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The magnetic properties of amorphous mixed Ising ferrimagnetic (or ferromagnetic) systems with
coordination numbers z =3 and z =4 consisting of spin —,

' and spin 1 with a transverse field are in-

vestigated within the framework of an effective-field approximation. The phase diagrams and the
total longitudinal and transverse magnetizations are obtained. We find a number of interesting phe-
nomena in these quantities, due to the fluctuation of exchange interaction and the applied transverse
field.

I. INTRODUCTION

In the last decade there has been an increasing number
of work dealing with magnetic quantities of amorphous
and disordered solids. In particular, considerable interest
has been directed to amorphous ferrimagnetic rare-earth
and transition-metal alloys because of their potential for
magneto-optical recording. '

In order to analyze the magnetic properties of amor-
phous magnets, it is necessary to introduce simplified yet
not completely unrealistic models in which some types of
disorder represent important ingredients. Mean-field
theory has been applied recently to amorphous ferrimag-
nets. However, its usefulness has been marred in the past
by the existence of too many adjustable parameters and
the neglect of the fluctuation of exchange interactions (or
the structural fluctuation). In previous work, one of the
present authors (T.K.) has introduced the effective-field
theory with correlations for amorphous ferrimagnets and
discussed that the mean-field theory must be used with
caution for amorphous ferrimagnetic alloys because of
the serious effects of structural fluctuation on the magnet-
ic properties.

On the other hand, some attention has recently been
directed to two-sublattice mixed spin- —, and spin-1 Ising
spin systems. The effect of single-ion anisotropy on the
transition temperature has been investigated by exact '

and approximate methods. ' Moreover, one of the
present authors (T.K.) has found that the tricritical point
at which the phase transition changes from second order
to first order exists in the system with z & 3, where z is
the coordination number. As far as we know, however,
the effects of an applied transverse field on the magnetic
properties of amorphous ferro- and ferrimagnetic mixed
alloys have not been studied both experimentally and
theoretically.

The purpose of this work is to clarify the effects of a
transverse field on phase diagrams (or transition tempera-
tures) and the magnetization curves in the amorphization
of ferrimagnetic (or ferromagnetic) mixed Ising spin sys-
tems. The problem is studied on the basis of the intro-
duction of a differential operator into a generalized but
approximate Callen relation derived by SaBarreto et al. '

for the transverse Ising model. The relation has been
successfully applied to a great number of interesting
transverse Ising systems. "

The outline of this work is as follows. In Sec. II, we
briefly present the formalism and discuss the effective-
field theory with correlations for the amorphization of a
ferrimagnetic (or ferromagnetic) mixed Ising spin system.
In Sec. III we study the phase diagrams. In Sec. IV the
temperature dependences of total longitudinal and trans-
verse magnetizations for the amorphization of ferrimag-
netic mixed Ising systems in an applied transverse field
are investigated. We find a number of interesting phe-
nomena in these quantities discussed in Secs. III and IV,
due to the structural fluctuation and the applied trans-
verse field.

II. FORMULATION

We consider an amorphization of a mixed ferrimagnet-
ic (or ferromagnetic) Ising spin system with a transverse
field. The Hamiltonian of the system is given by

%= —g J; p;'s,'—0 g p", —0 g s",
(ij) i

where p; and sj (a=x,z) are components of spin- —,
' and

spin-1 operators at sites i and j, respectively. 0
represents the transverse field. J, is the exchange in-
teraction between neighboring sites, which is assumed to
be randomly distributed according to the independent
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probability distribution function P (J;J).
The starting point for the statistics of our spin system

is the relation proposed by SaBarreto et al. ,
' in which

the longitudinal and transverse site magnetizations for
the mixed Ising systems' are given by

and

exp(yp';) =cosh +2]M', sinh

o*=()s*)=— ianh E—),1 8( p
2 E. I

o*=&)s*.) =— ianh —E ),1 Q P
2 E 2

(3)

exp( ys/') = (s/'. ) cosh@+ s~'. sinhy+ 1 —(s'. ) (19)

the expectation values & exp(D 8,. }& and & exp(D 8. ) &

reduce to

(e ' ) =
( ii [(s,*)'cosh(. JeD)

J

and

8Jm'= &s'& =
J EJ

m"= &s" & =
J EJ

2 sinh(PE )

1+2cosh(PE )

2 sinh(PE, )

) +2 cosh(EE, ) )

(4)

(5)

and

+s)s(nh(J, . D)+ ) —(s*. ) ])

r

D8. JJI(e ') = ii cosh D +2)s*s(nh ' D
)

.

