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Fractal pore space and rock permeability implications
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(Received 9 October 1987)

%'e have used optical microscopy to perform direct measurements of the fractal volume and sur-

face dimensions of sandstone samples on scales from 0.5—200 pm. The dimensions are evaluated by
box-counting techniques on the digitized representation of the microscope pictures. The connection
between the fractal dimensions and rock permeability is discussed.

The relation between porosity and permeability in
rocks is a subject of scientific as well as practical interest.
In general, no simple functional relationship has been
found between these quantities. This is basically due to
the fact that most porous rocks are very complex systems
which may consist of a range of irregular grain sizes.
Several analytical models have been suggested' to pre-
dict rock permeability from basic statistical quantities
connected to the rock. However, a general problem of
many of these models is that they are based on quantities
(e.g., "mean channel length" ), which are difficult to mea-
sure in real rocks.

Various studies suggest that the surfaces of rock
grains and of whole rock samples are fractal. In partic-
ular, Wong et al. have used small-angle neutron scatter-
ing (SANS) to show that the microscopic geometry of
sandstone surfaces can be characterized by a fractal di-
mension D, in the range from 2.55 to 2.95. The fractal
interpretation of the surface geometry, combined with
some other basic rock or fluid properties may turn out to
give a fundamental description and understanding of rel-
ative permeability of simultaneous two-phase flow in the
rock. However, the absolute rock permeability is deter-
mined by the structure of the pore space and surface area
on "grain-size" scales, which are usually from 1 pm and
larger.

At present there are relatively few direct measurements
of possible fractal scaling of both pore surface and
volume of these scales. Katz and Thompson (KT) used
scanning electron microscopy and optical data to suggest
that these quantities are given by the same fractal dimen-
sion for certain sandstones. However, this claim has later
been disputed both in connection with the SANS experi-
ment as well as on theoretical grounds. In fact, it may
be easily shown that this can only be true in special cases.
A simple example showing that this is not true is a three-
dimensional (3D) model porous medium consisting of
closed, uniform Koch curves. The surface dimension
here will be D, =2.26, while the pore volume will have
D„=3, the Euclidean dimension.

In this paper we report direct measurements of the
geometry of sandstone samples from the Oseberg North
Sea oil reservoir by analyzing optical micrographs. The
samples were polished thin sections (thickness approxi-
mately 30 pm) bound to a glass substrate. By using an in-

verted optical microscope in transmitted-light illumina-
tion mode, it was possible to focus on the two-
dimensional (2D) cuts of the grains. The images were
digitized using a video frame grabber with 512&512-
pixel resolution and 256 grey levels. Five different micro-
scope magnifications were used setting the relevant scales
from 0.5 to 200 pm. As the out-of-focus pore space was
darker than the grains, it was possible to identify these
features employing digital image analysis. A low-pass
filter was used to eliminate noise due to features below
the resolution at a particular magnification. This estab-
lished a uniform relative resolution at each level of
magnification. A histogram of the relative number of
features at each grey level showed two peaks identifying
the pore space and grains. From this it was thus possible
to set the threshold level to produce a black and white
picture representing these two features. Figure 1 shows
these digitized representations revealing smaller and
smaller details for increasing magnifications from the
same position of a typical sample. This is a good example
of the extreme complexities which sandstone pores may
exhibit. The similar appearance for different
magnifications signifies a possible random fractal scaling.
One of the most useful methods to probe this is to use the
box-counting technique. To our knowledge, this
method has so far not been employed for analysis of the
pore space in rock.

To determine the area or "volume" fractal dimension

D, the following procedure was used: The digitized pic-
ture containing 512' 512 lattice points was covered with
imaginary square boxes of edge length L. The number of
boxes, N(L), containing any part of the pore-space cuts
was counted and averaged for different positions of the
boxes relative to the lattice. The counting procedure also
considered edge corrections by including only the frac-
tional parts of the boxes inside the edges of the whole lat-
tice. For a fractal structure it is expected that N(L)
scales with box size L as

N(L) GCL

Figure 2 shows the log-log plot of N versus L for the digi-
tized images in Fig. 1. As may be seen, the data for the
whole range of magnifications appear to fall on a straight
line with slope D„=1.73+0.04.
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FIG. 3. Same legend as in Fig. 2 for the fractal dimension D,
of the contours.

