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In earlier studies we recognized that the highly correlated behavior of the f electrons within
moderately delocalized light actinide (uranium, neptunium, plutonium) systems is linked to the
non-f-band behavior via the hybridization process. By transforming the hybridization into a band-
electron- f-electron resonant scattering from the correlated multiplet states of the actinide ions, and
considering only the scattering processes that involve f electrons in the m; =0, m;= i% states (for
quantization along the interionic axis) which dominate the two-ion interactions, our earlier work ex-
plained the main features of the anisotropic magnetic equilibrium behavior for the PuSb system but
failed to reproduce the correct polarization (longitudinal) for the long-period antiferromagnetic
structure observed in the temperature range below the Néel temperature. In this paper we include
the next-to-dominant scattering channels (single-site scattering processes involving f electrons with
m=*xl,m="%F %). This refinement changes the angular dependence of the anisotropic interaction,
and successfully yields the ferromagnetic to longitudinally polarized long-period antiferromagnetic
phase transition as is experimentally observed. Excellent agreement with experiment for the corre-
lation length anisotropy is also obtained. For the magnetic excitation behavior in the ferromagnetic
phase pertinent to PuSb at T=0, the theory gives a spectrum with two polarized branches at the
zone boundary for q along the [100] (transverse-to-moment) direction. In fact, the predicted excita-
tion behavior is rather remarkable. The appearance of two polarized branches rather than a single
branch at the zone boundary occurs only over an extremely narrow range of crystal-field splitting.
We choose the crystal-field splitting to give two branches, and this unadjustably yields excitation en-
ergies that are very close to the experimental values. An only slightly different crystal-field value
would give neither two branches nor correct excitation energies.

I. INTRODUCTION

Recently, basic understanding of the highly correlated
magnetic behavior of the cerium monopnictide systems
has been achieved.!~* The theory is based on an aniso-
tropic two-ion interaction that arises from the hybridiza-
tion of band electrons with moderately delocalized f elec-
trons. This hybridization was first treated by Cogblin
and Schrieffer’ to explain the behavior of dilute cerium
alloys by transforming it into a band-f resonant scatter-
ing from the multiplet states of the Ce®* f!ions, and was
subsequently extended by Cooper and Siemann' to treat
the hybridization-mediated anisotropic two-ion coupling.
For Ce3* f ! Jattices, it has been shown that the predom-
inant two-ion coupling comes from the m;=0 (with
respect to the interionic axis) part of each f! localized
wave function.>*¢ Extending this theory to the general
case of f ions with more than one f electron in each ion,
Cooper et al.®~!° found that the angular dependence of
the hybridization-mediated anisotropic two-ion interac-
tion depends on the f occupation number and on the na-
ture of the intraionic coupling. They used PuSb (which
has NaCl structure) as a model system to test the theory
and reported the results of calculations for a Pu* £ fcc
lattice system in the cases of j-j coupling, L-S coupling,
and intermediate coupling (IC).” Success was achieved in
explaining the main features of the anisotropic magnetic
equilibrium behavior, namely, the behavior of the magne-
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tization with temperature and the phase transition from a
ferromagnetic phase to a long-period antiferromagnetic
phase; but the theory® ! failed to reproduce the correct
polarization (longitudinal with respect to the modulation
direction) for the long-period antiferromagnetic structure
observed'"!? in the temperature range below the Néel
temperature. The theory also gave a susceptibility singu-
larity'® in the near-critical region corresponding to the
incorrect polarization. For the excitation behavior, the
theory failed to explain why for PuSb there are'* two
modes with the wave vector perpendicular to the magnet-
ic moment (these modes are at least partially polarized,
parallel, and perpendicular to the wave vector, respec-
tively).

