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Total dielectric function: Algebraic sign, electron-lattice response,
and superconductivity
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The interaction between two test charges in a solid can be described in terms of a total dielectric
function that includes electronic and lattice polarization. Crystal stability requires the eigenvalues
of e to be (1. Some implications for superconductivity are discussed. A total dielectric function
for the electron-lattice system is derived in the mean-field approximation and its inverse is explicitly
constructed. The low-lying poles of e ' give the correct phonon frequencies as determined by the
usual dynamical matrix.

I. INTRODUCTION

The effective interaction between two test charges is
e '

v where v =e /
~

r —r'
~

and e is the total dielectric
function including all contributions such as exchange of
phonons, plasmons, or excitons. Restrictions on the sign
and magnitude of e place restrictions on the interaction
e 'v which are independent of the mechanisms creating
the polarization. This could have important implications
for superconductivity which is favored by a net attractive
interaction at zero frequency. Pines and Nozieres' have
stated that stability requires e & 0 but, it has been
shown ' that the only model-independent restriction on E'

is e '
& 1 which permits e to be negative except at small

wave vectors where e&0.
Pines and Nozieres argued that the energy required to

generate a spontaneous charge, 5p„ in a solid is propor-
tional to 5p, /e and must be positive if the ground state is
stable giving e & 0. However, the interaction between two
test charges each with charge 5p, must be greater in vac-
uum than in the solid so that 5p, & 5p, /e or 1/e & 1. The
argument of Pines and Nozieres that led to the condition
e & 0 is incomplete because the creation of a spontaneous
charge fluctuation should include not only the Coulomb
energy but quantum-mechanical effects such as the
change in kinetic energy as well. This is discussed fur-
ther in Sec. III.

We do not investigate the question of whether specific
polarization mechanisms can result in more stringent lim-
itations on e. For example, Cohen and Anderson as-
sumed that for the case that the dielectric response is due
to Coulomb interactions and phonons one has e& 0 if lo-
cal fields are neglected but that no such restriction exists

if they are included. This allowed them to place limits on
the superconducting transition temperature T, in the
former case. The present analysis does not permit us to
make a definitive statement regarding the validity of
Cohen and Anderson's assumptions.

It is clear from the work of Cohen and Anderson, or
for example Kittel on ferroelectrics, that local fields are
important for questions of stability and phase transitions.
Therefore, it is important to extend the arguments of
Refs. 2 and 3 to the case of a nonhomogeneous medium
where e '(r, r'} is not just a function of

~

r —r' ~. This
was done by Car et al. for the electronic part of the
response function. In the present paper we generalize the
arguments of Refs. 2, 3, and 7 to the full response func-
tion including lattice as mell as electronic polarizability.
In agreement with Car et al. , we find that the eigenval-
ues A, ; of the dielectric function e(r, r } [or in a periodic
medium, in reciprocal space, e(q+G, q+G')] are re-
stricted by stability to the range 1/A, ; &1. This result
generalizes the statement 1/est(q) &1 (Ref. 2), where
1/eM is the macroscopic dielectric response [essentially
e '(r, r') with r and r' averaged over a local region, a
unit cell if the medium is crystalline. ]

The present paper discusses the fully general case of a
crystalline medium with arbitrarily strong nonlocality
effects [e(r, r', to) can be very different from e(r —r', co)].
Both normal and Umklapp events are treated on the
same footing, the medium may be metallic or insulating,
and the electron-ion interaction is not treated in a weak-
pseudopotential approximation. The arguments of Refs.
2, 3, and 7 are confirmed and generalized in Sec. II,
where the definitions and general properties are dis-
cussed, and in Sec. III where the test-charge —test-charge
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interaction and the relation to T, are discussed. In Sec.
IV we introduce a simple new version of mean-field
theory which allows e(q+ G, q+ G', co ) to be expressed
explicitly, including lattice polarizability effects, in a
random-phase-approximation (RPA) type of theory. In
Sec. V the inverse dielectric matrix e (q+G, q+G', co)

is found and the test-charge —test-charge interaction is
shown to conform to the usual screened Coulomb plus
screened electron-phonon terms, with the phonons fully
renormalized by electron-phonon interactions. Section
VI contains a brief summary. A surprising feature is that
the bare frequencies 00 which appear in e (but not e )

are negative and diverging to —00. The Appendix
clarifies this feature.