(20)

(21)

with

8;= g J,/s/',
J

8/= & J/Iu]
I

[Q2+(8 )2]l/2

E, = [Q'+(8, }']' ' .

(6)

(9)

m,'= & e ' &F(x)
) „ (12)

m"=&e '&G(x)
~ „ (13)

where functions f (x), g(x), F(x), and G(x) are defined
by

f(x)=—1 x
2 (Q'+ ')'" tanh —(Q +x )'/ (14)

g(x)=—1 0 (Q2+x2)i/2
( Q2+x 2) 1/2 (15)

Here, & & indicates the canonical thermal average
and P= 1/ka T. In the limit Q=O, o", =m"=0 and Eqs.
(2) and (4) reproduce the exact identities for the pure Is-
ing model. ' Expanding the right-hand side of Eqs.
(2}-(5) as a formal series in the spin variables and
neglecting correlations of E, (or E ), the standard mean-
field approximation results are recovered. ' '"

Introducing the differential operator D =8/Bx, we
may rewrite Eqs. (2},(3), (4), and (5) as

o';=&e '&f(x) ~„ (10)

o";=&e '&g(x)
~ „0,

The main purpose of the present work is to obtain from
the above set of equations the phase diagrams and the be-
havior of the longitudinal as well as the transverse mag-
netizations as functions of the parameters T, 0, and
P (J; ). For a disordered system with random bonds, we
must perform the random configurational average. How-
ever, it is clear that if we try to treat exactly all the spin-
spin correlations which appear through the expansion of
the above equations, and to perform the configurational
averages properly, which is still to be done, the problem
becomes mathematically untractable. Therefore, some
approximations are needed. As discussed in the previous
works, '" let us introduce the decoupling approximation

« p;'l2,
'

leak » „=- « ]M'; » „« ]M,
' » „ « p'k », ,

(22).;»„=«;»,«(s„')'», «s;»„,
with i&j& &k and m&n& &l, where &

denotes the random-bond average. It corresponds essen-
tially to the Zernike approximation for s =—,

' Ising sys-

tems. ' Nevertheless, the approximation procedure is
quite superior to the standard mean-field theory, since
within the present framework the relations like (s )2=1
and 0 are taken exactly into account through the identi-
ties (18) and (19) (and, as a consequence, neglects only
correlations between different spin variables). On the
other hand, the standard mean-field theory neglects all
correlations.

Using the decoupling approximation and taking ac-
count of the fact that the exchange interaction is given by
the independent random variable, the averaged magneti-
zations can be written in compact forms, for the nearest-
neighbor interactions,

o, =&o';&„=[q,c(1)+m,s(l}+1 q, ]'f(x)
)
„—

F(x)= X

( Q2+x 2)1/2

G(x)= 0
(Q'+x')'"

Using the identities

2sin[p(Q +x )' ]
[1+2cosh[p(Q +x )'/ ]]

2sin[P(Q +x )'/ ]
[1+2cosh[p(Q +x )'/ ]I

(16)
o„=&o";&„=[q,c(1)+m,s(1)+1—q, ]'g(x)

~ „

m, =&m &„=[c(—,')+2o, s( —,')]'F(x)
~ „

(23)

(24)



38 MAGNETIC PROPERTIES OF AMORPHOUS MIXED ISING. . . 2651

;"&,=[ (-,')+2, (-,'))'G( }I.=o (26)

where q, = «(s') », and z is the number of nearest
neighbors. The parameters c(y) and s(y) are defined by

c(y ) = ( cosh(y J;.D) )„
=JP( Ji )cosh(3/JJD)dJ;i

and

m, =zA, o, +0(o,),
o, =za, m, +0(m,'),

(32)

(33)

ing the right-hand side of Eqs. (23), (25), and (28) with
respect to m, (or o,}, and retaining only terms linear in

m, (or o, ), we find

and

s(y)=(sinh(yJ; D)), .
q, =q, +0(o,),

(27)
where

(34)

