factor is found to increase when P/J decreases, that is,
when the walls soften.

0- =

I

-0.3
t

-0.2 -0.1 0 0.1
WAVE VECTOR q/m.

0.2 0.3

FIG. 4. Zero-temperature dynamical structure factor S(q, t),
Eq. (4), for the p =2 model with P/J =5 calculated at times
t =80, 100, 150, 200, 250, 300, 400, and 500 for a system with
N = 100 spins. The curves appear from bottom to top as t is in-
creased. All possible wave vectors (q (0.3m) in the first Bril-
louin zone are displayed.
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p=2 MODEL
P/J=5

I I I

~3 0 3
SCALED WAVE VECTOR q/kt(t)

CJ'

U

Xo 6-
Oz
U

c9g 4-

CA

2-
X

O
0-

p=2 MODEL
P/J=2

sS~
I I I

-3 0 3
SCALED WAVE VECTOR q/Vkp(t)

FIG. 5. Zero-temperature dynamical scaling function F&(x),
Eq. (8), derived from the structure factor in Fig. 4 for the p =2
model with P/J =5.

FIG. 7. Zero-temperature dynamical scaling function F2(x),
Eq. (8), for the p =2 model with P/J=2. The data are ob-
tained from a system with N = 100 spins.

~ q ~

shoulder and the scattering at q =0 are thus caused
by incomplete averaging. Moreover, the nonsmooth be-
havior at low

~ q ~
may also be inffuenced by metastable

slab efFects ' which have the major weight on large-scale
properties, i.e., close to the Bragg condition. Similar
difficulties at low

~ q ~

have been reported for a number
of other growth models. ' ' ' These findings
underscore our choice of length-scale measures discussed
in Sec. III as measures which give weight to nonzero
wave-vector components of the structure factor. In fact
it is found, for example, that k, and k2 are only slightly
sensitive to the detailed satellite pattern of the individual
structure factors and thus remain good self-averaging
properties.

A comparison of Figs. 6 and 7 shows that the scaling
functions depend on the value of the softness parameter
P/J: The softer the walls, the wider the scaling func-

tions. A quantitative discussion is given in Sec. IVF in
terms of Porod-law behavior of the large-

~ q ~

decay of
the scaling functions and its dependence of P/J. It is
noteworthy that we find such model-parameter depen-
dences of the scaling functions for the soft-wall models.
For a number of hard-wall models the scaling functions
were found to be insensitive to details of the model. '

C. The growth law

The existence of a scaling function, Eq. (8), as
confirmed by Figs. 5-7 implies that the growth process is
characterized by a single length scale. It is usually as-
sumed that this length scale varies algebraically in time,

I

3 ~ ~

p=2 MODEL
P/J=5

CP

U

Xo 6-
Oz
D
U

C9z 4-

CA

o 2-
X

O
0-

T

-3
SCALED WAVE

p=2 MODEL
P/J=5

S

R
T

4

I

0 3
VECTOR q/Vk2(t)

FIG. 6. Zero-temperature dynamical scaling function F2(x),
Eq. (8), derived from the structure factor in Fig. 4 for the p =2
model with P/J =5.

6 E(t)/J
~a 4~ ~o

4 O 0 O~

10—

4

3

10

-1 ~o~
k~ (t)

0o~ D

0 o~
O o~

k2 (t)

I

TIME t
2

I

103

FIG. 8. Zero-temperature growth data for the p =2 model in
the case P/J =5. Results are given for excess energy AE(t) and
appropriate powers of the two first moments k, (t) and k2{t) of
the dynamical structure factor. The solid lines indicate the
power laws, Eq. (9), with n =0.25. The bulk of the data refers
to a system of size N =300 .
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p=2 MODEL
P/'J =2

0

0.3—

O~ O~ 0 ~O~ O~ O~ ~o o~o

10-
—1

k, (
0 a

a
0 o~o~ 4

k '(t)

I

10 10 TlME
2

I

103

FIG. 9. Zero-temperature growth data for the p =2 model in

the case P/J =2. The bulk of the data is derived from a system
of size N =500)&500. The solid lines are the power laws, Eq.
(9), with N =0.25.