Finally, because units and dimensions are somewhat
arbitrary and confusing, it is worth mentioning the policy
we have followed. All symbolic quantities like V(r, t)
have explicit dimensions; we have not taken refuge in the
device e =iri=0=1. We have decided that p(r) should
have units 0 ' (where 0 is volume), not e/0. Corre-
spondingly, all potentials have units of energy, not work
per unit charge. When Fourier transforming from r to k
and vice versa, it is possible to use factors of 0 ' and 0
in such a way as to prevent f (r) and f (k} from having
different dimensions. This has always been exploited in
order to make potentials (denoted by V or v) have units of
energy, and e( Q +6,Q +6', co) be dimensionless. With
these choices, the natural units for both e(r, r't t') and-
s '(r, r', t t') are —0 't ' which is the same as the di-
mensions of the unit tensor in (rt) space,
5(r —r')5(t t') S—uscep. tibilities acquire various units:
X(r, r', t t') is 0 t—' (energy) ' while X(r, r', co) is 0
(energy) ' and X '(r, r', co) is energy. Free energy F and
interaction energies V,2 always have units of energy.
These units are usually self-evident in the equations.

II. RESTRICTIONS ON THE DIELECTRIC FUNCTION
FROM STABILITY REQUIREMENTS

The inverse longitudinal dielectric function et,t is
defined in terms of the total change in potential energy of
a test charge at point r and time t which arises from the
presence of an infinitesimal perturbing field 5V,„,(r', t') at
other points in space and time

5V (r«, t)= f" dt' fd r'e, „'(r,r', t —t')5V,„,(r', t') .

The dielectric function e„, gives the inverse relation and
thus obeys

f dt" fd3r"e„,(r, r", t —t")et,t'(r", r', t"—t')

=5(r—r')5(t t') . (2}—
The function e ' is causal (vanishes for t'& t), whereas e
is not; ' thus e ' is more "fundamental. " In some ways
a still more fundamental response function is the density
response function or susceptibility 7, given as the relation
between V,„, and the induced charge density 5p«„where
the subscript "tot" is intended to emphasize that elec-
tronic and nuclear charge is included (but not any exter-
nal charge which might serve as a source for 5 V,„,),

5p„,(r, t)= f" dt' fd3r'X(r, r', t —t')5V, „,(r', t') . (3)

The screening charge 5p«, is the change in the
ensemble-average expectation value of the total charge-
density operator p„,(r},defined as

p„,(r)=Z +5(r—Ri) —+5(r—r;) .
1

It has been convenient to remove a factor of e =
~

e
~

from the charge density Eq. (5), inserting it back into
e /

~

r —r"
~

in Eq. (4). Thus all potentials have units of
energy. For simplicity, all nuclei are assumed identical,
with charge Z and mass M, located on a primitive lattice.
Operators are denoted by carets; nuclear coordinates are
denoted by R& where the vector index 1 also denotes the
lattice site 1 such that the displacement u&

——R&—1 is
small; r; denotes electron coordinates.

It is convenient to work with the Fourier transform of
the time variable; if 5V,„,(r't'} has a time dependence
e '"', then the relevant response functions are X(r, r', co)
and e '(r, r', co) and the inverse e(r, r', co) obeys

f d r "e(r,r",co}e '(r", r', co) =5(r—r'} . (6)

Causality requires X and e ' be analytic functions when
co is continued to the complex variables z in the upper
half-plane. We will later make use of the Kubo-type for-
mula,

X(r, r', ap}= ——f dt ([p„,(r, t),p„,(r', 0)) )e+'"' .
0

The dc limit (co=0) of X, denoted by X(r, r') is real and
symmetric in (r, r') and has especially convenient proper-
ties. If an arbitrary static charge disturbance 5p is intro-
duced, the Helmholtz free energy F of this system would
be altered by the amount

5F= ,' fd r—d—r'5p(r)X '(r, r')5p(r')

+fd r5p(r)5V, „,(r) . (8)

The actual equilibrium charge density 5p«, must mini-
mize 5F, and is obtained when Eq. (3} is obeyed. In Eq.
(8), 5 V,„, is time-independent (otherwise thermodynamics
does not apply) and the inverse of X is defined as in Eq.
(6)