In the original calculations!?® for the Ce** ion, which
has only one f electron, it was shown® that to the lowest
order in 1/kR the dominant contribution to the two-ion
interaction comes from processes in which the band elec-
tron involved in the associated single-site scattering event
had magnetic quantum number m =+ (using the in-
terionic axis as the axis of quantization). [Here k is the
Fermi wave vector for a free-electron-like gas, R is the
separation between ions, and 1/kgR is the characteristic
expansion parameter in Ruderman-Kittel-Kasuya-Yosida
(RKKY)-type theories, i.e., theories where interactions
between widely separated ions are mediated by scattering
with an intervening electron gas.] Furthermore, it was
recognized®® that the m; =0 component of the scattered
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electron provided the physical basis for this dominance,
because scattering events in which the scattered electron
has m; =0 require that the electron within the localized
ion has m;=0. This causes the ionic charge to be
“sucked out” along the interionic axis, and gives rise to a
situation where the two ions interact via cooperative hy-
bridization with the intervening band sea. This then pro-
vided a physical rationale for adopting®® an m;=0
scattering event ‘“selection rule” for scattering events
providing a coupling between f”" (light actinide) ions.
Namely, if we express free-ion states by determinantal
products (Slater determinants) of single-electron (I =3)
wave functions labeled by quantum number m; and m,, it
was argued®® that the dominant contribution to the two-
ion interaction arose from scattering processes involving
[ electrons with m;=0, as these were the states that
“pointed” their charge densities along the interionic axis
(which was taken as the axis of quantization). However,
m =11 states not only have contributions from m;=0,
mg, =11 states, but also have contributions from states
which have m;==+1, m; = F J. The latter are states that
point their charge densities off the interionic axis. Actu-
ally, both the m;=0 and m;==1 contributions to the
m ==L states were included for the Ce’* theory.>*
However, in the initial work extending the theory to sys-
tems with more than one f electron per ion, Cooper
et al.*® included only the m;=0 component. In consid-
ering the source of the discrepancies between theory and
experiment for PuSb, we recognized!® that the assump-
tion of including only m;=0 contributions is not com-
plete; and the m ==+ states with m;=*1, partially in-
cluded for the Ce** theory, may play a crucial “fine tun-
ing” role in the anisotropy of the two-ion interaction be-
tween f" (light actinide) ions.

In this paper we will describe calculations including
the next-to-dominant single-site scattering processes, in-
volving f electrons in m; =31, m; = F } states (i.e., those
m; =11 states which contribute to m ==t} in the j-j
coupling limit). PuSb is used as a model system to test
the theory. In Sec. II we briefly review the model of
hybridization-mediated interionic coupling in the f” sys-
tem and the theory for the magnetic excitations. In Sec.
II1 we illustrate the calculation of the scattering
coefficients in the case of both L-S coupling and inter-
mediate coupling (IC) on including the additional
m;==1 scattering processes. Results and discussion are
presented in Sec. IV.

II. MODEL AND FORMALISM

The Anderson model'® is used®!” in describing the hy-
bridization between the quasilocalized f and the band
electrons. The mixing Hamiltonian can be written as

m,x E(kakmc +VkC bkm) . (1)

k,m
Here, V, 1s the strength of the mixing potential, and b'
(b) and ¢ (¢) denote creation (destruction) operators for
the band and ionic states, respectively. The mixing po-
tential is assumed to be spherical, and resonant mixing
occurs between the localized f electrons and the f
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partial-wave components of the bands. Upon applying
the Schrieffer-Wolff'®!® transformation, the hybridization
(mixing) interaction transforms to an effective electron
scattering Hamiltonian, which was first developed by
Cogblin and Schrieffer® for cerium impurity ions. When
this scattering Hamiltonian is treated to second order as
a perturbation, it yields the hybridization-mediated aniso-
tropic two-ion interaction, which is generically related to
the Ruderman-Kittel-Kasuya-Yosida (Ref. 20) interac-
tion, but acts via the orbital?"?? rather than the spin mo-
ment. The two-ion interaction theory for Ce** lattices
was developed by Cooper et al.">® for cerium com-
pounds.

To treat the single-site band-f hybridization in the f"
case, Thayamballi and Cooper’ extended the single-
electron exchange scattering methodology developed by
Coqblin and Schrieffer’ for the f' case. They wrote the
single-site scattering Hamiltonian as

== 2 8k 2 2 A dM’dekmbkm ’ 2)
k, k' MM m,m’

where AMM are the scattering coefficients,” M (m) and
M’ (m') are the initial- and final-state magnetlc quantum
numbers of the ion (band electron), d ' (d) is the creation
(destruction) operator for the appropriate ionic state, and
& is the coupling coefficient which depends on the mix-
ing strength | ¥, |? and the energies of the initial, final,
and intermediate states. Following Coqgblin and
Schrieffer,” we assume that g, is a constant for |k|,
| k' | ~kg, and is zero otherwise. If we define new
scattering coefficients which retain only the exchange and
relative direct scattering contributions,

Spd
JQMMleMM,'_ MM'Omm’
(2T +1) % Amm ®

then treating the single-site scattering Hamiltonian to
second order one gives the interaction between ions at
sites i and j as

Hy=—E; 3 3 IuwLituLiy » @
M,M' NN'
where
= 3 A At (5)
and
Lg=|a)(B]| . (6)

The indices M,M’', N,N' are summed over all possible M
values for the ground-state multiplet of the ion, and
m,m’' are summed over all possible m values. E;; is a
range function for the two-ion anisotropic exchange,
which for free-electron bands is identical with the RKKY
range function.® Here we treat E;; as phenomenological
exchange parameters with E, giving the strength of the
interaction with the nth nearest neighbors.

