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Scaling in the kinetics of the order-disorder transition in Ni;Mn
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The kinetics of the atomic ordering in Ni;Mn has been investigated by time-resolved neutron-
diffraction techniques. The results obtained show that dynamical scaling holds in the ordering pro-
cess. The characteristic length grows consistently according to a power law. In addition, the
growth exponent indicates a crossover, which can be attributed to the transition from coalescence of
the ordered regions to migration of the domain walls. The scaling function for the structure factor
is obtained and compared with the results of theories and computer simulations.

I. INTRODUCTION

The kinetics of first-order phase transitions, that is, the
development of order in a rapidly quenched system, has
recently received considerable attention as a problem of
far-from-equilibrium phenomena. Such studies are
classified into the following two classes: transitions in
which the order parameter is conserved as in phase sepa-
ration, and those in which the parameter is not conserved
as in order-disorder transitions. For these growth pro-
cesses the idea of self-similar growth—dynamical
scaling—has been explored by many works.! This
universality is expressed as follows. The growth of the
characteristic length R(z) as a function of time ¢ is
characterized by a power law,

R(t)xt® (t>1t,), (1)

where a is some universal exponent which depends on the
growth mechanism of the process, and the quantity ¢,
denotes some initial transition time. Furthermore, the
nonequilibrium structure factor behaves as

S(g,t)=R%t)F(qR (1)) (t>1,) . )

Here d is the dimensionality, ¢ is the wave vector, and F
is a scaling function. For the case of a nonconserved or-
der parameter, several computer simulation studies have
succeeded in verifying this idea,”® but experimental
work has not been done extensively:'~° The scaling be-
havior has not been examined in detail except in a recent
study of Cu;Au by Noda, Nishihara, and Yamada.!®

In order to investigate dynamical scaling in ordering
kinetics further, we chose the Ni;Mn alloy for the follow-
ing reasons. Firstly, the time constant is fairly long,
which is advantageous for a study of the initial stage of
the ordering process. Secondly, Ni and Mn atoms have
similar sizes; hence, the elastic strain involved in the tran-
sition should be small. This is good for a comparison
with theories or simulations. Thirdly, the transition is of
first order, but seems to be close to second order.®!! It is,
therefore, considered that both the singularity of critical
fluctuations in the second-order transition and the com-
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plexity of the nucleation and growth process in the meta-
stable state in the first-order transition are relatively
small. Accordingly, when the quench is done to a tem-
perature fairly below the transition temperature 7., we
can easily avoid the singularity and complexity near T,
mentioned above; and moreover, we can investigate con-
tinuous ordering in the unstable state below the instabili-
ty temperature 7;. (See Fig. 1, which schematically
shows the free energy for a first-order transition as a
function of the order parameter. The instability tempera-
ture T; is defined as a temperature where the height of
the potential barrier is zero; that is, the ordered state is
not metastable but unstable below that temperature.)
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FIG. 1. Free energy vs the order parameter S at different
temperatures for a first-order phase transition (schematic). The
temperature T, shows the transition temperature, and that T;
does the instability temperature.
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Thus the results can be compared with those of recent
theories and/or numerical simulations which usually
dealt with this kind of continuous ordering. Finally, the
neutron cross sections are favorable for these measure-
ments because of the negative scattering length of Mn
which enhances the intensity of the superlattice
reflections.

In Ni;Mn, Mn atoms can occupy any of four
equivalent sites of the fcc lattice; therefore, the degenera-
cy of the order parameter is 4. Thus the ordered state
consists of domains of those four kinds, as shown by elec-
tron microscopy.'> Many recent works have shown that
those domains coarsen by the motion of their interfaces,
and the characteristic length R (¢) has a ¢!/ time depen-
dence.

Previously, neutron diffraction studies on this alloy
have been done by Collins and Teh,® and by Waka-
bayashi.® However, since they used a conventional fur-
nace and diffractometer, it took more than 30 min to
complete a stepwise temperature change and to obtain
the first diffraction pattern. Therefore, their studies were
restricted to the late stage of the ordering process. In the
present work, we used a special furnace which can
change the temperature very rapidly,' and a new kind of
diffractometer, the wide-angle neutron diffractometer
(WAND), installed at the High Flux Isotope Reactor at
the Oak Ridge National Laboratory.'* Since this
diffractometer consists of a curved one-dimensional
position-sensitive detector covering a 130° angle, we are
able to do time-resolved neutron-diffraction experiments.
As a result, we could investigate the whole process of the
kinetics from the very initial to the final stage.

