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Heisenberg and Potts spin glasses: A renormalization-group study
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The Migdal-Kadanoff renormalization-group scheme is used to investigate the chaotic behavior
of a Heisenberg spin glass at zero temperature in two, three, and four dimensions. The Lyapunov
exponent is found to be independent of the spatial dimensionality, d. In the case of Potts models,
the predictions of the Migdal-Kadanoff scheme are sensitive to the choice of the length scale factor,
b. While no evidence is found for conventional spin-glass behavior, the couplings wander randomly
in a basin of attraction for d =5 and b =2, possibly suggesting a glassy phase.

I. INTRODUCTION

There has been considerable recent interest in the
study of random magnetic systems in general and their
low-temperature ordering, in particular. ' In this paper,
we study two distinct models using renormalization-
group techniques. ' The first of these is the Heisenberg
spin glass. This model's complexity arises due to the
many low-lying local minima produced due to competing
exchange interactions (frustration). ' The second model
studied is the q-state Potts model. " While the ferromag-
netic model is well studied and understood, " the antifer-
romagnetic case is richer and leads to many novel re-
sults. ' The complexity, in this case, is due to the re-
sidual ground-state entropy.

A. Heisenberg spin glass

The Hamiltonian of the Heisenberg spin glass is given
by

H= g JlS; SJ,

where the S; are three-component unit vectors on a lat-
tice, J;J is the exchange interaction between spins S;, and
Sl, and (ij ) denotes pairs of nearest neighbors. This
model has been studied extensively and is thought to have
a lower critical dimensionality (LCD) bigger than
three. ' Unlike the Heisenberg model, the Ising spin
glass is thought to have a finite-temperature transition,
even in three dimensions. For the Ising spin glass,
using phenomenological scaling, it has been shown that
the low-temperature phase is chaotic in that the spin or-
der at long enough length scales is sensitive to minute
changes in the exchange couplings. ' This arises phys-
ically as follows: Let J be a measure of the width of the
unperturbed bond distribution. The energy cost of a
domain wall excitation of dimension L (measured in units
of the lattice parameter) is -JL». The exponent y
characterizes the scaling behavior of the bond distribu-
tion at the T =0 fixed point. When the perturbation is
applied, such an excitation may in fact become favorable
because there is an additional contribution to the energy

01 /2-+eJL ' where cJ is the measure of a small random
(equal likely + or —) perturbation on the exchange can-
stants and (d, /2) is a characteristic exponent. For Ising
spins d, is the "fractal dimension" of the interface. The
physical meaning of d, for a Heisenberg system is some-
what less clear. In any case, when g=d, /2 —y &0, the
ground state becomes unstable against the perturbation
on length scales L &L' —I/e' ~. This Imry-Ma argu-
ment has been explicitly verified using a renormaliza-
tion group scheme for Ising spin glasses. In Sec. II, this
analysis is extended to a Heisenberg spin glass at zero
temperature and we obtain the exponents y, d„and g.

B. Potts models

The q-state ferromagnetic Potts model in d dimensions
is now well understood. " The system is paramagnetic at
high temperatures and undergoes a phase transition to a
ferromagnetically ordered state at low temperatures for
all q &1 and d) 1. The qualitative results for the fer-
romagnet are independent of the scale parameter b. The
case of the pure antiferromagnetic model was first studied
by Berker and Kadanoff' using a Migdal-Kadanoff
renormalization-group scheme. ' Their analysis was for
the specific case of the scale parameter b =3. They ar-
gued for an algebraically ordered low-temperature phase
when q &2 and d & d, (q), the lower critical dimension.
Phenomenological, ' and Monte Carlo renormalization-
group studies' and a subsequent exact analysis' have
shown that di(3)=2. Monte Carlo studies' ' in d =3
show that the low-temperature phase is in fact ordered in
a sublattice fashion. A mean-field analysis was found to
yield results that were in accord with simulations in
d =3. The situation with Potts models with random ex-
change interactions is less clear. While mean-field studies
of Potts spin glasses have been carried out, little is
known about their behavior in lower dimensions.

