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Ferromagnetism in the strongly correlated Hubbard model
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We use a self-consistent "spectral-density approach" for the strongly correlated Hubbard model

in order to find out under what circumstances spontaneous band ferromagnetism may appear. The
magnetic polarization m = n ~

—n ~ is examined for a bcc lattice in terms of the temperature T and
the band occupation n =n~+n~ (0&n &2). For T=O and less than half-511ed bands (n g1), fer-

romagnetism becomes possible as soon as n exceeds the critical value n&
——0.54 and becomes saturat-

ed (m =n) above n, =0.74. A further, less polarized ferromagnetic solution appears for
n )n» ——0.79. It turns out that a spin-dependent band shift, which consists of "higher" correlation
functions, decisively determines the possibility of spontaneous moment ordering. This is demon-

strated by a set of self-consistently calculated quasiparticle densities of states. The Curie tempera-
ture T, appears as strongly n dependent. Starting at 0+ for n =0.54, T, increases with n, reaching a
maximum of about 710 K near n =0.75, and decreases again for n )0.8 down to 0+ for n =1. Ac-
cording to the free energy F, in cases of more than one solution, that solution with the highest po-
larization is always stable.

I. INTRODUCTION

The so-called s-band Hubbard model'

H = g (T,J p5;, }c;—c, + ,'Ugn; —n,

(notation is as usual} is commonly used to study the mag-
netic properties of strongly correlated electrons in a nar-
row energy band. Although this Hamiltonian is surely
the simplest one that may be constructed, a general solu-
tion of the underlying many-body problem is not yet
known. That means that besides the problems which
arise with the limited applicability of the model to real
systems (neglect of long-range Coulomb forces, of d-band
degeneracy, of a possible hybridization with sp bands,
and so on), even its inherent properties have not been
worked out unambiguously up to now. A controversal
question, e.g., is whether the model system can show
spontaneous ferromagnetism under certain cir-
cumstances. We shall contribute to this question by re-
porting the results of a self-consistent moment method,
which is explained later in the text.

Only a few exactly solvable limiting cases of the model
Hamiltonian are known. Some of them refer to the one-
dimensional case, which has been solved by Lieb and Wu
for T=O and arbitrary band occupation n (0 & n & 2) and
by Beni et al. for finite temperatures in the U~ ~ limit.
The results, however, can hardly be transferred to three-
dimensional lattices. With the use of a proof along the
lines of the Mermin-Wagner theorem for the Heisenberg
model, it can be shown that no collective order is possi-
ble in the one- and two-dimensional Hubbard model. For
the three-dimensional case Nagaoka has given rigorous

U ~~ results for special band fillings of
n =n+ ——(I/N}(N+1) (N is the number of lattice sites}.
For the symmetric sc and bcc lattices the ground states
turn out to be ferromagnetic for n+ as well as for n; in

the fcc lattice only for n+. In the narrow-band limit,
where T;, can be considered ps a small perturbation, the

Hubbard model can be transformed for exactly half-filled

bands (n= 1) into an effective Heisenberg model' with

"exchange integrals" J"~T /U. An ant"iferromagnetic
&J &J

11
ordering of the momenta is predicted. Kanamori has
shown that for low band occupations (n ~0) a collective
magnetic order will not appear.

It is impossible to quote all the approximate theories
proposed in the past, aimed mainly at determining the ex-
istence of ferro- or anti-ferromagnetic order in the Hub-
bard model. The claims diverge, so that the situation is
far from being unambiguously clarified. We present in
this paper a "spectral-density approach" (SDA), which in
a certain sense difFers from the normal Green's-function
decoupling procedures or perturbation methods. A lot of
previous applications' ' give evidence that the SDA is
a very effective method for applying many-body theory.
A main advantage of this method, the very simple con-
cept of which is described in the next section, lies in the
nonperturbative character of the procedure which there-
fore makes it useful in particular for systems with phase
transitions. In Sec. II we derive within the framework of
the Hubbard model by use of the SDA a closed system of
equations, which has to be solved self-consistently for the
average particle numbers n t, n &. Spontaneous magneti-
zation is indicated by n t &n i. We discuss our results in
Secs. III and IV. This paper is exclusively devoted to the
case of ferromagnetism. The possibility of antifer-
romagnetism will be discussed in a forthcoming paper. '
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II. SPKCiRAI DENSITY APPROACH