II. EXPERIMENTAL DETAILS

The polycrystalline Ni;Mn alloy was prepared by melt-
ing 99.99%-pure Ni and Mn in an argon-arc furnace. To
homogenize the ingot it was melted several times. Since
the loss of weight was small, the nominal concentration
(25.1 at. % Mn) was adopted. The sample which had a
cylindrical form with dimensions of 6 mm diameter and
40 mm length was placed in the furnace. The sample was
heated to 600°C and kept at this temperature for 30 min
to achieve the disordered state, and then the temperature
was abruptly changed to 470 °C across the transition tem-
perature T, around 510°C. By the quench, the tempera-
ture of the sample could reach the final temperature in
about 15 s over that temperature difference. The transi-
tion temperature was estimated by measurements of the
integrated intensity of the superlattice reflections in the
equilibrium state. The value we determined is consistent
with those reported in the literature.'®

The following are reasons why the annealing tempera-
ture of 470°C was selected. Experiments on the relaxa-
tion process show that the relaxation time is relatively
fast around this tcmperature;s'“ that is, the effect of the
critical phenomena near T, is not significant. Moreover,
since the temperature 470 °C is fairly below T, that tem-
perature is expected to be lower than the instability tem-
perature T;. This assumption is reasonable in considera-
tion of the nature of the transition of this alloy, i.e., weak
first-order character.
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The growth of the superlattice reflections which appear
below the transition temperature was investigated by the
WAND. To observe the initial stage of the ordering ki-
netics up to 30 min, time-resolved measurements with 1
min increments were performed. In order to attain
sufficient counting statistics, the identical measurements
were repeated 30 times and each data set was accumulat-
ed in the memory of the data-acquisition system. For the
later stage, time-resolved measurements for 6 min incre-
ments were repeated five times.

III. RESULTS AND DISCUSSION

A. Growth law

The time evolution of the (211) superlattice diffraction
pattern is shown in Fig. 2, where the intensity is plotted
against the wave vector. This superlattice line could be
observed most accurately on our experimental condition.
Since this pattern is symmetric, only half of it is shown.
The data of this figure were obtained by smoothing the
raw data using a least-squares fit to a third-order polyno-
mial. The background level was also estimated by that fit
as the level where the profile converges to a horizontal
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FIG. 2. Time evolution of the (211) superlattice diffraction
pattern of Ni;Mn (arbitrary units) after the temperature was
abruptly changed from 600°C to 470°C.
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line. As will be discussed later, since a simple analytical
form of the profile which superimposes on the back-
ground is not clear at present, that procedure is the only
way to estimate the background. (While we tried to fit
the experimental result to simple Gaussian and Lorentzi-
an curves, small but systematic deviations from these
curves were obtained in the fit.)

As seen in the figure, a peak over a wide wave-vector
range is observed already at the very initial stage after the
quench. With time, the width of the peak becomes nar-
row [i.e., the size of the ordered region R (¢) grows], and
the background level decreases. The integrated intensity
of the measured profiles minus the background is shown
in Fig. 3 as a function of time. This figure indicates that
the intensity is nonzero at the initial stage, then it rapidly
increases and approaches a constant value. The broad
peak and the large integrated intensity which are ob-
served instantaneously after the quench indicate that a
large number of small ordered regions of four kinds are
formed at this stage; however, the high background level
at the same stage shows that the other portions are still
disordered. Since it is considered that the state at 470°C
is in the unstable state as mentioned before, an analogy
with spinodal decomposition in phase separation may be
permitted. That is, small ordering fluctuations are
formed spontaneously, and those diffuse regions of in-
creasing order become sharp. The initial increase of the
intensity probably corresponds with the rapid growth of
ordering fluctuations. The disordered regions suggested
by the high background level may be related with those
fluctuations and may also involve the portions near the
surfaces of the ordering regions. With time, these order-
ing regions with the fluctuations soon become well or-
dered and grow into domains. Such domains coarsen by
the motion of their walls, and finally the ordering be-
comes complete.