Note that the ionic states are labeled by their magnetic
quantum numbers with quantization along the interionic
axis. In order to treat magnetic ordering in a lattice of
ions, all such states must be transformed to a common



quantization axis through the appropriate transforma-
tion."?3 Then the two-ion interaction Hamiltonian of the
system can be written as®

H=-3 JISRHLOLY) o)

R‘j uveo

where u, v, €, and o refer to the M states, and

o _ o —i(g—v+e—o)d; -
JE(R,)=E;B(0)e ~HvHe=oldy; (8)
with
B(0)=3 3 Jimd e (0)d,p(0)d y(0)d, 5 (6) .
MM’ NN’
9)

Here 0 and ¢ are the polar and azimuthal angles of the
interionic axis R;; with respect to the axis of quantization
chosen along a cube-edge direction in the crystal, and
d ,5(0) is the rotational transformational matrix as is con-
ventionally defined [see Ref. 23, Eq. (5.35)]. In order to
treat the equilibrium magnetic ordering behavior, this
two-ion interaction [Eq. (7)] is treated in the mean-field

approximation. The mean-field (MF) Hamiltonian is
given by
7{MF= ZZG;L,(,:,) ’ (10)

where €, denotes the energy of the MF state | n ) on site
i.

To study the magnetic excitations of the system we
project the Fourier transform of the Hamiltonian defined
in Eq. (7) into the MF manifold. At T=0 we need to
consider the set of operators that take the system from,
or to, the MF ground state (L, or L,;, n5=1). Using the
random-phase approximation (RPA) and the commuta-
tion relation?

(}[MF,L,?,,')=(8"'—£" )L:,lnr , (11)
we get the equation of motion

[H —Ffup L3 1=2LS,) — (L2, N IS, LY. (12)
s, t

1
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The thermal average (LJ,) is unity if n is the ground
state (n =1) and zero otherwise. On diagonalizing the
resulting 10X 10 dynamical matrix [upward and down-
ward transitions between the ground state and each of
the five excited states for a J=3 system, such as
Pu’t (f°)], we get five modes at energy gain and five at
energy loss.

III. CALCULATION OF SCATTERING COEFFICIENTS

In this section we review the calculation of the scatter-
ing coefficients 4 MM’ for the f" systems. In the f' case
it has been shown"® that the predominant two-ion cou-
pling, which arises from the hybridization between the
ion and the band electrons, which is treated by considgr-
ing resonant scattering of a band electron by the ion,
comes from the m =+1 (with respect to interionic axis)
part of each f localized wave function. To extend this
theory to f" systems, our basic assumption®”? is that the
single-site scattering event consists of a one electron (out
of the many-electron ionic state) exchange only; all the
quantum numbers of all the other electrons remain the
same; and the scattering being a single-electron process
does not affect the other electrons. In addition, in the
previous work> !0 for Pu* f° systems we have proceeded
on the basis that only those events in which the scattering
electron has m; =0 (m ==+1) contribute to maximum in-
terionic coupling; and therefore we have included only
these dominant scattering events in finding the two-ion
interaction. In order to have the background necessary
to follow what is involved in including the m; =11 next-
to-dominant scattering channels, we now summarize the
way in which the scattering coefficients have been calcu-
lated. The scattering coefficient 4MM' corresponds to
first adding (removing) a band (localized) electron with
magnetic quantum number m to (from) the state |J,M")
to produce an f"*! (f"~!) intermediate state, and then
removing (adding) a localized (band) electron with mag-
netic quantum number m’ to give the final state | J,M’ ),
and is given by,%’

AMM (V| D)~ fUM ,m)B(m") | H i | fPE m,m ) (mym?) | F i | f(M,m")B(m)) . (13)

Here B, (m) is a band state with wave vector k, and has
an f spherical component about the scattering site with
magnetic quantum number m. f"(M,m) denotes an ion
of configuration f” with magnetic quantum number M
and with one of the electrons within the ion with magnet-
ic quantum number m. f"*'(m,m’) are intermediate
states which contain electrons with magnetic quantum
numbers m and m’. To find the matrix elements of 7,
entering Eq. (13), the " and f*! wave functions have to
be written in terms of linear combinations of Slater deter-
minants (SD) of one-electron wave functions. To simplify
the calculations, some assumptions, consistent with the
physics involved, were made. First, it was assumed that
the initial and final states of the f" ion are in its Hund’s

rule favored-J manifold, in which the ionic states (labeled
by |J,M)) are assumed degenerate in the absence of
P mix- Second, due to the large Coulomb correlation en-
ergy that is involved in adding or removing an f electron
in the initial (or the final) state, we neglected the splitting
within the intermediate-state configuration. This means
that the formation of the intermediate state will only be
governed by the considerations of the exclusion principle,
and one can sum over all possible multiplets of the f"*!
or the f"~! ion in the intermediate state. In other
words, the intermediate states need not be explicitly writ-
ten in terms of linear combinations of Slater determinants
and can be treated as virtual states.