S, (r, t')= ([c, (t),c, (r')]+), (2.1}

S„(r,t')= ([c„(r},c„(r')]+)
2m

1 —ik (R,.—R )=—ge ' 'S,, (r r'), (2.2)

The central function of the procedure is the one-

electron spectral density, for which various equivalent
representations exist. '

All one-particle properties of the interacting-electron sys-

tem, which we are interested in, may be derived from

Si, (E). The main goal is, therefore, to find a physically
reasonable approximation for this fundamental quantity.
Our "spectral-density approach" consists of two steps.
First, we try to find out the general structure of the spec-
tral density S), (E), guided by exactly solvable limiting

cases, series expansions, sum rules, or other physical ar-
guments. This leads to an ansatz for S), (E), which con-

tains some parameters, which are fitted in the second step

by equating exactly calculable spectral moments. For
these moments two completely equivalent relations exist.
The one exhibits the connection with the spectral density

Mz") ——— dE E"S), (E), n =0, 1,2, . . . , (2.4)ko

(E) f+g(t rt)equi ls)E(t ) )—'

XS ji( ))t~ ( itt) (2.3)

while the other can be used to determine, at least in prin-

ciple, all moments independently from the required spec-
tral density:

(„) 1 —ik (R,.—R. )
M),

" ———M
ii J

a 8
c; tt)—itt, , c (tt)j', 0&p&tt

+ t=t'
(2.5)

Using the Heisenberg equation of motion for the time-
dependent construction operators, the moments can be
calculated with the Hubbard-Hamiltopian (1.1} in terms
of certain equal-time correlation functions. For the first
four moments we get after a lengthy but straightforward
procedure

therewith excluding others than ferromagnetic or
paramagnetic order. The term 81, in the third mo-
ment turns out to be of decisive importance concerning
the possibility of ferromagnetic order. It consists of
higher correlation functions.

(2.6)

n (1 n)B—),, — =Bs;—~+Ba', ), (2.11)

MI,"=s(k) —p, + Un (2.7}

8&. depends on the electron spin 0, but not on the
wave vector k:

M&2) ——[e(k)—)u]2+2Un [e(k)—p, ]+U n

M'„".=[a(k)—p]'+3Un .[e(k)—)
]'

+ U (2n +n )[e(k)—tu]

(2.8) Bs. ——g T; (c;t cj (2n; —1))1

l,j
(i+j)

+Ton ~(1 n) . — (2.12)

+ U'n (1—n )(B), —p)+ U n (2.9) To is the center of gravity of the "free" Bloch band.

We have assumed translational symmetry of the lattice
T =—ge(k) .1

N
(2.13)

(n;~)=n for all i, (2.10) The other term is k, but only weakly spin dependent:
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It is easy to see that the last two expectation values are
spin independent (T; =T;). The "density correlation"
({n; nj. ) —n ),.+~ vanishes in a mean-field ap-
proximation, so that it will be a small correction term,
only. Altogether Bz,.i, will not be too strongly spin
dependent and therefore not so decisive what concerns
the possibility of ferromagnetic order.