Consider next the case when 5V,„,=0. Then the equi-
librium charge satisfies 5p=0. For this to be a stable
minimum of F, X ' must obey, for arbitrary 5p=f (r),

(f ~X
'

~ f ) =—fd rd r'f (r)X '(r, r')f(r')&0, (9)

i.e., X is a nonpositive operator. Equation (9) is the
fundamental condition for crystal stability. Because 7
is Hermitian, a complete set of eigenvectors

~

n ) and

This 7 is also causal, and is directly related to e ' be-
cause the total potential 5V„, felt by a test charge is
5V,„, plus the classical Coulomb field of the screening
charge 5p,o,

et,t'(r, r', t t')—= 5(r r—')5(t t ')—
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corresponding real, nonpositive eigenvalues X„' can be
found and made orthonormal

X '~ n&=X„'~ n),
(n'

[
n &=5„„.

(10)

where the coefficient Sp„ is (n
~
Sp). In the absence of

an external field, the free energy (8) becomes

Let us denote ( r
~

n ) as f„(r). An arbitrary static charge
fluctuation can be expanded as

Sp(r)= QSp„f„(r),

follows: v (r —r') is translationally invariant, so the func-
tions e'~' form a complete set of eigenvectors. The cor-
responding eigenvalues, 4me /Q, are all positive, so v is
a ositive operator. The operator with eigenfunctions
e ' ' and eigenvalues + (4m e /Q )'/ is then the "posi-
tive square root." In (r, r') space the operator happens to
be m e/

~

r r'
~

—. It is clear from the definition Eq.
(16} that when co=0, e, ' is real and symmetric. It con-
sists of a positive part, the unit operator 5(r —r') and a
negative part, U&&2Xv»z. The eigenvalues, A,;, of e, ',
obey

5F = ——,
' QX„' (Sp„('. (12) (i

~
j)=5.. .

X, =&i
I es

I
' &=1+&'

I vi/2Xvl/21i & .

(18)

If a second-order structural instability occurs, this is
driven by some eigenvalue, call it X, ', going to zero

X, '= —a(T —T, ), (13)

where T, is the mean-field approximation to the structur-
al transition temperature. The free energy then takes the
familiar Landau form

5F =—,'a(T —T, )Sp, ——,
' g X„'5p„,

n
(n+s)

(14)

where u, /2(r r') is defined as the—"positive square root"
of the operator u (r—r') =e /

~

r —r'
~

and

fd'r"u, /, (r—r")v, /2(r" —r')—:v (r —r') .

The existence of a positive square root can be deduced as

where Sp, is the order parameter. The point of this dis-
cussion is to show that eigenvalues of X (which are re-
ciprocals X„ofthe eigenvalues of X ') can cover a wide

range of negative values, approaching —00 near a
structural instability. There are also three special eigen-
vectors

5p (r) =V (p„,(r) )

which correspond to infinitesimal translations of the total
charge density. Since there is no restoring force for such
a translation, 5F=(5p ~X

'
~5p ) equals zero, or the

set 5p (r) spans a three-dimensional null space of X
All other eigenvalues must be negative. In a crystal,
X(r, r') is invariant under discrete translations
X(r ~l, r'+1}so Bloch's theorem applies and eigenvectors
can be chosen as simultaneous eigenvectors of the
translation operator (i.e., labeled by a wave vector Q).

The restriction to nonpositive eigenvalues for X ' and
X can be used to deduce restrictions on e ' and e. Unfor-
tunately, the relation (4) shows that e ' as defined in (1)
is not symmetric in (r, r ) at to=0. This introduces minor
complications which can be dealt with by defining a
"symmetric dielectric function:"

e, '(r, r', co)—:5(r —r')+ f d rid r2u, /z(r —ri)

XX(ri, rp, tu) v i/2(r2 —r'),
(16)

The operator X can be replaced by g„~ n)X„(n ~,
which yields for A,

A,;=1++ [(i
~

u, /2~n) )'X„.