For a j-j coupled®’ ionic state, the f" wave functions



2642

are written in terms of n Xn Slater determinants of the
one-electron states in the (j,m) representation. The
AMM’ are then found by using Eq. (13), together with the
restrictions imposed by the exclusion principle. An ex-
|

L S
LMY= (2] + 1)/ (— 1)L =S+M—2
ML

The scattering amplitude 4™’ is then given by

S J

AMM —(27 +1) 3 (—1MHEM IS M, M—M, M

ML‘ML

where a(M; ,Mg;M; ,M¢;m,m’) is the amplitude of a
scattering event in which the ionic state changes from
| M, ,Mg) to | M;,M¢) (the quantum numbers L and S
having been suppressed for brevity) with the exchange of
an electron with magnetic quantum number m for one
with m’. In order to compute the amplitudes
a(M; ,Mg;M; ,M{;m,m’) the | M;,M) states need to
be further decomposed into Slater determinants (SD) of
one-electron wave functions labeled by m; and m;. Then
the scattering amplitude a(M; ,M¢;M; ,M¢;m,m’') is ob-
tained by multiplying the coefficient of the SD containing
m;=0, mi=1, or m;=—1 (m;+m;=m) in the wave
function |M;,Mg) with that of the SD containing
m/=0, m/=1, or m/=—1 (m/+m/=m') in
| M{,M). Note that all the quantum numbers of all the
other electrons in the two SD’s involved remain un-
changed and are not affected by the single-electron
scattering process. It is this step in the calculation that is
charged to include other scattering channels such as
those involving m;=+1. This then changes the scatter-
ing coefficients and hence the angular dependence of the
two-ion interaction.

For the case of intermediate coupling (IC) the calcula-
tions are similar in principle to those in the L-S coupling
case except that the ground state is different, i.e., the
ground state is a linear combination of L-S terms. For
the Pu* f3 system the ground state for L-S coupling is
the predominant component of the IC ground state, and
the dominant components are>!%? one ®H (~67%) and
four *G (~25%) terms. The ground-state wave function
| JM ) with a given value of M may be approximately
written as’

4
'JM)=CH|6H5/2M)+CG Zya|a4G5/2M), (16)
a=1
where a = WU distinguishes the four *G states present in

the IC ground state; W is used to label the irreducible
|

I
a(M; ,Mg;M; ,Mg;m;,m))= 3 6(—1)"+™

m;,m’

J
M, M-M, M

L S
M, M'-M; M’
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ample of this procedure is given in Refs. 6 and 7.

In the L-S coupled case, the n electron |J,M ) wave
function is written in terms of | L,S,M,,Mg ) wave func-
tions coupled by appropriate Wigner coefficients*

| LSM, M) . (14)

a(M; Mg;M; Mg, m,m') , (15)

f

representations of G,, while U labels the irreducible rep-
resentation of R,. Coefficients y, can be calculated?*2¢
by diagonalizing the matrices for the Casimir operators
of the G, and R groups along with L2, which is also the
Casimir operator for the group R;, and S?% and
coefficients Cy and C; are obtained by diagonalizing the
sum of the Coulomb and spin-orbit matrices in the basis
of the °H and four *G states.

Cooper et al.®”%1° have reported the results of calcu-
lations for the Pu®* f3 system in the cases of j-j cou-
pling, L-S coupling, and IC. They found that in the limit
of j-j coupling, the longitudinally polarized antiferro-
magnetic phase, which is observed experimentally!? in
the temperature range below the Néel temperature, is
preferred over the transversely polarized one, while in
cases of both L-S coupling and IC the antiferromagnetic
phase is transverse polarized. Thus to understand what is
necessary to obtain the experimentally observed!? longi-
tudinal polarization, it is worthwhile to investigate the
detailed scattering processes in the j-j coupling limit even
though the free-ion ground state of Pu®* in PuSb is close
to the L-S coupling *H ground state. As discussed in
Sec. I, in the j-j coupling limit the dominant contribution
to the two-ion interaction arises from those single-site
scattering processes involving f electrons in the m =+1
states. Actually, these events include three single-site
scattering channels,

;)

To treat channels (2) and (3) in the L-S and IC cases,
it is necessary to take into account appropriate
Clebsch—Gordan coefficients when we calculate the
scattering amplitude. '’

5 S
1! s 3
ml m _m[ m mll ml—ml’ m’

xXa(M;  ,M¢;M; ,M¢;m;,m,,m/,m;), (18)
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where [=3,s=1,mi=m —m;,and m{=m'—m.