In Sec. III, we extend the work of Berker and Ka-
danoff' to arbitrary values of b. In particular, the pre-
dictions for b =2 are found to be quite distinct from
those for b =3. The behavior for all even b is qualitative-
ly similar to that of b =2, whereas all odd values of b
behave like b =3. We then discuss the behavior of ran-
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dom exchange Potts models by numerically iterating the
Migdal-Kadanoff recursion relations and studying the
evolution of the flows. While we do not find any evidence
for conventional spin-glass behavior, we do observe that
the couplings wander randomly in a basin of attraction
for d =5 and b =2 possibly suggesting a glassy phase.

The Migdal-Kadanoff approximation works well quali-
tatively for simple pure systems like ferromagnets and
even for strongly disordered systems like Ising spin
glasses. It's reliability is somewhat more suspect for
Potts models. For this case, the results are more ap-
propriately thought of as being valid for hierarchical lat-
tices.

II. CHAOS IN HEISENBERG SPIN GLASSES
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It has been shown recently that the ordered phase in
Ising spin glass is "chaotic" in nature in that the relative
orientation of spins is increasingly sensitive, as the spin
separation is increased, to small perturbations in exter-
nally controlled variables, such as temperature. ' In
this section, we extend these results to a Heisenberg spin
glass. We first present numerical results obtained using a
Migdal-Kadanoff (MK) transformation and determine
the value of the exponents y and g, the zero-temperature
scaling exponent and the Lyapunov exponent character-
izing the chaotic behavior, respectively. Our numerical
analysis indicates that for d =2, 3, and 4 at zero tempera-
ture, the fixed shape probability distribution of the ex-
change couplings is a Gaussian, to a very good approxi-
mation (Fig. 1). Assuming that this is indeed the case, we
derive analytic estimates for y and g in excellent agree-
ment with the numerical results.

A. Numerical results

The MK transformation for d =3 corresponding to
length scale factor b =2 is illustrated in Fig. 2. (In d di-
mensions there are 2 ' parallel paths. ) The recursion
relation is '

5

J 16 = X J16(' }
l =2

with

0
0 3 4 5

FIG. 1. The shape of the fixed probability distribution I'(J)
of the exchange couplings, J, for the Heisenberg spin glass in
d =2, 3, and 4. The solid line is a Gaussian fit.

bonds from the pool are selected at random and com-
bined as in Eq. (1}to obtain a member of a new renormal-
ized pool. The process is repeated until a new pool of
40000 renormalized couplings is produced. This corre-
sponds to one iteration of Eq. (1). Upon successive itera-
tion, the probability distribution of the J's, P(J), ap-
proaches a fixed shape, but with a width that changes by
2~ at each iteration. The values of y are summarized in
Table I. Note thaty &0 in d =2 and 3, whereasy &0 for
d =4 implying that the lower critical dimensionality
(LCD} of this model is between 3 and 4. P(J) is plotted
in Fig. 1. The data are fitted to a Gaussian very well for
all the values of d shown. Following Ref. 31, we take two
pools (J;),IJ I where J =J;+ex; with 6=10 and J,
and x; are independent Gaussian random variables with
zero mean and unit variance and follow the evolution of
the quantity

(2)

d2 y (J(n) J (n)~)2 y [(J(n) )2+(J~(n))2~ (3)

This recursion relation, derived in the zero-
temperature limit, only approximately describes the
Heisenberg model since the decimation step does not
preserve the S;.S, form of the Hamiltonian exactly. The
results that follow have all been derived using Eq. (1),
nevertheless.

We numerically follow the evolution of the bond prob-
ability distribution. We find that two neighboring bond
pools, initially differing infinitesimally, diverge exponen-
tially under iteration. The rate of divergence, of course,
is characterized by the Lyapunov exponent. We con-
struct a pool of 40000 exchange couplings from a Gauss-
ian distribution of zero mean and unit variance. Eight

as a function of the iteration number, n (When e. ight
members of one pool are selected to obtain a renormal-

FIG. 2. MK transformation for d =3 corresponding to
length scale factor b =2.
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TABLE I. The exponents y, d„and g obtained analytically
for the Heisenberg spin glass at T=0. The numerical results

agree with the analytic results within 2%.

d.