This shows the following properties of eigenvalues A, ;
of e, '. (1) A, , & 1 (since X„&0). (2) If an eigenvalue X, of
X diverges to —~ [as —I/ (aT —T, ), for example] then
all eigenvectors

~

i ) of e ' of the same symmetry as
~

s )
have eigenvalues A, ; which also diverge to —00. (3) For
each eigenvector

~
i ) of e, ' with eigenvalue A,;, a corre-

sponding right eigenvector u, /z ~

i ) and left eigenvector
(i

~
v, /2 exist for the unsymmetrized operator e,„', and

both correspond to eigenvalue A, Here v, /2 is the in-
verse of v»2.

Finally, all of the above translate immediately into
statements about the dielectric function e„,and its eigen-
values, I/A, ;. In particular the restriction I,; & 1 on eigen-
values of e, ' require I/k, ; &1 if A, ; &0 or I/A, ; &0 if
A, ; &0. The only restriction on eigenvalues of e«, is that
the region between 0 and 1 is forbidden. The possible be-
havior of X, e ', and e as a function of temperature is
schematically illustrated in Fig. 1. These results repro-
duce the conclusions of Refs. 2 and 3, in a generalized
form which applies to inhomogeneous systems. The same
conclusions have already been reached by Car et al. for
the electronic response of an inhomogeneous medium.
Their argument is based on causality and confirmed by
explicit construction of the Lehmann representation for

—1

In the case of a periodic lattice the dielectric response
of the solid is described by e '(q+G, q+G', 0) where
G, G' are reciprocal-lattice vectors. The macroscopic
response is given by eM(q, c0)=1/e '(q, q, O). As shown
above the eigenvalues of e ' satisfy A, ,- & 1. In the case of
a Hermitian matrix it is easily shown that if the eigenval-
ues satisfy A, & 1 then the diagonal elements are also less
than 1. This follows from the variational principle which
states that no diagonal matrix element can exceed the
maximum eigenvalue, which is 1. Consequently
I/eM(q, O) & 1 in agreement with Ref. 2.

Previous workers have found an additional restric-
tion on eM; lim OeM(q, O) & 1. This condition is more
stringent than lim& o[1/eM(q, O)] &1 as can be seen in



2S16 ALLEN, COHEN, AND PENN 38

8/iirzz/8
This is interpreted as the background energy plus a nega-
tive energy of charge relaxation around the point charge,
namely the test charge interacting with its oppositely
charged screening cloud. Next, insert a second test
charge of charge Qz at location r2. The total change in

energy will have a direct interaction Q, Qz/
~
r, —rz

~

and
then a term of the type of Eq. (21) except that each oc-
currence of Q, e/~ r, —r

~

is replaced by [Qie/~ ri
—r

~
+Q2e/

~
r2 —r

~
]. There are two background terms,

and the term with each test charge interacting with the
screening cloud of both charges. The total energy can
now be separated into three pieces, F1 +F2
+(Q, Qz/e ) V,z, where F, and F2 are given by Eq. (21)
and its equivalent for an isolated charge 2. The interest-
ing piece is V12

(Q1Q2/e ) V12(rl r2)

QiQ2 „, , Qie , Qze

(22)

FIG. 1. Schematic behavior of X, e ', and e as a function of
temperature near a second-order instability. X actual refers to
the eigenvalue of X(,r, r') and e ' and e are similarly defined.

Fig. 1. Thus, for a spatially uniform instability the phase
transition would not occur at T, in Fig. 1 but rather at
the higher temperature indicated by the dashed line. An
example is the ferroelectric transition discussed by Kit-
tel.

III. THE TEST CHARGE-TEST CHARGE INTERACTION

,' fd rd r'—5p—,(r)X '(r, r')5p, (r') . (20)

Equation (20) is simply Eq. (8) supplemented by the back-
ground energy of the test charge in the medium with
charge po. After minimizing, the energy is

Qie
F, [min] = fd r po(r)

I 1
—I'

Qie Qie+—,
' d rd'r' X(r, r')

r, —r ' r' —r,

(21)

We now examine the interaction energy between two
test charges inserted in a medium. Consider first a medi-
um with no test charges, equilibrium charge density
po(r), and susceptibility X. Then insert a single test
charge of infinitesimal charge Q, (

~ Q, ~
&&e) at point r, .