To probe a possible fractal scaling of the pore-grain in-
terface, the same box-counting technique was used. For
this, the number of boxes N(L) needed to cover the con-
tours of the borderlines between the black and white re-
gions in Fig. 1 was counted for different box sizes L. The
results are shown in the log-log plot of N versus L in Fig.
3. Again, it may be seen that the data appear to fall on a

Dy= 1.T 3+0.04
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FIG. 2. The fractal dimension D„ofthe pore-space area
determined from the log-log plot of the relative number of boxes
needed to cover the pores vs box size L for the different
magnifications (a)—(e) in Fig. 1.

(e)
10pm

FIG. 1. Digitally displayed pore space (black) in a typical
North Sea sandstone for increasing magnifications (a)-(e), re-
spectively.

straight line with slope D, =1.59+0.09.
Aside from possible global differences, which will be

discussed below, the present box-counting technique has
the important feature of being able to average out local
statistical fluctuations by choosing a large number of
centers for the boxes. This appears to be a distinct ad-
vantage compared to the methods of feature counting
along one-dimensional sections of the pore-rock interface,
perimeter-to-area analysis, or using a yardstick of vari-
able length to measure the coastline.

Tests for systematic errors in the present technique
showed that the results were relatively insensitive to
filtering and precise setting of the threshold level. How-
ever, in order to get sensible data over a wide range of
length scales using increasing magnification and not mov-
ing the sample, the positions had to be chosen with some
care. Clearly, with random choice one could otherwise
sometimes end up in the middle of a large solid grain at
the highest magnification.

In order to probe the statistical fluctuations between
different samples and positions, the following procedure
was used: One thin section was chosen at random from
each of four core samples within the same geophysical
formation. Within each thin section, various positions
were chosen at random, but allowing sensible scaling for
different magnifications as discussed above. A total of 30
digitized pictures for each of the pore-space and pore-
grain interfaces were analyzed using the same box-
counting method discussed above resulting in the follow-
ing average fractal dimensions: D, = 1.69+0.05 and
D, =1.56+0.07. The stated standard deviations thus
reflect both local and global uncertainties in using the
fractal description as an average statistical property for
the whole rock on scales from 0.5 to 200 IMm.

According to accepted formalism, the fractal dirnen-
sions just found in the 2D cuts are on less than the corre-
sponding fractal dimensions D, and D, for the surface
and pore volume, respectively, in three dimensions. This
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means that D, =2.56+0.07 and D„=2.69+0.05 as the
statistical averages for the present samples. The value for
D, is compatible with the value D, =2.55 found by Wong
et al. for Portland sandstone. However, their results
were obtained on much smaller length scales (5—500 A),
and it is not clear whether the surface structures on that
scale and our scales are connected. The measurements by
KT discussed earlier suggest that D, =2.78 for Coconi-
no sandstone for a wide range of length scales (10 A-100
(ttm). Their value is thus close to the present results for
D„.However, whereas KT found that D, =D, for a lim-

ited range of length scales ( —1 —10 )Mm), the results for
the present sample thus indicate that D, g D„.

The basic reason for a fractal pore volume and surface
is a wide distribution of irregular features in the system.
A simple model taking this into account, giving a box-
counting volume and surface dimension, is the following:
Consider a "grain-filling procedure" similar to those ana-
lyzed by Omnes. ' A porous medium with any porosity
can be created by introducing a fraction p, of grains with
characteristic size li. The pore volume is then changed
from Vo to p, Vo. Next a fraction pz of characteristic size
!2 is introduced and the process repeats itself until a
smallest grain size I„is reached. For each filling the total
surface in the system will increase from S; to y;+1S;.
The total volume and surface after the filling is completed
is now

n

V= gP; V

S= P yl. So.