From (4)

5Ji6(2} x,2 x26+
lJi6(2))' J 12 J26

(6)

—0.94
—0.44

0.07

—0.52
0.48
1.48

0.68
0.68
0.68

ized coupling, the corresponding eight members from the
neighboring pool are selected to form the corresponding
renormalized coupling. ) A plot of d~„~ versus n is shown
in Fig. 3. The growth of d~„l is initially exponential cor-
responding to a power law dependence of d~„( on the
length scale L=2", d~„~-L ~. The values of g are
presented in Table I. After a large number of iterations,
n', d~„~ saturates at unity corresponding to completely
uncorrelated pools. This signals an instability of the
ground state to the perturbation on length scales greater
thanL'—:2" .

which on substituting for [J,6(2}] from Eq. (4}becomes

J kJ x
5J,6(2)=+ (7)

(
I
J121+ I J261 }'

Summing over the 2 ' parallel paths, we find, for the re-
normalized coupling J',

J12+J26
4 4

((M'(') =2 '( ~2 2 $~2d

(
I
J121+ I J261 }'

where e =(x ) and the latter equation is the definition
of the exponent d, . Thus defining

J12+J264 4

I+ I» I

&'~

and using Eq. (8)

B. Analytic results

Consider spins 1, 2, and 6 (Fig. 2) and the effect of de-
cimating spin 2. Using Eq. (1), the effective coupling
J,6(2) is given by

d, =d —1+ink, &/1n2 .

Also

J2 J2
(J'2) pd —I(J (2(2) pd —\

(
I J121+ I J261 }'

(10)

1 1 1

I Jl21 I J261
(4)

JlJ ~JEJ ++IJ (5)

Consider the effect of perturbing the couplings by ran-
dom perturbations,

Denoting

J2 J2

(
I Ji21+ I J261 }' (12)

2
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and noting that

(J 2) (J2 )227 (13)

2y =d —]+ink, J/ln2 . (14)

Finally, since (=d, /2 —y, combining Eqs. (10) and (14),

(=in(A, s/A, J )/(21n2) . (15)

To evaluate the exponents d„y, and g using Eqs. (10),
(14), and (15), we need to obtain A, it and A,J. Approximat-
ing the fixed shape probability distribution by a Gaussian,
straightforward, but tedious, algebra yields

and

A,it
——8/(3m ) ——,

' (16)

A,J =(2/n. ) ——,
' .

is the definition of the zero-temperature scaling exponent

y, we find that

FIG. 3. Square of the normalized distance between bond
pools d(„, as a function of MK iteration number n for spatial
dimensionality d =2 {0),d =3 {0),and d =4 {6).

These results are in excellent agreement with the numeri-
cal data and yield an estimate for the LCD (y =0) of the
Heisenberg model of -3.87. The value of g is strikingly
independent of the spatial dimension, d.
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III. POTTS MODEL

In this section, we study the Potts rnodbl using the MK
transformation. We consider both the b =2 and b =3
versions of the model. While the qualitative results are
independent of b for the ferromagnetic (F) model, the an-
tiferromagnetic (AF) Potts model shows strikingly dis-
tinct behavior for b =2 and b =3. For b=3, there is a
low-temperature phase characterized by algebraic order
as first shown by Berker and Kadanoff. ' Computer
simulations' ' have, however, suggested that AF Potts
models order at low temperatures for dimensionality (d)
greater than the lower critical dimensionality (LCD).
Baxter' has also shown that the LCD for q =3 is equal
to 2. The b =2 analysis indeed reproduces both these re-
sults. Further, the exponent for the AF model are found
to be the same as the F model —unlike the predictions of
an earlier renormalization-group analysis. ' ' It should
also be noted that MK analysis does not lead to first-
order transitions, in, for example, d =2 and q &4. We
also study Potts models with random exchange couplings
with both b =2 and b =3. The numerical results indicate
the existence of a paramagnetic phase, the F phase, the
AF phase —there is no evidence for a conventional spin-
glass (SG) phase. For d =5, b =2, however, there is
unusual behavior at low temperatures where an initial
Gaussian distribution of exchange couplings with zero
mean and large enough variance (low enough tempera-
ture} wanders in a chaotic way in a region around

(,K ) = —14 and o x —14 ( (K } and a x denote the aver-

age and the standard deviation of the coupling distribu-
tion). To our knowledge, such chaotic wandering within
a basin of attraction has not been observed heretofore.
This glassy phase is found only for b =2 and only in
d =5—the LCD for this phase seems to be bigger than 4
and the glassy phase disappears in d =6.