Eq. (1). For our particular measures of length, Eq. (1)
reads

(9)

0.6 ,

z
g0.4-

K
Lll -0

p=2 MODEL

0
0 0 0

I

10

softer SOFTNESS PARAMETER
P/J

harder

100

FIG. 10. Effective zero-temperature growth exponents de-
rived for the p =2 model as a function of softness parameter
P/J. The different symbols refer to the exponent values for the
excess energy (~ ) and for the structure factor moments (O).
The horizontal dashed line indicates n =0.25. Note that the
horizontal axis is logarithmic.

The data in Fig. 8 demonstrate that for P/J =5 such
algebraic growth laws indeed describe our late-time data
with a high degree of accuracy. The common exponent
value is n =0.25. For a given lattice size, the growth in
the present p =2 soft-wall model may be followed to con-
siderably later times than in corresponding p =2 Ising
models. This is due to the much faster growth kinetics
(n =—,

'
) of the nonconserved Ising models.

Growth data for a smaller value of the softness param-
eter P/J =2 are given in Fig. 9. Again we find that the
data at late times may be constrained to the power laws,
Eq. (9), with the same exponent value, n =0.25 as ob-
tained for P/J =5. The full variation of the effective

growth exponent as a function of P/J over a substantial
range is displayed in Fig. 10. The exponent values de-
rived from the excess energy and the structure-factor mo-
ments are displayed separately. The data points scatter
in the neighborhood of n =0.25 with a tendency for the
exponent values derived from the moments to fall slightly
below those derived from excess energy. The scatter in
the points reflects the accuracy of the exponent deter-
mination from the raw growth data, the accuracy in turn
being dictated by the statistics available. The points at
P/J =2 and 5 are based on the most comprehensive
statistics and should therefore be considered the most re-
liable. It is noticeable that for large P/J, the effective ex-
ponent values have a decreasing trend. In line with the
previously discussed finite-size effects, this trend is caused
by the slab effects which slow down the growth at earlier
times as the walls get harder. The system presumably
loses its connectivity for the largest values of P/J studied
and effectively behaves as a one-dimensional system.
Consequently, the data displayed in Fig. 10 for the largest
P /J values should not be considered as representing the
true late-time behavior for the present model. A similar
situation of crossover to zero-temperature hard-wall
pinned behavior was encountered for the p =4 model.
The data in Fig. 10 strongly suggest that the characteris-
tic zero-temperature growth exponent for the p =2 mod-
el is close to n =0.25, independent of the softness param-
eter. This indicates that a universal principle is opera-
tive. An exponent value of n =0.20. is also consistent
with the available data.

D. Controlled growth and domain-wall shapes

It is diScult to extract a quantitative measure of the
domain-wall thickness for the p =2 model with the very
convoluted domain patterns obtained by global quench-
ing. In contrast, this can be readily done for the more
compact domain structures occurring in models with
higher p, simply by combining information on the total
perimeter from the domain-size distribution function
with the tota1 area of the boundary spins. For the p =2
model, the domain-wall thickness should rather be ex-
tracted from a controlled growth experiment in which a
specific interface of a simple geometry is introduced in an
ordered structure and then studied at late times.

We study the time evolution of an initially sharp linear
interface along the y axis. Such a situation corresponds
precisely to a perfect slab configuration. There is no
growth, but the interface widens as time elapses and ap-
proaches a limiting thickness after a few hundred
MCS/S, the precise number depending on P/J. The
smaller the value of P/J, the wider is the wall at late
times. A presentation of these results is given in Fig. 11
in terms of the spatial variation of the average string
magnetization, or order parameter profile,

L
m(r„)=L ' g cos[PJ(r„)]e (10)

j=l
calculated across the domain-wall center at r„=0.The
coordinate r„is measured in units of the lattice constant.
It turns out that the order-parameter profile can be fitted
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where d is a measure of the thickness of the domain
wall. Thus the shape of the wall is the same as that re-
sulting from a simple Landau-Ginzburg analysis of the
free energy of a domain wall. ' Using d as a measure
of the domain-wall thickness, it seems justified to assume
that the wall thickness is much smaller than the average
linear domain size in the time regime where the growth
exponent is extracted. Thus there is only one relevant
length scale in the present growth problem.