(28)

where the function H(x) is defined by

In order to evaluate the longitudinal as well as trans-
verse magnetizations, it is necessary to calculate the pa-
rameter q, . By the use of the relation proposed by SaBar-
reto et al. ,

' we can also obtain, in the same way as the
evaluation of m, and o (a=x,z),

q, =[c(—,
' )+2o,s( —,

' )]'H(x)
I „0,

A, =2s( —,')[c(—,
' )]' 'F(x)

I „0,
B,=s(1)[q,c(1}+1 q, ]' —'f (x)

I „
qo=[c( —,'))'H(x) I,

(35)

(36)

(37)

The second-order phase-transition line is then determined
by

Q +(Q +2x )cosh[P(Q +x )'i2]

(Q +x )[1+2cosh[p(Q +x )'iz]] or

1=z2A i8i

The averaged total longitudinal and transverse magne-
tizations of the mixed alloy are then given by

M, =—(m, +o, )
N

(30)

and

NM„=—(m„+o„), (31)

III. PHASE DIAGRAM

In this section we investigate the phase diagram (or
transition temperature} for the amorphization of the
mixed Ising ferromagnetic (or ferrimagnetic) spin system
in a transverse field. In a finite transverse field the s' and
p' components of this system are disordered at high tem-
peratures, but below a transition temperature T~ they or-
der so that m, &0 and a,&0 and the directions of the
moments change continuously, although there is an order
with m„&0 and o „&0at all temperatures.

Here we are interested in studying the transition tem-
perature (or the phase diagram) of the system. Expand-

where N is the number of magnetic atoms. In the above
discussions we have not touched on the sign of J, . When

J;J is always positive, the ground state of the mixed alloy
is ferromagnetic. On the other hand, when J," is always
negative, it is given by the ferrimagnetic state. Thus,
within the present framework, we can investigate the
temperature (or transverse field) dependences of total and
sublattice magnetizations for the ferromagnetic (or ferri-
magnetic) mixed Ising spin systems. If P(J; ) takes both
sign and so called the effects of frustration appears, the
ferro- (or ferri-) magnetic state becomes unstable and, as
will be discussed in Sec. III, the transition temperature
reduces to zero at some critical value of the fluctuation of
J,", from which we can determine the ferromagnetic (or
ferrimagnetic} phase stability limit.

l=z+A)B) . (38)

Here it is worth mentioning that the relation (38) can be
used to evaluate both the ferromagnetic phase stability
limit and the ferrimagnetic one, since it does not change
even if the sign of J;J is replaced by —J; .

Now, in order to evaluate the coeScients A, and 8,
and the parameter q, , it is necessary to provide the actual
form of the probability distribution function P (J;i),
describing the structural disorder in a simple way. In a
series of works we have used the probability distribution
function P (J; ) as follows:

P(J,, )= ,'[5(J,, J b-J)+5(J—,, —J+b J)] . —

The random-band averages of (27) are then given by

c(y )=cosh(y5JD)cosh( JD),

s(y) =cosh(y5JD)sinh( JD),
with

(39}

(40)

5=5J/J, (41)

A. Amoryhixation of Honeycomb lattice (z =3)

Putting z =3 into (35), (36), and (37},and substituting
(40) into them, we obtain the expressions of A „B,, and

q, (see the Appendix). By solving the relation (38) nu-

where 5 is a dimensionless parameter which measures the
amount of fluctuation of exchange interaction. The pa-
rameter 5 is often called as the structural fluctuation in
amorphous magnets. The result (40) can be also obtained
by using the so called "lattice model" of amorphous mag-
nets. ' Then, the coeScients A, and 8& and the parame-
ter q, can easily be calculated by applying a mathemati-
cal relation e r p(x ) =p(x +y ), when the coordination
number z is given. In the following, two lattices, namely
with z =3 and z =4, are investigated.
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merically, we can get the phase diagrams of the system as
functions of parameters Tc, Q, and 5.