In orders of® 1/kzR the leading contribution to the
two-ion interaction comes from channel (1) which was
the only channel considered in the initial studies®'® for
the L-S and IC cases. The next two higher-order contri-
butions,® arising from channels (2) and (3), which were
not included in earlier studies,”'° therefore should play a
key role in yielding the longitudinal polarization of the
antiferromagnetic phase of the fcc Pu®* system as occurs
in PuSb. On including these two scattering channels in
our calculations, we have obtained some striking results
and will describe them in the next section.

IV. RESULTS AND DISCUSSION

PuSb shows magnetic structures with strong [001] an-
isotropy.® 112 At low temperature it is a [001] ferromag-
net and undergoes a first-order phase transition to a lon-
gitudinal polarized (modulation wave vector parallel to
the moment direction) long-period antiferromagnet at'?
about 67 K; it becomes paramagnetic at a Néel tempera-
ture Ty =85 K. At 10 K in the ferromagnetic phase, an
almost dispersionless magnetic transition with an energy
of 4.3 THz (206 K) was observed by neutron inelastic
scattering studies.!* At the zone boundary for the wave
vector q=[1,0,0] (transverse to the magnetization) there
exist two excitations: the mode at 4.3 THz (206 K) polar-
izes along the [010] direction (transverse to both the mag-
netization and the wave vector), whereas the mode at 3.5
THz (168 K) has polarization along the wave vector
([100] direction). At [0.7,0,0] two separate modes can no
longer be distinguished. Including the two next-to-
dominant scattering channels [channels (2) and (3) of Eq.
(17)] in calculating the scattering amplitude allows us to
understand these static and dynamic magnetic properties,
except for the dispersionlessness character of the excita-
tion spectrum across much of the Brillouin zone, and also
allowed us to predict?! the anisotropy in correlation
lengths as recently observed.?’

A. Equilibrium magnetic behavior

Figure 1 shows the polarization diagram in the W,
versus W, plane; i.e., this shows whether the long-period
antiferromagnetic phase has transverse or longitudinal
polarization, i.e., alignment of ordered moments with
respect to modulation direction. (For modeling purposes,
the long-period antiferromagnetic phase was taken to
have ferromagnetic [001] planes in a three-up—three-
down (+ + + — — —) arrangement.) Here the phenome-
nologically introduced weighting factor W, (W,) mea-
sures the ratio of the magnitude of contribution to the
scattering amplitude from channel 2 (3) compared to that
from channel 1.

The behavior shown includes all possibilities going
from the case of vanishing contributions from channels 2
and 3 (W;=W,=0) up to the case where each of those
channels has a contribution to the scattering coefficients
that is equal to that of channel 1 (W, =W, =1). The cal-
culation has been performed for L-S coupled Pu**. For
each value of W, and W,, the ratio of next-nearest to
nearest-neighbor anisotropic exchange parameters,

Pu*(°), L - S coupling
W1: (m,= 0‘_’m!=i 1)
W,: (m,=%1+~—m, = %1)

1.0

1
0.5 1.0

\
W,

FIG. 1. Polarization behavior as a function of the scattering
channel weightings W, and W, in the long-period antiferro-
magnetic phase for parameters characteristic of PuSb. The lon-
gitudinal and transverse polarized phases are labeled by / and ¢,
respectively.

E, /E,, has been taken as unity; E;/E, has been chosen
to give the experimental ratio of the Néel temperature (85
K) to the ferromagnetic transition temperature (67 K) for
PuSb; E, has been chosen to give the experimental Ty;
and the crystal-field parameter 60B, has been chosen to
give the magnetic excitation intensity behavior described
in Sec. IVC. The variation in E;/E, values as W, and
W, vary is small. (E;/E, varies between about —0.25
and —0.40, while E, is always within a few percent of
150 K.) As shown, there is a critical line which separates
the W, versus W, plane into regions of longitudinal (/)
and transverse () polarization for the antiferromagnetic
state. (The critical line runs between W,;=0.38, W,=0
and W, =0, W,=0.19. On the critical line, the antifer-
romagnetic phase is unpolarized.) Except for the small re-
gion with W, and W, values less than those on the criti-
cal line, the polarization is longitudinal. The previous
calculations,®"*1° giving transverse polarization, corre-
spond to the point W, =W,=0. Thus the contribution
of the channels with m; ==*1 “tunes” the interaction to
provide the experimentally observed longitudinal polar-
ization in PuSb.