A. Ferro- and antiferromagnetic models

The Hamiltonian for the Potts model" is given by

H= g JJ5

where J; &0 for the AF case and J, g0 for the F case.
The dimensionless coupling is K; = —J; Ik&T. The re-
cursion relation for the model for b bonds in series in a
given path and b" ' such parallel paths is given by

bd —1

K'= g K,
i=1

with

the flows are to a ferromagnetic sink. The F critical
point, K*=K,", is found by setting K'=K, =K* in Eq.
(18). This qualitative behavior holds for the ferromagnet,
independent of the value of b.

The Potts AF, however, has a richer and more varied
behavior. We first let b ~1+dl. In this limit, the recur-
sion relation becomes

K+
=(d —1)K— (1—e )ln 1+e n

(19)

For the equation to be physically meaningful in the
conventional sense, the argument of the logarithm must
be positive, i.e.,

1+ )0.
eK —1

(20)

K =2"-1. (&-1}+',2K

(q —2)+2e
(21)

There are three fixed points of the preceding equation,
K =0, K*, and ~. An initial large and negative K, after
one iteration becomes positive. In the limit of K~—~,

K' =2 'ln
—1

q —2
(22)

We note that as K~0, this inequality is violated, thus

invalidating the general use of Eq. (19}.
We study the lowest integral values of b, viz. b =2 and

3 for the Potts antiferromagnet. The b =3 case has been
studied in detail by Berker and Kadanoff. ' Their pri-
mary result was that for d &d, (the LCD), the low-

temperature phase is attracted to a sink atPnite tempera-
ture indicating an algebraically ordered low-temperature
phase. Monte Carlo simulations' ' show that the AF
Potts model in d =3 has an ordered low-temperature
phase. For example, the q =3 model is characterized by
a ground state with the one of the states predominantly
on one sublattice with the other two states dividing them-

selves equally on the other sublattice. This conventional
sublattice ordering is quite distinct from the algebraic or-
dering predicted by the b =3 analysis. Also, based on
symmetry arguments, ' ' it was suggested that the q =3
AF model was in the xy universality class, whereas the

q =4 model was in the Heisenberg universality class.
We now turn to an analysis of the b =2 AF Potts mod-

el. The recursion relation is

K, =ln 1+ (18)

When the bonds are ferromagnetic, there are two possible
scenarios. For small values of K (high temperature), the
flows are to an infinite temperature sink —one has a
paramagnetic phase. For sufficiently large values of K,

Two cases may be distinguished —when K& &K*, the
flows are to the ferromagnetic sink; on the other hand,
when K', &K*, the flow is to an infinite temperature sink
and the behavior is paramagnetic. The critical behavior
is therefore the same as the F q-state model. The LCD of
the AF model is however different from the F model and
is obtained by setting K

&

——K* where K' is the nontrivial
F fixed point of Eq. (21},
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TABLE II. The flows and ferromagnetic sink exponents of the q =3 Potts model at very low temper-
atures. I, infinite temperature; BK, Berker-Kadanoff; F, ferromagnetic.

PF

0.29
0.29
0.77
0.77
1.24
1.24

Flow sink
From symmetric Gaussian

I
I
I
I
I

BK
See text

BK
F

BK
F

BK

Other sinks

F
F
F
F
F
F
F
F

None
F

None
F

q —1

q —2
(q —1+e2K

=2 ' ln
(q —2}+2e

(23)

Solving Eq. (23), we find
I

ln2

in[(q —1)/(q —2 ) ]
ln2

(24}

B. Random exchange Potts model

We now generalize to the case where the exchange cou-
plings are randomly positive or negative. Our studies are
carried out using the recursion relations given in Eq. (18)
using pools of up to 10 couplings. Renormalized pools
are then created as described in Sec. II. The flows typi-
cally are to the infinite temperature sink (I), the fer-
romagnetic (F) sink and the Berker-Kadanoff' sink (BK}
(for the b =3 case). No fiows were observed to a low-
temperature spin-glass sink (SG) unlike the Ising behav-
ior.