In Fig. 1, the change of Curie temperature Tc with 0
is plotted for selected values of 5. With the increase of 5
the phase region in which the ferromagnetic (or ferrimag-
netic) state is realizable gradually becomes small. In par-
ticular, for the curve with 5=0.0 (or the regular honey-

bcomb lattice) the Tc value at Q =0 is given y
2k& Tc/J =1.783, which is to be compared with the ex-
act value 2k&TC/J =1.320, ' and the Bethe-Peierls re-
sult 2k& Tc/J = 1.631, as well as the mean-field approxi-
mation result 2k& Tc/J =2.449. ' As is seen from Fig. 1,

hon the other hand, when 0 increases from zero, in eac
curve Tz falls from its value in the mixed Ising system
and reaches zero at a critical value Q, . The critical value
for the curve with 5=0.0 is given by 0,=1.42J, which is
compared with 0,=2.12J for the standard mean-field ap-
proximation. '

Figure 2 shows the behavior of Tc as a function of 5,
when the value of 0 is changed. In particular, the curve
labeled a with Q=0 is equivalent to that (curve a in Fig.
3) of Ref. 17. For each curve, Tc monotonically de-

11-creases and disappears at 5=1 or at a certain value sma-
er than 5= 1; when the frustration effect (5 & 1) is set into
the amorphous mixed Ising ferromagnetic (or ferrimag-
netic) system with z =3, the ferromagnetic (or ferrimag-
netic) state is easily broken and the system does not ex-
hibit any reentrant phenomenon.

In Fig. 3, the critical value 0, obtained from Fig. 1 is
plotted as a function of 5. It monotonically decreases
with the value of 5 and disappears at 5= 1.

B. Amorphization of square lattice (z =4)

For the mixed alloy with z=4, we can obtain the ex-
pressions of coefficients A

&
and 8& and the parameter q, ,

as in Sec. III A for z =3. Using these expressions, the be-
haviors of Tc as functions of 0 and 5 can be studied by
solving Eq. (38) numerically.

Figure 4 shows the behavior of the critical temperature
as a function of 5 for several values of Q. In contrast
with the case of z = 3 (or Fig. 2), the curve labeled a with

1.0

0.5

0
0 0.4 0.6 0.8 1.0

6

FIG. 2. Plots of Tc vs 5 for an amorphous mixed Ising sys-
'

h z =3, when 0 is changed as follows: (a) 0=0; (b)
0=0.5J; (c) 0=J; (d) 0=1.2J; (e) 0=1.3J; (f) 0=1.4J.

1.2 .

1.0 .

0=0 exhibits a bulge for the region of 5g1, which im-
lies the occurrence of reentrant phenomenon due to the

frustration effect of exchange interaction. In particular,
the Tc value at 5=0 for curve a corresponds to that o
the regular mixed square lattice, which is given by
2k T /J =2.598. It is to be compared with other re-B C
suits of the Bethe-Peierls approximation
(2kz Tc /J =2.478), the real-space renormalization-
group analysis (2kz Tc/J =2.372, 2kz Tc/ J =2.748), '

and the standard mean-field approximation
(2k T /J =3.266).' On the other hand, other results inB C
Fig. 4 with Q=J (curve b), Q=1.5J (curve c), and

1.0 .

0.8

0. 6-

0.5
0.4 .

0.2

0.2 0.4 0.6 0.8 1.2 1.4
QyJ

FIG. 1. Transverse field dependencies of Curie temperature
for an amorphous mixed Ising spin system with z =3, when 5 is
changed.

02 o, a 1.00.80.40
6

FIG. 3. The critical value 0, at which Tc reduces to zero in

Fig. 2 is plotted as a function of 5 for the mixed system with
Z=3.
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case of Fig. 3, the critical value 0, does not monotonical-

ly go to zero. Moreover, we can not determine it
definitely, when the value of 5 becomes larger than
5=1.0, since, as shown in Fig. 6, the two values of 0
may appear like the curve with 5= 1.l.

IV. AMORPHOUS MIXED FKRRIMAGNKTS

In Sec. III we have discussed the phase diagrams for
amorphous mixed Ising spin systems with z =3 and z =4
in a transverse field. In this section the temperature (or
transverse field) dependencies of total magnetizations (M,
and M„) in the mixed ferrimagnetic alloys with the
structural disorder are investigated within the framework
given in Sec. II, since from the experimental point of view
the study may be very important.