There is a charge distortion 5pi(r} which minimizes the
energy functional

Qie
F, [5p]= f5'r [po(r)+5p, (r)]

which is the total energy of interaction. This has a direct
interaction and a screening part which tends to have op-
posite sign. In the limit r2~r, the screening must have
opposite sign to the direct term because of the nonposi-
tivity of X. Equation (22) can be written in various alter-
nate forms. In short-hand operator notation they are

V12
——U +V+V

—1 —1
V12 6t t V =U1/26 U1/2

(23)

(24)

As long as the point charges are located at distinct points
in space, the restrictions on X place no restrictions on
V12

Equations (22)—(24) can be immediately generalized to
the case where the point charges are smeared into distri-
buted charges 5p, and 5p2', the interaction energy is then

5U, =(5p,
i V, i5p ) . (25)

In the special case where the two charge distributions 5p,
and 5p2 are the same, the interaction energy of the charge
cloud 5p with itself is

5U» ———,'(5p,
~

v+vXv
~ 5p, } . (26)

We picture the charge distribution as a cloud of point
charges and sum up (by integration) the pairwise energy
of each piece with every other piece. Each pair should
only be counted once, hence a factor of —,

' is introduced to
avoid double counting. The first term of Eq. (26) is the
positive energy of direct Coulomb repulsion, while the
second term, representing the screening effect of the in-
tervening medium, is negative. Thus the requirement of
stability enforces the equally necessary requirement that
the relaxation or screening must reduce the electrostatic
interaction energy of an inserted charge distribution. It
seems paradoxical that the energy in Eq. (26) can actually
be negative, as is implied by the existence of negative ei-
genvalues of e, '. The paradox seems to involve the sup-
position that if Eq. (26} is negative for some 5p(r), then
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the system should be unstable relative to a spontaneous
distortion of type 5p(r). However, Eq. (26} is not the to-
tal energy of a spontaneous distortion 5p, (r), but rather

5p, is an externally introduced charge. Energy was re-
quired to assemble this distribution, part of which (the
direct Coulomb part} is included and part of which is om-
itted from Eq. (26}. If 5p& is actually an internal charge
fluctuation, we must include the quantum kinetic energy
operator, for example, in finding its energy.

Finally, let us examine the effective screened total elec-
tron interaction which appears in the theory of supercon-
ductivity. The matrix element for scattering a Cooper
pair from a state k to k' on the Fermi surface (FS) is

Vkk. = ( k' t, —k' $
i V„, i

k t, —k l )

=fd r d r'[fk (r)gk(r)] V«, (r, r')[ilk (r')Qk(r')] .

(27)

V. The remaining three are not. There are two distinct
effects which are not included in e 'v: (1) vertex correc-
tions as in graphs 4 and 5, and (2) nonlinear elfects as in
graph 6. It is possible to view graph 6 as a fancy vertex
correction, but other graphs exist which cannot be so
classified. The physical origin of vertex corrections lies in
the fact that the electron is not a test charge, it has an ex-
change interaction with the other electrons of the medi-
um. The physical origin of nonlinear effects is the fact
that the charge e is not infinitesimal, so linear response
theory is not exact.

In spite of the fact that V„, is not e 'v, the possibility
remains that either the corrections are small or they can
be approximately included as a multiplicative correction.
We now work out a formula for p —k in the e 'v approx-
imation. First notice that time reversal symmetry tells us
that p' k

——pk. This enables the second set of brackets [ ]
of Eq. (27) to be written as the complex conjugate of the
first. If we define

+t(0) VBCS 8 ~ +t(0)~ Vk, k'~FS (28)

There are two questions: (1}what is the correct expres-
sion for V«, (r, r'), and (2) what can be said about the sign
of V~~? The interaction V&& appears in BCS theory in
the form

gkk. (r) =Pk.(r)Qk(r)

then Eq. (27) in e 'U approximation is

Vkk' (gkk I&t«'U I gkk' ~
—1

(29)

(30)

where the minus sign recognizes the reversed sign con-
vention of BCS, p is the purely electronic interaction, in-
cluding bare Coulomb interaction and screening by elec-
tron density distortions, and —A, is the attractive
electron-phonon part from screening caused by lattice
distortions. Question (2) above asks whether p, —I, is
necessarily positive. Question (1} asks whether V„, is
adequately given by e,„'v. The answer to both questions
is apparently no.