E. Porod's law

Fz(x)-x (12)

with decay exponents co=3.6 for P/J =5 and co=3.9 for
P/J =2. The same statement and the same values of co

apply for F, (x). General arguments on scaling in the dy-
namics of random sharp interfaces' predict a Porod law
for the scaling function with decay exponent m=d+1,
where d is the spatial dimension. This prediction is in ac-
cordance with a number of computer-simulation studies

It is of interest to analyze the high-
~ q ~

tail of the
structure factor (or the dynamical scaling function) since
this tail contains information on short-distance structure
of the domain pattern. Furthermore, the tail is accessible
in a low-angle scattering experiment. We shall here
show that the shape of this tail depends on the domain-
wall softness and thus may be used to distinguish
domain-boundary networks with soft and hard walls.

Figure 12 gives a composite log-log plot of the dynami-
cal scaling functions Fz(x) of Figs. 6 and 7 for P/J =5
and 2, respectively. There is considerable scatter in the
data in this representation. However, it is clear that for
x ~0.4 the data in both cases may be described by a
Porod-type law

FIG. 12. Log-log plot of the zero-temperature dynamical
scaling functions F&(x), Figs. 6 and 7, for the p =2 model in the
cases P/J =5 and 2. The data for P/J =5 are shifted upwards
for the sake of clarity. The solid lines denote the Porod law, Eq.
(12), with decay exponents co= 3.6 and 3.9 for P/J =5 and 2, re-
spectively.

of hard-wall Ising models. 9'zi'z3, z7, 36, 6o

Two important conclusions can be drawn: (i) the Po-
rod law is a good description of the large-

~ q ~

decay of
the dynamical scaling function for both models with
hard- and soft-domain walls, and (ii) the decay exponent
co is larger for the soft-wall systems than for the hard-wall
systems and co increases as the walls become softer. It is
interesting to note that an analysis of the scaling function
for another soft-wall model, the p =6 herringbone mod-
el, ' is consistent with a Porod law with co=3.3. This
value is quite reasonable since the herringbone domain
walls are softer than the Ising walls, but harder than the
walls of the p =2 model with P/J =2.

V. FINITE-TEMPERATURE GROWTH

In this section we present the results of quenches of
both the p =2 model and the p =4 model from infinite
temperature to temperatures Tf ~0 below the ordering
transition temperature. Only a single value of P!Jhas
been considered for each model. The critical tempera-
tures T„aswell as the equilibrium energy data necessary
for a determination of the excess energy, Eq. (7), have
been calculated by standard equilibrium Monte Carlo
techniques. Only quenches to temperatures well below
T„~=Tf/T,&0.7, have been considered. There are
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several reasons for this. First, we want to avoid effects
due to critical fluctuations; ' second, our main purpose
is to reveal possible crossover effects from zero-
temperature to finite-temperature growth kinetics; and
third, the scaling assumption which relates hE '(t) to
a length scale (the perimeter) breaks down at higher tem-
peratures where thermal excitations have blurred the
walls. The last difficulty is also encountered in studies of
hard-wall Ising and Potts models, although somewhat
closer to the transition. '

The results for the finite-temperature growth kinetics
presented in the present section are discussed in Sec. VI
together with previously published data for the finite-
temperature growth in the soft-wall p =6 herringbone
model.
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FIG. 13. Finite-temperature domain-growth data for the

p =2 model with P/J =5. EE(t) vs time is shown for a series
of selected temperatures v.=Tf/T, . The solid lines denote the
effective growth laws with the corresponding effective growth
exponents given in Fig. 15.