A. Magnetization curves for z =3

and

m, = —3A io, —Az(o, )

e, = —3B,m, —B,(m, )',
q, =q, +12q,'(o, )

(42}

(43)

(44)

m„=c i + 12c2 (cr, )

cr„=D4(q, ) +3Di(q, ) (1—q, )

+3D2q, (1—q, } +D&(l —q, }

+3Eiq, (m, ) +3Ei(l —q, )(m, )

(45)

(46)

As discussed in Sec. III A, let us at 6rst study the tem-
perature (or transverse field) dependencies of magnetiza-
tions for the amorphous mixed ferrimagnetic alloy with
z =3.

Using Eqs. (23)-(26) and (28) and putting J; = —J~J
(J; & 0) into the factors c(y) and s(y), we obtain a set of
equations for the system as follows:

culated by using (40) and a mathematical relation
e~ P(x) =P(x +y ), as done in Sec. III A. In this way, by
solving the set of coupled equations numerically, we can
obtain the temperature (or transverse field) dependencies
of total magnetizations (M, and M„) for the mixed alloy.

In Fig. 8 we show the temperature dependencies of
sublattice magnetizations (m„o„m„, and u„) and the
parameter q, for the regular (5=0.0) honeycomb lattice,
when the value of 0 is taken as Q=O and Q=J. For
0=0, the transverse sublattice magnetizations are always
given by m„=O and o„=O and the values of rn, and o,
at T =0 K are m, = —1.0 and o, =0.5. At T =Tc, m,
reduces to m, =0 and q, expresses the discontinuity for
its derivative which is similar to that known for the spin-
1 Ising model. '

For 0=J, on the other hand, m, and cr, fall below the
corresponding curves for Q=O, and m„and o.„have
6nite values in the whole temperature range; the role of
the transverse field is essentially to inhibit the ordering of
the s' and p' components. In the ordered phase m„and
o.„weakly depend on temperature and at T =T& their
derivatives show discontinuities. The results are very
similar to those found for the spin- —,

' transverse Ising
model. "

One of the temperature dependencies of M, and M„ in
a transverse field is shown in Fig. 9. The results are ob-
tained by selecting three values of 5 under 0=J. As is
understood from Fig. 1, M, for the curve c with 5 =0.9 is
always given by M, =O. The figure clearly shows that
with the increase of 5, the value of M„ increases from
that of 5=0 in the ordered phase (or M, ~O}, although
the value of M, decreases. Moreover, the compensation
point does not appear in the present system, since a uni-
form transverse field is applied. '

In Fig. 10, the transverse 5eld dependencies of M, and
M„at a fixed temperature (T =0.1J) are depicted, chang-
ing the value of 5. The M, curve labeled a with 5=0
takes M, = —0.25N at Q=O, decreases monotonically

where the coeScients A& and 8& and the parameter q,
are given by the same functions as those in Sec. III A, ex-
cept that the parameter q, in the 8& of Sec. III is re-
placed by q, (see the Appendix). The other coefficients

A2, Bi, C; (i =1,2), D (m =1-4), and E„(n =1,2) are
de6ned by

1.0

1m' (Q=

A 2
——8[s ( —,

' )] F(x)
I „

B,=[s(i)]'f(x) I =o

C, =[c(—,')] G(x)
I „

C2 ——c( —,')[s( —,')] G(x}
I „

D =[c(l)] 'g(x)
I „

E„=[s(1)][c(1)]" 'g(x)
I „

(47}

0.5

&z (0=

0.2 0.4 0.8
I

1.0 1.2

The parameter q,
' is given by

q2 =[s(—,')] c( —,')H(x)
I „o. (48)

The coefficients (47) and the parameter q,
' can also be cal-

FIG. 8. Temperature dependencies of sublattice magnetiza-
tions (m„cr„m„, and o.„) and the parameter q, for the pure
(5=0.0) ferrimagnetic honeycomb lattice (z =3), when 0 is tak-
en as Q=Oand A=J.
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06.
2 =3.0 2= 30

0.6

0.4-

0.3-
0 =1.0J

a 8=00
b ' 8=05c; 8=09 0.4

0.2-

0.1

0.2

0.2 0.4 0.8
I

1,0
ks~TJ

FIG. 9. Temperature dependencies of M, and M„ for the
mixed ferrimagnetic system with z =3, when Q is fixed as 0=J.
The value of 5 is then changed as follows: (a) 5=0.0; (b)
5=0.5; (c) 5=0.9.