The crucial point of the method is the choice of a phys-
ically reasonable ansatz for the spectral density. Some
hints can be drawn from its spectral decomposition:

This ansatz contains four unknown parameters, a~, 2~ (k)
and E~i z~ (k), which are fitted via (2.4) by equating the
exactly calculated spectral nioments (2.6)—(2.9}. After
simple manipulations we get the quasiparticle energies,

E~, 2)~(k) =—,
' (Bi, ~+ U

+e(k)+ [(B„.+ U —e(k))'

+4Un (e(k) —Bz )]'

(2.17)

n, rn

x5(E —(E„—E )), (2.15)

with the corresponding spectral weights:

Ei~(k) —Bi, ~ —U(1 n—)

Ei (k) —E2 (k)
(2.18)

Bi, + U(1 n—~ ) —E2~(k)

E, (k}—E2 (k)
(2.19)

The quasiparticle energies (2.17) have the same structure
as those of the so-called Hubbard I solution, ' but with
the decisive extension of t;he "band correction" 8& . It
is this term which enables under certain circumstances a
ferromagnetic moment ordering. According to (2.11) it
consists of two parts, the k-independent B& ~, being re-
sponsible for a possibly different shift of the two spin
spectra, and the practically spin-independent
"bandwidth-correction" 8~.&

Most important for realizing spontaneous ferromagne-
tism is the "band shift" Bs. (2.12), which contains the
higher equal-time-correlation function

&n;c; c (2.20)

Fortunately, this quantity can be expressed by the one-
electron spectral density Si, (E}. This can be seen as fol-
lows. With the Hubbard-Hamiltonian we first get

[H, c;t ] = g(T; —p5;)ct +Un; c; . (2.21)

This means for the expectation value

{.. . )=——g(T; —p5;)(c, )
m

(2.22)

:" is the grand canonical partition function,
~

E ) an N
particle, and

~
E„) an (N+ 1)-particle eigenstate of the

Hamiltonian. The energy differences (E„E) a—re
therefore just the excitation energies which must be
brought up for adding an additional (k, o ) electron to the
¹lectron system. In the zero bandwidth limit
[e(k)= To for all k], only two values come into question,
namely To —p and To+ U —p, depending on whether the
o electron is excited at a lattice, where a ( —o ) electron is
already present, or not. The spectral density represents
in this limiting case a sum of two positively weighted 5
functions, the poles of which are located at To p, and-
To+ U —p, respectively. When we now "switch on" the
electron hopping T~ ( W&0), some satellite peaks will ap-
pear close to the energies E& ' ——To —d U —p and
Ez+' To+(d +1——) U —p, respectively, where d is a posi-
tive integer. As soon as the additional (k, o ) electron ap-
pears, the ¹lectron system may rearrange itself because
of the finite hopping. If the actual number of doubly oc-
cupied sites changes in this moment, then the excitation
energies E&*' are required. The probability for such a
rearrangement is of course the greater the more likely the
hopping ( —W}, and the smaller the Coulomb-matrix ele-
ment U. It can exactly be shown' that the two satellite
peaks E',+', located next to the two main peaks, have
weight factors of order ( W/U), being therefore negligi-
ble in the strong correlation region (U&y$V). The
weights of the other satellite peaks are still much smaller.
Therefore, we can conclude that except for a certain
quasiparticle damping, Si, (E) should have the following
structure:

S& (E)=R g a (k)5{E—E (k)+p} . (2.16)

Using the spectral theorem' and the equation of motion
of the time-dependent Heisenberg operators, we can write
for the last term in (2.22)

([H, ] )=—f dE f (Elf d( —') ' ""

pe ' ' f dE f (E)(E p)St, (E —p), —
k

—00
(2.23)
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f (E) is the Fermi function: m =n& —n&, (2.30}

X E E k E —P . 225

With the two-pole ansatz (2.16}we get for the average oc-
cupation number

1
n =—g g aj (k)f (E,. (k)) .

k j=l
The very important spin-dependent band-shift Bs.
(2.12) can now be expressed by (2.22), (2.23), (2.25), and
(2.16):

2

B~. =—g g aj (k)[s(k) —To]f (E, (k))
k j=1

X [—E, (k) s(—k)] 1—2

+Ton (1 n—) . (2.27)