The fractal-box counting dimension associated with the
pore volume can now be estimated. Covering the pore
volume by E„-dimensional boxes of length I, (E„is the
Euclidean dimension), and counting the boxes which con-
tain pore space, one can expect to find the following nurn-

ber of boxes N;:

(3)

According to Eq. (1), the fractal box-counting dimen-
sion is determined by the slope of the number-length rela-
tion in a log-log plot. As an approximation to this slope
at neighboring scale sizes (l;, I;+, ), the logarithinic

difference is

In(Ã, +, ) —In(N; )

In(l;+, ) —ln(1; )

ln(P, +, )

I
1n

I, +,

(4)

Hence, a true self-similar pore volume is obtained when
all fractions are equal. If this is not the case, the struc-
ture obtained after the filling procedure can be described
in the multifractality formalism. " However, as a model,
to provide understanding of the measured results for real
systems, it seems more suitable to put equal weights on
all the successive approximations, d;;+„anduse the ar-
ithmetic average as the fractal box-counting dimensions
of the sample:

ln(P, )

n, , 1n(l;/I;+, )
(5)

which is greater than E,. Note that the (p;) are also
uniquely given by the volume of the grain sizes. The
ty; I are also a function of the grain structures and the
packing of each grain size into the system of larger grain
sizes. Hence, the measured results of D, and D, may be
understood from the structure arising from the discussed
grain-filling procedure.

We now turn to the implications a description of the
rock structure by fractals may have on the understanding
of fluid flow properties of the rock. In the low-velocity
flow regime, Darcy's law, which expresses a linear rela-
tionship between the flow velocity and pressure gradient
for one-phase incompressible flow, is assumed to be valid.

If the fluctuations in p; are relatively small, the use of
Eqs. (5) and (1) serves as an excellent approximation to
the number-length relations in Eq. (3). This is demon-
strated in Table I, where a random choice of fractions
and length scales and the evaluated fractal dimension are
used to coinpare the approximations in Eqs. (1) and (5) to
the number-length relation. It follows from Eq. (5) that
the dimension D„is always less than or equal to E„be-
cause all p; ( 1. By covering the surface with E,
dimensional squares of the same sizes (F., =2 the Euclide-
an dimension), one finds similarly for the surface dimen-
sion,

ln(y, )

n, .~, ln( l; /I, + ) )
'

TABLE I. Comparison of Eqs. (1) and (5) for (a) a random choice of fractions f3, and length scales I,
(i =1—5), (b) the number of boxes calculated from Eq. (3), and (c) the number of boxes found from Eq.
(1) using D„=l.71 as calculated from Eq. (5) with n =5.

(a) p, =0.8

/, =1

l =2

0.9

I =3

0.7
I

i=4
0.8S

1

i=5
0.85

1

16

(b)

(c)

N;=N,

N;=N,

3.60NI

3.27N

10.08N,

10.70NI

34.27NI

35.02N1

116.52N I

114.56N I
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The proportionality constant is usually separated in a
pure rock-dependent permeability divided by a pure
fluid-dependent viscosity. By modeling the pore space as
a collection of cylindrical noninteracting tubes one ob-
tains for rock permeability the well-known Kozeny equa-
tion' which can be written

k„=cP/5 (7)

(9)

It may be seen from Eq. (9) that the k, has a power-law
dependence of D, and D„,decreasing as D, is increased

Here c is a rock dependent constant, P is the porosity,
and S is the internal surface area per unit pore volume. '

A lot of criticism has been raised as to the validity of Eq.
(7) for real systems, and many modifications have been
made when applying this equation to real rocks. But the
simple and physical transparent form of Eq. (7) makes it
an attractive model for studying the impact of different
fractal dimensions on permeability. By expressing the
specific surface for Eqs. (5} and (6) and assuming that all
the fractions I, /I, + &

are equal, one gets

S =So(l, /I„) (8)

for the specific surface, and by substituting this into Eq.
(7}one gets for the rock permeability

and increasing as D„is increased. This is reasonable as
D, and D, reflect the tortuosity of the rock structure. It
is further seen that the variations in permeability for
different fractal dimensions can be large if the relation
(I;/I„)is also large. A common feature of sandstones is
large permeability variations for fixed porosities, which is
consistent with Eq. (9). The advantage of Eq. (9) is fur-
ther that it is based on quantities which can be measured
in any real porous medium, and the validity of this equa-
tion can thus be investigated by experiments, which is
postponed for future work.

In summary we have for the first time measured the
volume and surface dimension of a sandstone sample by
box-counting techniques, finding the average values
D„=2.69+0.05 for the volume dimension, and

D, =2.56+0.07 for the surface dimension. Application
of a simple grain-filling procedure to model the pore
space makes it possible to express the permeability by a
power-law dependence of the fractal dimensions.
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