0.4 0.8 1.2 2.0

and disappears at the values of 0 near 0, =1.42J. On
the other hand, the M„curve for 5=0 increases linearly
with 0 and changes the inclination at the value of 0
which M, reduces to zero. The behavior of M„ is similar
to the dependence of magnetization of a spin- —, isotropic
antiferromagnet on the value of the applied transverse
field at zero temperature.

As is seen from the Fig. 10, the introduction of the
structural disorder into the mixed honeycomb lattice
afFects severely the inclination of M„ in the ordered
phase. In particular, the M„curve labeled c with 5=0.9
exhibits a downward curvature in the disordered phase
with M, =0. On the other hand, the M, curve for a finite
value of 5 decreases more rapidly than that for 5=0; it
means that when the M, curvh is plotted in the reduced
units (M, (T)/M, (0), 0/0, ), it falls below the corre-
sponding curve for 5=0. The phenomenon found for the
M, curve in the reduced plots is similar to that generally
found in amorphous ferromagnets, when the magnetiza-
tion M, is plotted in the reduced units (M, (T)/M, (0),
T!Tc).

B. Magnetization curves for z =4

In Sec. III 8 we have examined the phase diagrams of
the amorphous mixed Ising ferrimagnetic (or ferromag-
netic) square lattice (z =4) and found that in contrast
with the system with z=3, a number of interesting re-
sults appear in the phase diagrams due to the frustration
effects of exchange interactions. In this part, therefore,
we investigate the temperature (or transverse field) depen-
dencies of M, and M„ for the ferrirnagnetic system with
z =4, especially focusing the situation with the effects
(5& 1). They can be evaluated by solving the set of equa-
tions with z =4 [or (23)—(26) and (28) in Sec. II] numeri-
cally, as in Sec. IV A.

FIG. 10. Transverse field dependencies of M, and M„at a
fixed temperature (T =0.1J) for the mixed ferrimagnetic system
with z =3, when 5 is changed as follows: (a) 5=0.0; (b) 5=0.5;
(~) 5=0.9.

In Fig. 11, the behaviors of M, and M„as a function of
T are shown for several values of 5, when the value of 0
is fixed at 0=0.4J. As is predicted from Fig. 6, the reen-
trant phenomenon is observed in the magnetization curve
of M„namely curve e with 5=1.1 in Fig. 11(b). In par-
ticular, the M, curve labeled d with 5=1.05 expresses a
characteristic behavior; with the increase of T the magne-
tization first increases and then decreases to zero. The in-
itial increase may come from the release of the frustrated
spins due to the thermal agitation, like the reentrant
phenomenon of curve e in Fig. 11(b}. On the other hand,
the value of M„ increases in the ordered phase with the
increase of 5.

Figure 12 shows the behaviors of M, and M„as a func-
tion of T for the system with a fixed value of 5 (5=0.5},
when the value of 0 is changed. As is understood from
the phase diagram of Fig. 4, any characteristic behaviors,
like those found in Fig. 11, do not appear for the system
with 5=0.5. With the increase of 0, the values of M,
simply decrease from those for 0=0 in the ordered phase
and instead the values of M„ increase.

As shown in Figs. 5 and 6, when the value of 5 be-
comes larger than unity, some characteristic behaviors
may appear in the phase diagrams because of the frustra-
tion effects of exchange interactions. In Fig. 13, there-
fore, the temperature dependences of M, and M„are ex-
amined in detail for the system with 5= 1.1, changing the
value of 0. For 0=0, the system shows the reentrant
phenomenon for the M, curve, in accordance with the
phase diagrams of Sec. III B. As Fig. 5 clearly indicates,
the reentrant behavior for the M, curve is observed in the
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13 b
region 0(Q/J & 0.46, like the curve with Q =0.4 '

in Fig.
t e behavior of, but in the region 0.46(Q/J &0.695 he, curve changes like the curves labeled as 6=0.5

and 6=0.6 in Fig. 13. In the ver narro
J &0.74, the reentrant behavior is once

again observed in the M curve lik hi e t e curve labeled
r &0.74J, M, is always given bin ig. 13. For Q

, =0, so that the M curv
f

„curve monotonically decreases
rom the value at T=O K th hwi t e increase of T, as

shown in the curve labeled Q =0.8J of Fi . 13.
In Fig. 14 the tr'g. , e transverse field dependencies of M, and

o ig. 13.