The evaluation of the bandwidth-correction Bn, i, ca.n-
not be done with the aid of the one-electron spectral den-
sity, only. For the determination of the higher equal-time
correlation functions in (2.14) one might define "higher"
spectral densities, choosing a two-pole ansatz like (2.16}
with the same quasiparticle energies Eii zi (k} but
different spectral weights. The latter are finally fixed by
fitting the first two moments of the respective "higher"
spectral density. If we apply this method to the expecta-
tion value (2.20), e.g., which we treat above in a rigorous
manner, we get the correct result. For the bandwidth-
correction B~.k, however, we found by this method
that in the strong correlation region (U» W) this term
plays an unimportant, negligible role. Because of the
quasi-spin-independence it does not influence the possibil-
ity of ferromagnetism. Furthermore, it disappears when
averaged over the whole Brillouin zone:

1—Q Bw;~, ~ 0. ——
k

(2.28)

For narrow bands the bandwidth correction does hardly
affect the energy spectra. So we neglect it from the very
beginning.

Equations (2.17), (2.18), {2.19},(2.26), and (2.25) build a
closed system, which must be solved self-consistently for
the particle numbers n, n, and the chemical potential

p, and that for any given total number n,

n=n +n (2.29)

of band electrons per site (0&n &2}. The interesting
question is now, under what conditions the spin degen-
eracy will be removed (n &n ), so that a spontaneous
magnetization,

f (E)= [exp[P(E —p) ]+1] (2.24)

For the expectation value (ct c } the spectral theorem
yields

(ctc, &= ge
k

appears. This question is surely influenced by the
effective coupling constant U/W, which we consider to
be very large, the lattice structure ["free" Bloch density
of states po(E) ], the degree of band filling n (0 & n & 1;
n & 1 follows by particle-hole symmetry), and of course
the temperature T.

If there is ferromagnetism in a certain parameter re-
gion, then the electron concentration and the structure
dependence of the Curie temperature T~ must be the tar-
get of our investigations. Tz can be derived from the
magnetization curve m =m ( T) as well as from the singu-
larities of the paramagnetic, static susceptibility X, at
least as long as the phase-transition para-ferromagnetism
is of second order:

N Bm="~'
V aB

T,B~O
(2.31)

The upper index indicates that the calculations are to be
done for the paramagnetic system. To calculate P we
have to introduce in the model Hamiltonian (1.1) a field
term H„

H, = —p&8 (n;t n, i)—, (2.32}

4
+Wo(eF }

2
(2.33)

Here we have written for abbreviation

EF B~.o
(1 n/2) (1 —n/2)~

'

KF

(2.34)

(2.35)

E~ is the Fermi edge (T=O) and Bs.o the band shift of
the interacting, paramagnetic system, both being calcu-
lated self-consistently within our above-described pro-
cedure.

III. QUASIPARTICLE DENSITIES OF STATES

The coinplete system of Eqs. {2.17), (2.18), (2.19),
(2.26}, and (2.27) cannot be solved analytically. It con-
tains some characteristic model parameters, one of which
is the Bloch density of states po(E) of the noninteracting
electron system. We present results for a bcc lattice,
which according to Jelitto' is described in tight-binding

which, however, does not alter or even complicate the
above presented theory. When differentiating the dimen-
sionless magnetization m with respect to the field 8, we
have, however, to take into consideration that all expec-
tation values are implicit functions of B.