The results of starting from a low-temperature sym-
metric Gaussian distribution for the q =3 Potts model
for b =2 and 3 and for d =2, 3, 4, 5, 6, 7 are summarized
in Table II. The only unusual behavior occurs at d =5
for b =2. In this case, the mean (E ) and the standard
derivation crz of the pool wanders "chaotically" in a
smallish region around (E ) ——14 and o x —14. This
wandering behavior persists for 1000's of iterations and
happens for a wide range of starting temperatures. While
we have no clear explanation of this behavior, it presum-
ably indicates a glassy behavior even at very long length
scales. The LCD for this phase is ~4 and the phase
seems to be nonexistent in d =6, even on making the dis-
tribution asymmetric.

For q =3, d, =2 in agreement with the exact result of
Baxter, ' whereas for q =4, 2&d, -2.44&3 in agree-
ment with the Monte Carlo simulations' ' and for
q -+ ao, d, —lnq /ln2 in accord with the mean-field predic-
tions of K,(q~ 00 )-q.

How do we qualitatively understand and account for
the basin of attraction? Consider three states a, b, c
populating the hierarchical structure. When all the
bonds are AF, the dominant entropy ground state con-
sists of populating, say a spins at the ends (F-like order-
ing} and placing b or c spins randomly in the middle. The
arrangement where unlike states (say a and b) (AF-like
ordering) are at the ends can also be used to form a
ground state except that the rniddle spin must be in the
third state, viz. c. This has the same internal energy as
the first arrangement but a low entropy. Now, if one of
the bonds is made ferromagnetic, the second arrangement
of unlike states at the ends can still form a ground state,
whereas the former arrangement is no longer a ground
state. On heating up the system, entropic effects start
playing a role and it may become favorable for the system
to have F-like order to gain entropy at the expense of the
internal energy. The situation is an unusual type of
glassy behavior, where the glassy AF-like state has a
lower entropy compared to the F-like state. We specu-
late that this delicate balance between energy and entro-
py causes the wandering phase in d =5. In higher dimen-
sions, the number of parallel paths increases so that the
effects of entropy play more of a role, destabilizing the
low entropy AF-like phase in favor of the high entropy
F-like phase.

We have also investigated the effect of changing the
mean value of the Gaussian distribution away from zero.
The sinks that are accessible from low temperatures are
summarized in Table II. In addition, Table I shows
zero-temperature F sink exponents y =d —1 and y (the
exponent that describes the scaling of the width of a fer-

romagnetic distribution, ' i.e., cr -L; note that the
mean of the distribution scales with the exponent y and
y &y ). y is known exactly in two dimensions to be —,'.
Our renormalization-group analysis yields a value of
0.29. The values of y in higher dimensions have not
been determined previously.

The zero temperature d =3, b =2 result is that when
the mean of the distribution is sufficiently large (+ve or
—ve), the behavior is characterized by F ordering with a
paramagnetic phase in between. We have verified this re-
sult by carrying out Monte Carlo (MC) simulations on a
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three-dimensional (3D) cubic lattice containing 14 spins
with periodic boundary conditions. When all the bonds
are ferromagnetic, we observe conventional F ordering.
On the other hand, when all the bonds are AF, we repro-
duce the sublattice ordering discussed in Ref. 17. When a
fraction f of the bonds are chosen to be F (and strength

~
J

~
), we find that the ordered phases are supplanted by

a paramagnetic (P) phase for intermediate values of f. A
noteworthy feature of the MC simulations is that the P
phase is characterized by many distinct local minima
containing large domains, somewhat reminiscent of the
random-field Ising model. The MK analysis does not
yield the exotic behavior predicted by the mean-field
theories.
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