In order to compare the results with the power law—
Eq. (1)—the second moment g,(¢) which corresponds to
the mean square of the peak width [thus it is inversely
proportional to the square of R (¢)] was calculated. The
moment ¢, is given as

qz(t)=2qu(q,t)/2.S'(q,t) _ 3)
q q
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FIG. 3. Time dependence of the integrated intensity.
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This procedure was taken because a simple analytical
function which represents the profile is not clear at
present; therefore, we cannot estimate the width of the
profile by a conventional manner such as fitting to Gauss-
ian or Lorentzian line shapes. Before the calculation, the
background level estimated as mentioned before was sub-
tracted. Furthermore, for the structure factor S(q,t) we
used the pure profile which was obtained by the deconvo-
lution of the experimental profile using the (220) funda-
mental reflection as a measure of the instrumental resolu-
tion. Here an iterative method of successive folding was
employed for the deconvolution.!® The result is shown in
Fig. 4 on a double logarithmic scale. On the calculations
of g,, the following point is made. The value of the mo-
ment is sensitive to the choice of the background level.
In particular, when there are fluctuations in the intensity
at large g, the background has to be chosen carefully.
We, however, believe that reasonable values were ob-
tained as the background levels by the procedure men-
tioned before. Those levels were changed within a
reasonable range as a parameter, and errors of the value
of the moment were estimated. Those errors are shown
in the figure by error bars. As is clearly seen in this
figure, the square root of the second moment gi’? de-

creases gradually but its entire time evolution cannot be
expressed by a single power law. The result indicates
that the growth of the ordered regions is slow at the ini-
tial state, then becomes faster and comes to an end. The
final state is a mixture of four kinds of ordered domains.
Our experiment indicates that the size of these domains
at this stage is of the order of a few hundred A.

As mentioned above, the data in Fig. 4 cannot be ex-
pressed by a power law with a single exponent. Howev-
er, by choosing appropriate data points at the later stage,
those data can be fitted by a straight line. The slope
shown in the figure is — 1. The fitted slope in this time
range is —0.4610.03. This result is consistent with the
prediction of Allen and Cahn for the growth process
which involves the migration of domain walls driven by
their curvature.'’ This exponent has been verified by
many computer simulations and experiments. Accord-
ingly, this growth mechanism is now generally accepted.

°§ i .\.*.\k
~ T
}NOI_ .\\ .
o \\
L ’\. 4
\.\. ..*
00 I 5 I I L R
001 005 01 05 1 5 10 50
t (h)

FIG. 4. Time dependence of the square root of the second
moment ¢3’%(t). The solid lines show the exponent of the
power law a = | at the early stage and 1 at the late one. The
fitted slopes in the respective time region are —0.24+0.02 and
—0.46+0.03.
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For the earlier stage we can fit the data to a straight line
with the slope of —1. The fitted slope in this range is
—0.2410.02. Thus the exponent indicates a crossover,
which was observed also in the studies of phase separa-
tion of Fe-Cr and Al-Zn alloys.'®!? Therefore, it is
thought that this kind of crossover is universal in the
growth process. Theoretically, Furukawa predicted
universal exponents for a system with the nonconserved
order parameter.’>?! In his theory, the exponent of the
coalescence process by thermal energy kT is 1 for bulk
diffusion and } for surface diffusion. Since our result in-
dicates §, it is suggestive that coalescence dominated by
surface diffusion takes place during this stage. It should
be noted here that the growth mechanism by coalescence
in the early stage has been suggested for a long time, and
it was pointed out again recently.?? Moreover, quite re-
cently Furukawa observed a similar crossover of the ex-
ponent in the computer simulations for the two-
dimensional ordering kinetics.?*

At the initial stage earlier than about 3 min, the time
dependence of q, is very weak. In this time range it is
considered that the ordered regions are being formed;
that is, the ordering fluctuations are growing in ampli-
tude without changing their sizes and soon the
boundaries of these regions are becoming sharp similar to
the process in spinodal decomposition.

Thus the present result indicates that the ordering pro-
cess changes from the first stage of the formation of or-
dered regions to the stage of the growth by the coales-
cence of these regions (the exponent ;) and then to that
by the migration of domain walls (the exponent 1). Final-
ly, the growth of those domains may terminate on grain
boundaries, dislocations, and so on: The system comes to
an equilibrium state.

The present result is very similar to that of Hashimoto
et al. for the Cu;Au alloy; that is, the initial stage in
their result also shows slow growth. Although they inter-
preted their result by assuming the formation of small or-
dered regions (about 25 A) at the moment of the transi-
tion (i.e., £ =0), our detailed experiment indicates that
fairly small ordered regions (about 10 A) at the initial
stage actually grow with time according to a power law.
The results of Noda et al. for Cu;Au are, however, con-
siderably different from these. They observed a very fast
growth in the early stage. While the reason for such a
difference is not clear at present, it should be noted that
Noda et al. performed extensive diffraction experiments
especially near the transition temperature, and they inter-
preted their results by the nucleation-growth mechanism.