The singularities of X, regarded as a function of n at
T=O for a given lattice structure, indicate the instabili-
ties of the paramagnetic electron system against fer-
romagnetic order. In the strong coupling limit ( U » W)
we find the following criterion for ferromagnetism:

1 —n 1 —n

2
+ Fpe( 0ts} 1+

1 n2— (1 n /2)—
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approximation by

po(E) =2&1—
I
E

I

Xln
' (16.6791+3.6364

~

E
~

5.845

+2.4880
~

E
~

') if
~

E
~

& 1,
(3.1)

there appears a second solution of our system of equa-
tions, which is ferromagnetic. The corresponding quasi-
particle densities of states p& and p& are plotted in Fig. 2.
The minority spinband pi(E) is shifted to higher ener-

gies, so that n
&

becomes greater than n &. With increas-

ing band occupation n the $ bandwidth decreases sub-

stantially, while the width of the f band becomes
broader. The bandwidth of the o spinband roughly
scales with (1 n—}. As soon as n exceeds the critical
value,

pc(E)=0 if
~

E
~

&1 . (3.2) n,*=0.74, (3.6)

The total Bloch bandwidth is 8'=2 eV. We have evalu-
ated our theory in the strong coupling limit for less than
half-filled bands, so that for all relevant temperatures the
upper quasiparticle subband is always empty:

the $ subband lies entirely above the Fermi edge. The
system is then ferromagnetically saturated (m =n)
Since all carriers are now f spin particles, they cannot in-
teract within the Hubbard model. This is reflected by the
fact that for n & n,' the f QDOS is again identical to pii.

For band occupations

0&n &1; f (E, }=0. (3.3)
(3.7)

The case n & 1 follows immediately as a consequence of
particle-hole symmetry.

What do we mean by "strong coupling limit?" We
have observed that the results of our system of equations
practically do not depend on U, when U exceeds a critical
value of about 2W-3$'. The structure of the lower
quasiparticle subband is then a function of T and n, but
not of U. The upper subband is separated from the lower
one by a gap of order U. Because of (3.3), however, it is
always empty; therefore, it is not interesting for our
study. From this reason we have plotted in Figs. 1-6 the
lower subband only. In the strong coupling limit
( U » W), the possibility of ferromagnetism is not deter-
mined by U.

Temperature T and carrier concentration n are the
physical quantities in terms of which we have looked for
magnetic solutions. It turns out that the nonmagnetic or
paramagnetic situation (m =0) represents a mathematical
solution for all n and all T. The respective quasiparticle
density of states (QDOS)

(3.4)

which in this case is of course the same for o = 1 and
cr = 1, are plotted in Fig. 1 for T=O and for various band
occupations n. We have restricted the representation to
the lower subband, which is partially occupied by n elec-
trons per site. The main effect of the steady band filling is
a band narrowing, roughly according to (1 n/2). For-
n=O the quasiparticle band is identical to the "free"
Bloch band (3.1) because no interaction processes can
happen. For n =1 the lower subband is completely filled,
the bandwidth is half of that in the n =O-case.

For band occupations

a second ferromagnetic solution (FMII) appears. The
corresponding quasiparticle densities of states are plotted
in Fig. 3. The main difference to the QDOS of FMI (Fig.
2) is that the Fermi edge lies always within the l sub-
band, therewith excluding ferromagnetic saturation. In
the region 0.79 & n (1 our system of equations has there-
fore three different solutions, one is paramagnetic (Fig.
1), and two are ferromagnetic (Figs. 2 and 3). It turns out
(see Fig. 12) that always the solution with the highest po-
larization is stable.

Up to now we have discussed the quasiparticle densi-
ties of states pt(E} and p&(E) in terms of the band-filling
n for the temperature T=O K. Ferromagnetism becomes
possible for n &0.54. The QDOS of the ferromagnetical-
ly ordered system (FMI) exhibits a strong temperature
dependence. Figures 4—6 show some typical examples.
For n=0 582 (Fig.. 4) and n=0 664 (Fig. .5) the minority
subband becomes broader with increasing temperature,
simultaneously being shifted to lower energies, where the
position of the chemical potential is rather temperature
independent. There is a continuous transition into the
paramagnetic state (pi ——pi ) at about T =Tc ——521 K for
n=0.582 and T = T& ——665 K for n=0.664, respectively.
For the higher occupation the temperature reaction of
the QDOS is particularly sensitive in the small tempera-
ture region 660 K & T (665 K, leading to an abrupt but
still continuous breaking down of the collective ferromag-
netic order. For the example n=0 749, however, (.Fig. 6)
the temperature change between 709 and 710 K is so
drastic that the para-ferromagnetic transition must be
discontinuous. We shall come back to this point in the
next section.