ing the value of
M„at a fixed temperature (T =0. IJ}are depicted, chang-
ing e va ue of 5. For the system with 5=0 and 5=0.5
in Fig. 14, the behaviors of M and M as
are ver similare very simi ar to those (or the curves labeled b and c in

an =1.0, some clear differences arise in M and M
curves; the M curvee exhibits the reentrant phenomenon,
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0.6-

0 4-

0.2

0.80.4 1.2

grams have been calculated in Sec. III. The temperature
(or transverse field) dependencies of total longitudinal
and transverse magnetizations for the amorphous mixed
ferrimagnetic a11oys have been examined in Sec. IV. As
discussed in Secs. III and IV, a number of interesting
phenomena have been found in the physical quantities,
which are due to the structural fluctuation and the trans-
verse field.

The present effective-field approach is based on a gen-

0 1.6 ~ 2.0
Xj

FIG. 14. Transverse field dependencies of M, and M„at a
fixed temperature (T=0.1J) for the mixed ferrimagnetic system
with z=4, when 5 is changed as follows: (a) 5=0.0; (b)
5=0.5J; (c) 5=1.0; (d) 5=1.05; (e) 5=1.1.

eralization of the Callen relation for the Ising model in
the presence of a transverse field. The obtained results
are quite remarkable considering that the approximation
used within this simple effective-field approach neglects
spin-spin correlations. In the previous works, on the
other hand, we have improved the decoupling approxi-
mation (22) (or the effective-field theory with correlations)
by introducing the concept of correlated effective field
and a new decoupling approximation into multispin
correlation functions. The introduction of the correlated
effective field into the multispin correlation function is
closely related to the reaction Geld of Onsager in dielec-
trics, which theory is equivalent to the Bethe-Peierls ap-
proximation. Furthermore, the new decoupling approxi-
mation improves the Bethe-Peierls approximation. It has
also predicted the possibility of the reentrant
phenomenon, when it is applied to the spin- —, Ising model
with random bonds. The results obtained in the previous
works have indicated that the decoupling (22) gives
reasonable results for various physical quantities, al-
though the approximation is the simplest one that can be
done. Thus, as previous works on other models have in-
dicated, we find that the results obtained herein can be
given qualitative, and to a certain extent, quantitative lia-
bility.

In this work, we have studied a simplified mixed alloy
system, in comparison with real existed amorphous fer-
romagnetic and ferrimagnetic alloys. However, some
phenomena found in this work may be observed in real
systems, when a transverse field is applied. We wish that
this work could stimulate further experimental and
theoretical works on amorphous magnetism.
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APPENDIX

The expressions of the parameter q, and the coefficients A, and 8& in Sec. III A are given by

q, =cosh 5D cosh D—H(x) ~, —

=(—') H( 'J+ ,'J5)+3H(—,'+ ',—J5)+3H —————J5 +H( ', J ,'J5)———

3 J J J J J 3 J+3 H —J+—5 +3H —+—5 +3H ———5 +H —J——5
2 2 2 2 2 2 2 2

(Al)

A =2 cosh 5D sinh Dco—sh DF—(x)~—J . J 2 J
1 2 2 2 x=0

=(—')~ F( 'J+ 'J)+F —+—J5 —+F————J5 +F( 'J 'J5)———J 3 J 3
2 2 2 2 2 2 2 2 2

T

3 J J J J J 3 J+3 F —J+—5 +F —+—5 +F ———5 +F —J——6
2 2 2 2 2 2 2 2

(A2)
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and

8, =(q, ) b, +2q, (1 q—, )bz+(1 q—, ) bz (A3)

with

b, =cosh (J5D)sinh(JD)cosh (JD)f(x)
~ „

=( ,')'t f-(3J+3J5)+f(J+3J5)+f(J 3J—5)+f(3J —3J5)

+3[f(3J+J5)+f(J+J5)+ f(J J5)—+f(3J —J5)]},
b2 ——cosh (J5D)sinh(JD)cosh(JD)f(x)

~ „o——( —,') [f(2J+2J5)+f(2J —2J5)+2f (2J)],

b3 ——cosh(J5D)sinh(JD)f(x)
~ „o———,'[f(J+J5)+f(J —J5)] .

(A4)

(A5)

(A6)
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