The change in polarization direction can be understood
by detailed examination of the matrix elements giving the
anisotropy of the hybridization-mediated two-ion interac-
tions. Figures 2 and 3 illustrate this by showing some of
these matrix elements (as defined in Ref. 6). Here 0 is the
angle between the moment direction and the interionic
axis. As shown in Fig. 2, the original calculations for
L-S coupled Pu** (including only the m;=0<m;=0
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channel) favored moment alignment parallel to the in-
terionic axis, i.e., the maximum magnitude of the matrix
elements occurs at 8=0. This is opposite to the behavior
for Ce**, where moment alignment perpendicular to the
interionic axis is favored. However, as shown in Fig. 3,
as the m;=0<-m;==1 and/or m;=+t1<-m;==%1 chan-
nels are opened up, the anisotropy for Pu®* rapidly rev-
erses direction to become ceriumlike, and this explains
the change in polarization.

We have calculated the temperature dependence of the
ordered moment for an fcc Pu®* lattice with parameters
characteristic of PuSb, as shown in Fig. 4 together with
the experimental magnetization results of Burlet et al.'?
We have included the crystal-field interaction, given for a
cubic system as,?®

Hep=B4(03+50%) . (19)

Here O] are the Stevens operators,” the crystal-field
splitting A.p=360B,, and a negative B, yields a I
ground state as is experimentally observed.!! For the an-
tiferromagnetic phase (+ + + — — —), we have plotted
the average of the moments of the three ferromagnetical-
ly aligned planes. For intermediate coupling the value of
E, (E{=149 K) was chosen to match the experimental
value of Ty (85 K) for PuSb, and E;/E,=—0.279 was
chosen to fit the transition temperature (67 K) from the
ferromagnetic to the long-period antiferromagnetic struc-

0.24 i
L-S Pu* f5
B £ . _‘
| ]
016 4
L L-S |
008 . .
o o }-] 5/2 5/2
& B B 5/2 5/2
55 1
[}
- 0 4
N N
@& 8
m
-0081 4
L-S
g52 52
-0.16 52 5/2 i-i
L L-S i
'0'240 - n/a ! n/2
e

FIG. 2. The angular dependence of the two-ion diagonal ma-
trix element B [defined in Eq. (9)] for coupling between Pu’*
ions with saturated parallel and antiparallel moments. For the
L-S case, the only effects included are those from the
m; =0<m; =0 scattering channel. The upper indices label the
M, states on one ion, and the lower indices label the states of
the other ion. 6 is the angle between the interionic axis and the
axis of moment alignment. [The j-j curves are identical (Refs. 6
and 7) to the matrix elements for Ce3* f'.]
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ture. Although the magnitude of moment depends slight-
ly on the choice of the crystal-field parameter B,, and
a rather large crystal field [Az=1200 K, or 60B,
=—(1.3)E,] will yield the experimentally correct mo-
ment for the IC calculation, we preferred to choose the
value of B, to produce two polarized branches'* in the
excitation spectrum at the zone boundary as we will dis-
cuss below in Sec. IV C. The thermal variation of the or-
dered moment was also obtained for the case of L-S cou-
pling, which is also shown in Fig. 4, for E,=E,,
E,=—0.306E,, B,=—(0.38/60)E,, and E,=121 K
with W, =1, W,=0. Because of the difference of the g
factor (£ for the L-S coupling ground state and - for the
IC ground state with 75% ®H and 25% *G) the absolute
values of moment for IC are larger than those for the L-S
coupling case. At zero temperature the theoretically pre-

-5/2 -5/2
5/2 §5/2

B

0 } }
N N
NN
0w o
N N — -
~ ~
0 o
o -5/2 -5/2
B

0.05 5/2 5/2_

1
0 4
o

FIG. 3. The angular dependence of the same two matrix ele-
ments between Pu’* ions as in Fig. 2, but now including a con-
tribution from the resonant scattering channels involving
m;=x=*1. The matrix elements are shown for both L-S and IC
within the Pu’* ion.

/2
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dicted moment is 0.677uy for the L-S coupled state and
0.848up for the IC state, while the experimental value of
the f moment is (0.7610.03)up determined from neu-
tron scattering by Lander et al.!! Presumably the theory
will predict an even larger moment for the exact IC case
(rather than our approximation of including only °H and
%G components) because of the larger g factor
(g =0.415).