A. p =2model

Figure 13 presents results for EE(t) from selected
finite-temperature quenches of the p =2 model with
P/J =5. The set of data for quench temperatures up to
'T= Tf /T, =0. 1 shows a gradual increase in the effective
late-time kinetic exponent towards a limiting value of
n=0. 50. For ~)0.1 n remains constant around this
value. Figure 13 reflects the fact that the higher the tem-
perature is, the shorter timespan can be investigated for a
given system size before finite-size effects set in. A simi-
lar crossover in kinetic exponent value as a function of
temperature is observed for the length scales derived
from the moments of the structure function. However,
the data for the moments are more strongly influenced by
the thermal fluctuations and consequently subject to
larger statistical fluctuations than the excess energy. The
data in Fig. 13 do not reveal a well-defined crossover re-
gion from some early-time behavior (possibly influenced
by the zero-temperature kinetic behavior) to a distinct
Lifshitz-Allen-Cahn law at later times. It is likely that
such a crossover region exists but the data are not
sufficiently accurate to localize it. In this respect the

p =2 model js different from the p =4 model as shown in
the following subsection.
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FIG. 14. Finite-temperature domain-growth data for the

p =4 model with P/J =2. EE(t) vs time is shown for a series
of reduced temperatures r= Tf /T, . The data refer to a system
with N =100 spins. The solid lines denote the effective growth
laws, and the corresponding effective growth exponents are
given in Fig. 15. The various sets of data have been shifted
along the vertical axis for the sake of clarity.

B. p =4model

The excess energy versus time resulting from a series of
finite-temperature quenches of the p =4 model with
P/J =2 is shown in Fig. 14. The following striking ob-
servations can be remade from this figure: As the tempera-
ture is raised above zero, a distinct crossover in the kinet-
ic behavior sets in. A characteristic crossover region
around a time t, can be identified which separates the
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FIG 15. Plot of effective growth exponents vs reduced

quench temperature ~= Tf /T, for the p =2 model (Fig. 13), the

p =4 model (Fig. 14), and the p =6 herringbone model (Ref.
42). The open symbols for the p =2 and p =4 models refer to
the late-time kinetics, and the solid symbols for the p =4 model
refer to the early-time kinetics. For the sake of clarity, error
bars on the early-time exponents have been omitted.
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early-time kinetics from the late-time behavior. The
crossover time t, decreases as the temperature is in-

creased, e.g., t, &2000, =1500, =600, and =200 for
~= T&/T, =0.028, 0.056, 0111, and 0.250, respectively.
Each of the regions 50 & t ~ t, and t & t, can be character-
ized by its own effective kinetic exponent as indicated by
the solid lines in Fig. 14. These exponents are compiled
in Fig. 15. The late-time exponents are found to rise very
steeply towards n =0.50 as the temperature gets finite.
The early-time exponent displays a much slower increase.
For the two highest temperatures it is not possible to fol-
low the evolution of the system beyond t-2000 due to
finite-size effects in the N =100 system. For the same
reason, only quench temperatures up to ~=0.25 have
been considered for the p =4 model.

VI. DISCUSSION: SOFT-WALL DOMAIN-GROWTH
KINETICS

We have in this paper presented strong numerical evi-
dence for a special zero-temperature kinetic behavior of
the domain growth in two-dimensional anisotropic XY
models which are characterized by their capacity of sup-
porting soft-domain walls. The zero-temperature kinetics
is described by a growth exponent value, n =0.25, which
is distinctly lower than the classical Lifshitz-Allen-Cahn
value of n =—,

' for nonconserved order parameter. The
ordering in the models is twofold and fourfold degen-
erate, respectively. Exponent values of 0.25 are also
found for the sixfold degenerate soft-wall herringbone
model ' and for the wide-wall limit of 48-fold-
degenerate anisotropic Potts models. All these results
suggest that at zero temperature the soft-wall domain-
growth kinetics belongs to a separate universality class.
Moreover, it is found that it is not the softness as such, or
how soft the walls actually are, which influences the
growth, but rather the potential of the walls to soften, in
particular to soften locally in response to interfacial cur-
vature.