The unambiguous procedure for determining V„, is
Feynman-Dyson perturbation theory as extended by
Gor'kov and Eliashberg to the superconducting state.
Various Feynman graphs contributing to V«, (k, k') are
shown in Fig. 2. The first 3 graphs (bare Coulomb repul-
sion, purely electronic screening of the Coulomb repul-
sion, and screened electron-phonon graphs) are all prop-
erly included in e,„v, as will be shown explicitly in Sec.

tot

+ ~ ~ ~

From Eq. (23) the first term in e,«'v, namely v (r, r'), gives
a purely repulsive contribution, while the second term,
vXv, gives a purely attractive contribution. Stability
places no restriction on the sign of the total, so p —A, may
be positive or negative. Little is known about the magni-
tude of p except that in jellium, and by extension, simple
metals, it is probably between 0.0 and 0.5, whereas A, as
determined by experiment is -0.1 in alkali metals and
1.5-2.0 in Pb and Pb-Bi alloys. Therefore experiment
strongly suggests that p, —A, can take either sign. This
does not contradict stability arguments, both because
e 'v can have negative eigenvalues, and because e 'v is
an approximation to V„,. These conclusions largely re-
state results found in Refs. 2 and 3.

IV. MEAN-FIELD TREATMENT

The purpose of this section is to derive an expression
for e„, in a mean-field treatment which generalizes the fa-
miliar (RPA) mean-field treatment of e„, the purely elec-
tronic dielectric screening function. To do this, we for-
mulate a mean-field theory which approximates the crys-
tal Hamiltonian by a solvable noninteracting one, then
solve for the noninteracting response function of that sys-
tem, and finally make a mean-field treatment of the fluc-
tuations around the noninteracting system to obtain the
mean-field response function. The result is simple, and in
Sec. V we show that the answer embodies a large amount
of physics.

The total Hamiltonian can be written in terms of the
total density operator of Eq. (5), which has two pieces,
pt«(r) =pL (r}+p,t(r },the "lattice" and electronic pieces:

H«, = g p; /2m + g P) /2M

FIG. 2. Feynman graphs for the effective electron-electron
interaction which binds a Cooper pair in the BCS theory. + —,

' d rd r'p„, r v r —r'ptot (31)
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The mean-field treatment consists of writing the density
operator as

tot o,el+ O, L + int+ extra & (32)

where the first two pieces contain the noninteracting elec-
tronic and phonon parts. The electronic part,

Ho, i
——gp; /2m+ fd r d r'p, i(r'}v(r —r')&p„,(r) &

(33)

and temporarily ignoring the part of Eq. (31) which is
quadratic in the fluctuation term. A convenient way of
subdividing H„, is as follows pL (Q)=Z g e

1

(39)

and similarly for p„(Q). The average charge density is
periodic

(4o)

so only the reciprocal lattice vectors G appear. Here 0 is
the crystal volume. Then the bare-phonon Hamiltonian
becomes

sion between the nuclei, and a negative term which
corrects for the fact that the Coulomb repulsion between
electrons was double-counted in the Hartree term Hp e].

To solve the phonon part Eq. (36), it is convenient to
introduce the Fourier-transformed density operator

contains the Hartree interaction of each electron with the
mean field of every electron, as well as the interaction of
the electrons with the mean field of the nuclei. Since it is
linear in p,1, it is the sum of ZN one-electron Hamiltoni-
ans H „,where Z is the nuclear charge and N the number
of nuclei:

Ho i ——+Pi /2M+ g [pL( —G) —&pL( —G) &]
1 0

X ', &p...(G) & .
QG

(41)

H„=p /2m +fd r'v(r —r')[&p,i(r') &+ & pi (r') & ] .

In a crystal, this is periodic and can be solved in principle

Now introduce the harmonic approximation by Taylor
expanding pL ( —G) to second order in ui ——Ri —1:

p ( —G)—&p ( —G)&=Zy[ ' '"' ' ']
I

Hleek(r) ek Pk(r) & (35) =Z g [iG u, ——,'(G.u, )~+ ] .
I

where k is short for the quantum numbers (kn} This.
Hartree theory requires a self-consistent solution because
& p,i(r') & is the sum of the occupied single electron charge
densities

~

gk(r')
~

. In principle, the nuclear charge
density & pL (r') & also could enter in a self-consistent way,
but it will be sufficient to let &pr (r')& refer to nuclei
frozen at perfect lattice positions. The Hartree treatment
is of course, less accurate than modern density-functional
procedures, which are no more complicated and could be
included at this stage, but we omit such refinements.