B. Correlation-length anisotropy

The ratio «;/k; of the inverse critical correlation
lengths parallel and perpendicular to the moment direc-
tion, evaluated at T —Ty=0.04Ty, with negative
crystal-field splitting (I'y low) as is experimentally ob-
served!! has been calculated using the methodology of
Ref. 13. This is shown in Fig. 5 for the case of a longitu-
dinally polarized antiferromagnetic structure for the IC
case with W,=1, W,=0, E,=E,, E;=—0.279E,.
These parameters provide equilibrium behavior for PuSb
closely approximating the experimental behavior. We
find that «;/k, is almost independent of the crystal field,
varying between 2.2 and 2.3 over a wide range of crystal-
field values as shown in Fig. 5. [For L-S coupled Pu**
(with W,=1, W,=0, E,=E |, E;=—0.306E,), the be-
havior is quite similar with x,/x, being about 2.0.] The
value of x,/k, is greater than unity, indicating that the
magnetic interactions within the ferromagnetic (100)

—T T T
—————— -
0.75F o X \\FM 4
oo \ Tem 67K
~~
o 0.50
R
~
-
o
€ PuSb
]
= o — — Theory (I - C)
25 Theory (L - S)
* EXPT. - FM }Bunat et al. 1984
O EXPT. - AFM
X EXPT. - FM Lander et al. 1984
0.00 L —L
0 25 50 75 85
T(K)

FIG. 4. Variation of ordered magnetic moment with temper-
ature. The experimental magnetization values are from the
neutron-diffraction measurements of Burlet et al. (Ref. 12). We
also show the low-temperature experimental ordered f moment
from the neutron experiments of Lander et al. (Ref. 11). The
theoretical curves show the predicted ordered f moment for the
intermediate-coupling case (with E,=E,, E;=—0.279E,, and
60B,= —0.31E; to match the experimental value of Ty =85 K
for PuSb, E,=149.1 K) and for the L-S coupling case (with
E,=E,, E;=0.306E,, 60B,=—0.38E,, and E,=121.4 K).
The average sublattice moment has been plotted for the antifer-
romagnetic phase.
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planes are stronger than are the interplanar couplings.
This result is in close agreement with that of recent ex-
periments’’ giving «,/k;=1.8+0.2 for PuSb. We note
two important changes from the previous results'> that
did not include any contribution from scattering channels
(2) and (3) (the m;==1 channels). The singularity in the
near-critical susceptibility now provides the correct po-
larization as experimentally observed; and the direction
of anisotropy for both IC and L-S coupling is reversed
from that previously found («;/k, > 1 as has now been ex-
perimentally observed?’).

C. Magnetic excitation behavior

Using the same random phase approximation (RPA)
equations of motion technique as previously,”!® we have
calculated the magnetic excitation behavior predicted for
PuSb. This involves taking the difference between the ex-
act Hamiltonian [given by the sum of the hybridization-
mediated exchange Hamiltonian of Eq. (7) and the
crystal-field Hamiltonian of Eq. (19)] and the mean-field
approximation to that Hamiltonian. This difference is
then treated as a perturbation of the mean-field Hamil-
tonian to obtain the equations of motion given by Eq.
(12). The resulting predicted excitation spectra and in-
tensities of the modes for PuSb are shown in Figs. 6 and 7
for the L-S and IC cases, respectively. (Since the “bare”
crystal field is strongly modified®® by the hybridization
pushing the I'g level below the I'; level in energy, for the
excitation calculations as well as for the equilibrium and

T Ll T T
sof Pudt 5 .
Intermediate Coupling
/
2.0 .
< W,=1, W,=0
~ - -
XX E;/Ey=1, Eg/E,=-0.28
- _2m
1ok G0~ [0, 0,7] ]
B b
0 1 1 1 1
-0.8 -0.4 0
60B,/E,

FIG. 5. Ratio of inverse correlation lengths parallel and per-
pendicular to the moment direction for parameters characteris-
tic of PuSb, plotted as a function of the ratio of the crystal-field
parameter 60B, to the nearest-neighbor anisotropic exchange
parameter E .
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FIG. 6. (a) Dispersion curves and (b) intensities for excita-
tions in the ferromagnetic phase of PuSb at T'=0 with L-S cou-
pling, EZ =E|, E3 =0. 306E1, and 6084—‘: —0.38E| with
W,=1, W,=0 for q along the [100] and [001] (directions paral-
lel and perpendicular to the moment direction, respectively).
E, =121 K to match experimental T. Modes L;,, L,;, and L5,
are transverse modes (i.e., time-dependent mode moment trans-
verse to the equilibrium moment) and modes L¢; and L,, are
longitudinal and quadrupolar modes, respectively. The energy
levels of the molecular-field states and their compositions in
terms of the angular momentum eigenstates (quantized along
[001]) are shown on the far right. Heavy bars show the experi-
mental results of Lander et al. (Ref. 14) at 10 K for PuSb.
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correlation length calculations above, we have treated the
crystal-field parameter B, phenomenologically and omit-
ted its temperature dependence.’!)