IV. SPONTANEOUS MAGNETIZATION

n &n, =0.54, (3.5) The self-consistently calculated magnetization m shows
a strong T and n dependence (Fig. 7). As already read off
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FIG. 1. Quasiparticle density of states pt ——pt =p of the lower "Hubbard subband" for the paramagnetic system at T=O as func-
tion of energy E, and that for various band occupations n. Arrows indicate the position of the chemical potential p. The Bloch den-

sity of states of the noninteracting system po(E) is for a bcc lattice (3.1).
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FIG. 2. The same as in Fig. 1, but for the ferromagnetic solution FMI. Solid lines indicate p~, broken lines p~.
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from the QDOS at, T=O the spontaneous magnetization
m of FMI sets in for n =0.54, increases very steeply with

n, reaching the saturation {m =n) at n =0 74. {see Fig. 2).
It intersects the m n-curve of the second ferromagnetic

solution FMII, which starts at n=0.79, not before n= l.
For finite temperatures we observe that this intersection
point of the two ferromagnetic solutions shifts with in-
creasing T to lower particle numbers n. It is a common

1.50
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i .00

p(E),

0.50 ~
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FIG. 3. The same as in Fig. 1, but for the ferromagnetic solution FMII. Broken lines for p~, solid lines for p~.
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feature of gll our results that for higher n than that of the
intersection point ferromagnetism is excluded. The criti-
cal band occupation n

&
and n &&, where FMI and FMII,

respectively, set in, are functions of temperature. VA'th

raising T, n& increases and n&& decreases. For T& 650 K
they are coinciding leading therewith to a kind of "mag-
netic island" in the rn-n diagram. The "island" becomes

smaller for higher T and disappears completely as soon as
T exceeds 7 10 K.

Figures 3-6 show that finite m results from a relative
shift of the two spin subbands p &

and p &
against one

another. As already mentioned in the last section the de-
cisive term for such a shift is the band correction B&,
defined in (2.11) . In the strong coupled system the center

&.So
400

1.00

0.$0

0.00
-1.00 -0.50

r v ~ I v r w e

0.$0 1.00

1.50
SRO

1.00

e (E)

0.50

O.OQ T ~ ~ I T T w T I % w w T

-1.00 -0.50 0.00
E (eY)

0.50 1.00

FIG. 4. Quasiparticle density of states p as function of energy for a band filling n =0.582 and various temperature T. The lower-
lying CQr&e is always p~, the higher-lying one is p~. The bar indicates the position of the chemical potential.
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of gravity of the o band is located close to To+ n 8
Because of our assumption that 8+,.z =0, the band
correction is k independent (8& =8 ). The shift
n 8 is plotted in Fig. 8, explaining directly the ap-
pearance of spontaneous ferromagnetism (Fig. 7). In
several approaches to the Hubbard model such a spin-
dependent band shift is missing, as, e.g., in the Hubbard I

solution or in certain coherent potential approximation
(CPA) treatments, showing at most some bandwidth
e8'ects. As a consequence ferromagnetism is predicted by
the Hubbard I solution only for rather exotic Bloch den-
sities of states pz(E) and in the low concentration limit, '

the latter in clear contradiction to the exact Kanamori re-

sult. "

1.50

1.00

p (E)