The phonon term is chosen to be

Hv L ——+Pi /2M+ fd r d r'[p~(r) &pL(r}&]—
1

Xv(r —r')&p„,(r')& . (36)

This allo~s lattice fluctuations to experience only those
restoring forces exerted by the rigid periodic average to-
tal density. The solutions of Eq. (36) are "bare" phonons
which are not very close to the experimental phonon fre-
quencies. The remaining two parts of H„, are

H;„,=—,
' f d r d3r'[p„,(r) —&p„,(r) &]v(r —r')

X [p„,(r') —
& p„,(r') & ],

H,„„,= —,
' dr dr' p~ r U r —r' pI r'

(37)

,' fdr dr'&p, ~(r)&—v(—r—r)&p,~(r')& . (38)

H;„, contains all the interaction terms, and H,„„,con-
tains the positive "Madelung" energy of Coulomb repul-

(42)

When inserted into Eq. (41},the term linear in ui vanishes

by symmetry leaving

Hp L
——g (Pi /2M+ 2E~pui~uiIi),

1

4n.ZeE p
—g &p„,(G——}& 6 Gp .

G QG

(43)

4mZe'
&p...(r=O)&. (45)

The question of whether Oo is positive or even finite is
not as relevant as might at first sight appear, and will be
addressed in Sec. V.

Now that Ho, 1
and Ho L have been solved, we consider

the density response functions, Xo, of this noninteracting
system, and XMF which takes interactions into account in
a mean-field approximation. By definition, Xo is to be the
exact response function [calculated from Eq. (7)] of the
complete Hamiltonian except for the term H;„, [Eq. (37)].
Since H,„„,is a constant, go is the response function of

This describes a system of Einstein oscillators. If we as-
sume cubic symmetry, K

&
becomes Kv5 &, where the

scalar force constant Ko fixes the 3N-fold degenerate bare
frequency Qo

4vrZe
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Hp ]+Hp L ~ The interactions are taken into account by
the usual mean-Seld procedure of assuming that the sys-
tem responds to a total potential 5V,„,+5V& just as the
noninteracting system responds to the external potential

alone [Eq. (3)]. The extra potential 5 VH is the classical or
Hartree electrostatic potential of the charge-density fluc-
tuation 5ptot which is self-consistently calculated, and
denoted 5pM„. Thus Eq. (3) is replaced by

5pMp(rt)= f—d r'f dt'XMp(r, r', t t')5—V,„,(r', t')

p t Pp r, r', i —t' V,„, r', t' + r"v r' —r" pMF r", t' (46)

In symbolic operator notation, this gives the equation for
+MF

XMp=Xo+XoUXMp=(1 XoU) Xo
—1 (47)

eMp= 1+UXMp
—1

~MF 1 U~p
(48)

This is the usual RPA relation between the dielectric
function and the noninteracting susceptibility. However,
in the usual approach Xo is the electronic part, and Eq.
(48} includes an approximate treatment of the electron-
electron Coulomb interaction only. The novelty of the

which is the usual RPA type of formula. Finally the
mean-field dielectric function is defined as in Eq. (4}, and
can be solved explicitly

XO Xo,el +Xo,L (49)

We will require e and X in reciprocal space, so Eq. (7) can
be replaced by its Fourier transformed version

present approach is that E'~F contains an approximate
treatment of all Coulomb interactions between charge
fluctuations: displacement-displacement and electron-
phonon as well as electron-electron.

Finally let us use Eq. (7) to evaluate Xo. Separating p„,
into p, i and pL there are three terms: (1) the purely elec-
tronic part Xo,~, (2) the purely phonon part Xo L, and (3)
the mixed terms involving [pei( t ),pL (0)] and vice versa.
It is easy to verify that when H;„t is omitted from the
Hamiltonian which determines the t dependence of p, &

and pL, the mixed commutator is zero at all t. Thus we
have

X(Q+G, Q+G', to}= ——f dt ( [p„,(Q+G, t),p„,( —Q —G', 0)] )e'"',
O

(50)

where crystalline translational symmetry is now assumed.
The electronic part of Xp is a standard result