B. Scaling function

To extend the comparison with the scaling theory, we
have calculated the normalized scaling function F, ac-
cording to Eq. (2). Since the square root of the second
moment g,(¢) is inversely proportional to R (2), the nor-
malized scaling function is calculated as follows:

F(q/q*())=(q3"*(1))S(q,1) , @)

where the normalized structure factor S(q,t) is defined as
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§(q,t)=S(q,t)/2qZS(q,t)aq . (5)
q

Here 8¢ is the wave-vector increment in the calculation
of the sum, and again the structure factor S(g,t) is the
deconvoluted profile with background subtracted. The
normalization is necessary to compare the result with the
scaling theory, because the background level of the
profile was subtracted from the measured intensity
whereas the theory does not involve the scattered intensi-
ty from the disordered part. The plots of F(x), where
x =q/q3’%, for different times are shown in Fig. 5. It is
found that the scaling is well satisfied after the initial
transient time; after about 10 min when the exponent ; is
followed well. Moreover, the result indicates that the
scaling function becomes a little sharper at the late stage,
roughly corresponding to the crossover of ¢g,. However,
the change is not drastic, as seen in Fig. 5, compared to
the result observed in phase separation of an Fe-Cr al-
loy."® This suggests that the factors such as cluster
shapes or correlations between clusters in the present
case are not changed drastically over the whole process.
For a system with the nonconserved order parameter,
the scaling function F(x) was calculated by Ohta,
Jasnow, and Kawasaki®* on the basis of the motion of
domain walls by the mechanism of Allen and Cahn. On
the other hand, experimentally, Noda et al.'® proposed
the squared Lorentzian curve for the fit to their experi-
mental results for the Cu;Au alloy. Both of these curves
have a 1—x? dependence at small x and a x —* depen-
dence at large x. Our result also shows that these x
dependences in each x range; that is, the asymptotic be-
havior of the experimental results agree with those two

X=q/9)?

FIG. 5. The scaling function of the normalized structure fac-
tor. The dashed curve represents the result of the theory by
Ohta et al., and the solid one is the squared Lorentzian.



38 SCALING IN THE KINETICS OF THE ORDER-DISORDER ...

curves. However, for a more precise comparison there is
an ambiguity in the scales of the vertical and horizontal
axis. We have introduced adjustable parameters for these
scales. In Fig. 5 the dotted curve is the result of Ohta
et al., and the solid one is the squared Lorentzian. Note
that for each curve F(0) is put equal and
F(x)~1—x%/c +0(x*) at small x, where c is a constant.
The experimental result seems to indicate a small devia-
tion from the theory of Ohta et al.; rather, the squared
Lorentzian represents the result well.

A similar situation is observed also in the comparison
between those two curves and the results of computer
simulations or a renormalization theory in the two-
dimensional system; that is, the squared Lorentzian rath-
er than the result of Ohta et al. shows a very similar
feature to the dynamical scaling function obtained in
those studies.>2>2! While we did not directly compare
the present scaling function with the results of computer
simulations or of the renormalization theory because of
the difference in the dimensionality, the results men-
tioned above suggest that the squared Lorentzian can ex-
plain the scaling function observed in this experiment as
well as that deduced in the simulations or the renormal-
ization theory. However, the squared Lorentzian was
firstly proposed for small-angle scattering by an inhomo-
geneous material.?® Thus it is not clear whether or not
the assumption in that theory (randomly distributed clus-
ters in the material) is applicable to the case of ordered
domains. A more detailed theory is required.
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IV. CONCLUSION

The whole process of the ordering kinetics in Ni;Mn
was investigated from the very initial to the final stage by
time-resolved neutron diffraction. The experimental re-
sults can be interpreted as the continuous ordering in the
unstable state. The subsequent growth of order is ex-
plained by recent theories on the basis of scaling con-
cepts: the self-similar growth. The growth is character-
ized by a power law. Moreover, a crossover in the
growth mechanism is found. Since a similar crossover
was also observed in the kinetics of phase separation, it is
considered that this kind of crossover appears universally
in the growth of order. The experimental form of the
scaling function can be expressed by the squared
Lorentzian. However, more extensive theoretical work
on the form of the scaling function may be necessary.
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