The dominant mode in intensity across most of the
Brillouin zone is the L,; mode which has an excitation
energy of about 3.4 THz (164 K) at the I" point for both
L-S coupling and IC. The L,; mode energy increases on

Intermediate Coupling
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60B,/E,=-0.31, E, = 149.12K

4 4
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FIG. 7. (a) Dispersion curves and (b) intensities of PuSb as in
Fig. 6, but now calculated for intermediate coupling within the
Pu’* f3ion.
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going toward the X points. At about (0.7,0,0), mixing of
the transverse modes Lj3; and L, starts to occur. There
is an associated reduction of the intensity of the L,
mode, and a corresponding increase in the L;; mode in-
tensity. This admixture produces two elliptically polar-
ized branches (with mode moment transverse to equilibri-
um moment): a y-polarized (major axis of time-
dependent mode moment perpendicular to q) upper
branch and an x-polarized (major axis of time-dependent
mode moment parallel to q) lower branch. At the zone
boundary (q||[ 100] direction), the two predicted modes in
the case of L-S coupling have energies 4.5 THz (216 K)
and 4 THz (194 K) respectively, and the polarization
((J})7€I))""? is V2 for the upper branch and (1/V'6)
for the lower branch. In the IC case, the energies of the
two modes are 4.4 THz (218 K) and 4.0 THz (191 K), and
the polarization is V'6 for the upper branch and 1/V2 for
lower branch.

The relative separations between modes are quite sensi-
tively dependent on the value of B,. To bring modes L5,
and L,, close enough to cause the admixture at the zone
boundary (i.e., to give two intense modes) the value of
60B, must be chosen in a narrow range from —0.35E, to
—0.40E, for the L-S coupling and from —0.25E, to
—0.31E, for IC. Outside this range of 60B, the only in-
tense mode is L, and it is circularly polarized. In fact,
we chose B, to provide the mode mixing giving two in-
tense (and elliptically polarized) modes at the zone
boundary. It is a remarkable result that this choice of
crystal-field splitting parameter places the mode energies
almost exactly at the experimental values. This result in-
dicates that for PuSb the crystal-field splitting from I'g to
I'; should be about 255-290 K. Further experimental in-
formation checking this predicted value would be valu-
able.

Note that we found almost the same results for the L-S
coupling and intermediate coupling IC cases. This is not
surprising since the ground state of the L-S coupling lim-
it is the predominant component of the IC ground state
which we take as 75% °H and 25 % *G.

One major discrepancy exists between the calculated
and observed excitation behavior at low temperature.
While the experimentally observed magnetic excitation
spectrum is almost dispersionless for q across most of the
Brillouin zone, and a clearly defined minimum occurs for
the low-energy branch at the zone boundary (X point),
our theory predicts that the intense mode has significant
dispersion for q along both the [001] and [100] directions
with an energy minimum at the I" point regardless of the
choice of phenomenological parameters. It is interesting
that the L;; mode, which shares the intensity at the X
point is essentially dispersionless with a shallow
minimum at the [100] X point. Thus it may be that this
remaining discrepancy lies in the rather sensitive nature
of the intensity sharing between the L;, and L,, modes.

We have also extended our excitation calculations to
finite temperatures using the random phase approxima-
tion. The mode intensity distribution at the [100] zone
boundary so obtained is shown in Fig. 8. (These calcula-
tions include a higher-order decoupling of the equations
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FIG. 8. Predicted temperature dependence of the excitation
mode intensities at the [100] Brillouin-zone boundary for PuSb.

-

of motion than that used to obtain Figs. 6 and 7, so at
T =0 some additional low intensity modes are found.)
The main effect predicted is a filling in of intensity at the
low energy end of the spectrum as temperature increases.

D. Summary

In conclusion, we have found that upon including the
additional (next-to-dominant) channels for the single-site
scattering event the hybridization-mediated anisotropic
two-ion interaction fully explains the experimental aniso-
tropic magnetic equilibrium behavior®!"!? for the fcc
Pu’* f3 system pertinent to PuSb. The longitudinally
polarized antiferromagnetic phase has been satisfactorily
obtained by considering the contribution of the addition-
al scattering channels, which is equivalent to including
some additional off-interionic-axis f-electron charge dis-
tribution. We also obtain excellent agreement with exper-
iment?’ for the correlation length anisotropy. The theory
also gives a magnetic excitation spectrum at 7' =0 in the
ferromagnetic phase in close agreement with the observed
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energies,'* with two polarized branches at the zone
boundary with q along the [100] (transverse-to-moment)
direction as is experimentally observed.!* The predicted
crystal-field splitting from I'g to I'; is about 255 to 290 K.
The remaining discrepancy with experiment is that we
predict that the major mode intensity across the Brillouin
zone is not in a largely dispersionless mode, and our
lower-energy mode at the zone boundary does not occur
at an energy minimum.
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