At finite temperatures however, a distinct crossover is
found to a domain-growth kinetics which is well de-
scribed by the Lifshitz-Allen-Cahn law. This is clearly
demonstrated by Fig. 15 for the p =2, p =4, and p =6
models. The wide-wall Potts models with p =48 have
only been studied at zero temperature, and it would be in-
teresting to extend the study to finite temperatures in or-
der to see whether the Lifshitz-Allen-Cahn exponent is
recovered for this model as well. Figure 15 shows that
the crossover to n =0.50 is very fast and proceeds in a
similar manner for the p =2 and p =4 models. For the
p =4 model, an early-time effective exponent may be dis-
cerned which rises slowly with temperature. This early-
time exponent could be considered a weighted average of
the zero-temperature exponent n =0.25 and the finite-
temperature exponent n =0.50. This behavior is possibly
described by some kind of crossover scaling function.
For the p =6 herringbone model, the crossover to
n =0.50 is considerably slower, and it cannot be excluded
that the value n =0.25 may apply to a range of low tem-
peratures. Excluding this latter possibility, however, a
coherent picture of the three soft-wall models appears.
This picture may conveniently be expressed in the

language of renormalization-group studies of domain
growth. ' ' ' At zero temperature, the growth is
governed by a stable equilibrium fixed point character-
ized by the exponent value n =0.25. At finite tempera-
tures this fixed point becomes unstable and the growth is
then governed by another stable equilibrium fixed point
characterized by the classical exponent n =—,'. At short
times and at low temperatures one observes temperature-
dependent effective exponents due to crossover between
the two fixed points, cf. Fig. 15.

Recently, a couple of papers have appeared which have
questioned the proposal of a separate soft-wall universali-
ty class for domain-growth kinetics. ' ' We shall here
address some of the points in dispute. First, the finding
of Milchev et al. of the Lifshitz-Allen-Cahn exponent
for the p =2 y model refers to finite temperatures and is
hence in full accordance with our results. It would be
interesting to study the growth kinetics of the y model
at zero temperature to see if there is a crossover to
n =0.25. Second, and along the same lines„ it is interest-
ing to note that our finite-temperature results are also
consistent with the finding of Lifshitz-Allen-Cahn kinet-
ics in the finite-temperature electric-field quenching ex-
periments on smectic films by Pindak et al. 65 These ex-
perimental results which, as pointed out by van Saarloos
and Grant, appear to have been overlooked in the field
of domain-growth kinetics, refer to a situation with con-
tinuous single-particle variables being the director angles
of the molecular electric dipoles of the liquid crystal.
These dipoles can support soft-domain walls of a thick-
ness which is found to vary with the applied electric
quenching field. Interestingly enough, the experiments
show that the kinetic exponent value is independent of
the actual width of the walls. Finally, van Saarloos and
Grant have argued that the soft-wall results at zero tem-
perature may suffer from a 1nt rescaling of the time scale
due to the particular Monte Carlo algorithm used at zero
temperature. As we have recently pointed out, this re-
scaling is likely to apply only in the one-dimensional limit
(J =0) of the model, Eq. (2), which these authors consid-
er in their calculation. This special limit corresponds to
the particular two-dimensional linear-wall geometries
considered in Sec. IV D. For these geometries, which are
essentially the slab configurations slowing down the
growth, only a wall-widening process is observed. Conse-
quently, the next-nearest-neighbor interactions absent in
the J=0 limit are essential for the domain-wall motions
observed in the full two-dimensional p =2 model.

An unsolved question remains regarding the mecha-
nism which underlies the special zero-temperature
domain-growth kinetics of systems with soft walls. A
possible key to answering this question may be found in
the observation made from direct inspection of
snapshots of domain-wall networks like those in Fig. 2,
that growth proceeds partially via soft-wall formation.
Specifically, it is found that in regions with high local
curvature, the walls not only move, but also soften. This
effectively leads to a slowing down of the growth rate and
could possibly imply a breakdown of the basic assump-
tion underlying the Allen-Cahn theory regarding the in-
verse proportionality of wall width and interface tension.
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