0.50

0.00
—1.00 -0.50 0.00

E teV)
0.50 1.00

1.50

1.00

0.50

0.00 T T '$ ~ F Y v I T T T I I w w

—1.00 -0.50 0.SO 1.00

FIG. 5. The same as in Fig. 4 but for n =0.664.
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The temperature dependence of the FMI magnetiza-
tion shows for 0.54& n &0.81 the typical behavior {Fig.
9), where the critical temperature Tc increases up to 710
K, being, therefore, in a rather realistic region. For

y 0-8& ho~e"er Tc decreases again doom to Tc =0+
for the exactly half-filled band n=l. In addition, the
paramagnetic-ferromagnetic phase transition is then
discontinuous. Mathematically this fact is due to the ap-
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0.00 as well as the free energy F/N, which follows by

-0.05

F( T)/N = U(0)/N —Tf U(0)

(4.2)
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FIG. 11. Internal energy U/N as function of band occupa-
tion n for the same temperatures between 0 K (a) and 710 K (h)
as in Figs. 7 and 8 (PM: paramagnetic; FM: ferromagnetic). I
and II indicate the two ferromagnetic solutions FMI and FMII.

The results are plotted in Figs. 11 and 12. Both fer-
romagnetic solutions have distinctly smaller internal en-
ergies in the n regions, where they exist, than the ever ex-
isting paramagnetic solution. In the paramagnetic case U
has the expected parabolic shape, while the ferromagnet-
ic cases exhibit deviations, which become smaller with in-
creasing temperature. In any case, the FMI solution is
always more stable than the FMII solution.

In the temperature and band occupation regions,
where FMI appears as a possible mathematical solution
of our system of equations, FMI has the minimal free en-
ergy (Fig. 12), is therefore the stable solution. The
differences between the free energies of the paramagnetic
and the ferromagnetic solutions decrease with increasing
temperature and disappear at T =Tc.
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FIG. 12. Fme energy per site FIN in dependence of temperature T for the paramagnetic (PM) and the ferromagnetic solution
(FMI). (a) n=0.58, (b) n=0.66, (c) =0.'75.
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V. CONCLUSIONS

Starting with a self-consistent moment method, which
needs as input only an "idea" about the general structure
of the fundamental one-electron spectral density, being
otherwise rigorous, we have inspected the strongly corre-
lated Hubbard model for spontaneous ferromagnetism.
As soon as the band occupation exceeds a critical value of
n=0.54, ferromagnetic order appears as more stable than
nonmagnetic disorder, at least at T=O. Under certain
circumstances a second ferromagnetic solution appears,
which is less polarized than the first one. The most po-
larized phase always has the minimum free energy, and is
therefore stable. The Curie temperature Tz turns out to
be strongly n dependent. The maximum of T& for a bcc
structure was found to be some 710 K.

The main advantage of our procedure is its very simple
concept. We assume a two-pole ansatz for the spectral
density, which is absolutely acceptable for the strongly
correlated Hubbard model. The approach thus consists
of a complete neglection of the electron damping, which
could, however, be taken into consideration by applying a
two-peak Gaussian ansatz for the spectral density. Such

a procedure has been successfully performed for the s-f
model of a ferromagnetic 4f insulator. ' But we do not
believe that the general question of whether or not spon-
taneous ferromagnetism is possible is much affected by
the inclusion of electron damping.

In this paper we concentrated ourselves from the very
beginning on ferromagnetic situations, excluding all anti-
ferromagnetic possibilities. Antiferromagnetism will be
studied in a forthcoming paper. ' There we shall show
that antiferromagnetism is stable against ferromagnetism
in a small region around n=1. In the strong coupling
limit (Up& 8'), which we considered in this paper, this
region is even extremely small. Although antiferromag-
netic solutions exist in rather the same n range as the fer-
romagnetic solutions, for n not too close to 1 ferromagne-
tism appears to be more stable. The phase diagram, fol-
lowing from our moment method, is qualitatively similar
to the Hartree-Pock result, but very much more restric-
tive. For ferromagnetic solutions there exists a critical
band occupation n, and a critical U, . The special case
n = 1 is antiferromagnetic for all U) U (see also Ref. 23).
Details will be published elsewhere. '
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