Xo „(Q+G,Q+G', c0)

The function D & is easily calculated from the results
(43)-(45)

Doti(Q, to) = g e~(Qj )ett( —Qj)/[M(to' —&o)]

= y (k ~e-"«+o~'~k )
k, k' Ek +k'

=5~ti[M (to —QO}] (54)

(51)

The lattice part can be calculated exactly if Hp L in Eq.
(36) is replaced by its harmonic approximation. We only
need to know Xp L to second order in u&, and to go to
higher order would not be consistent with the harmonic
approximation already made. Keeping orally the 1owest
terms in the Taylor expansion Eq. (42), the lattice part
Pp L is given by the displacement-displacement correla-
tion function D

&

Xo L(Q+G, Q+G', to)=NZ (Q+G)~ P(Q, oi)

The sum in Eq. (54) is over the three degenerate modes
which by completeness of the eigenvectors e(Qj} yields
the unit tensor 5 &. Finally, Eq. (52) becomes

X,,(Q+G, Q+G, )= 'Q+ "Q+ '
M(t0 —0 )

It is easy to verify the stability requirement that 7 is a
negative operator (when to=0). This takes the form

0 & (f ~
X

~ f ) = g g f '(Q+G)X(Q+G, Q+G')
Q G,G'

x (Q+ G')ti,

D p
———(i/fi) f dt([u& (t), &u&( )0])e' '.

(52) xf(Q+G') .

(53)
The electronic part [Eq. (51}]gives

(56)
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(f ~Xo |if)= g g f(Q+G)(k'ie' + ' ik)
k, k', Q G

&&(fi, f—k')/(&k —&k ) (57)

able, then the full inverse of Eq. (61) can also be found by
use of the formula for matrices with factorizable parts.
Given a matrix of the form

which is negative because the first factor is positive and
the second negative. Thus the mean field dielectric func-
tion (48) is positive when lattice response is omitted. The
lattice part [Eq. (55)] gives

M;,.=3„—g r (i)t prp(j) .
a,p

Then the inverse is

(M —'),, =(A —'),, + gr (i)t prp(j),
a,p

(63)

(64)

(,f igo i i f ) = NQ—A(Q) A (Q)'/MQo,

A(Q)= g(Q+G)f(Q+G)
G

(58)
r.(i) = y (W ')-,„r'.(k),

k

(t ')
p (t——) p' —gr (i)(& ');irp(j) .

(65)

(66)

This is also negative, provided of course, Qo) 0, which is
an alternate way of demanding that the zeroth-order sys-
tem is stable. We shall see later that Qo) 0 is not obeyed,
so that eMF is by no means necessarily positive.

V. e ' AND COLLECTIVE MODES

To calculate the test-charge —test-charge interaction
V12 ——U+Ugv we need to invert the dielectric function
calculated in the preceding section. This is most easily
done in the symmetrized form

—1
V12 MF V1/26s MFU1/2

s MF 1 U1/2XOU1/2 (60)

The operator v1/2 is easily constructed in Fourier space,
and the symmetric dielectric function e, MF is like
eM„=1—ufo except that v =4tre /Q(Q+G) is replaced
by 4ne/0

i
Q. +G

i ~

Q+G'
i
. Then we have

I'.
1 =eMF, .|(Q+G Q+G' tu)

—1 4me

Q(Q+G)
(68)

This corresponds to the first two graphs of Fig. 2. The
second piece of Eq. (67) is the screened electron-phonon
interaction corresponding to the third graph of Fig. 2.
The dot on this graph is P, the screened electron-phonon
matrix element

4.(Q+G) = & &MF, ,i(Q+G Q+Gl )(Q+Gi)
6)

The indices ij translate into G, G in Eq. (61). If we use
this to invert Eq. (60) and then construct the interaction
Eq. (59), we get

V, 2 MF= &,1+ g $ (Q+G)D p(Q )Qp(Q+G'), (67)
a,p

where the first term is the purely electronic part of the
screened interaction

e, MF eMF, i, ———gf~(Q+G)D~p(Q, tu)fp(Q+G'), (61)

f (Q+G) =(4mNZ2e2/Q(Q+G)2)'i2(Q+G)
4mZe

X
Q(Q+G, )

(69)

where eMF,1, is the purely electronic part, and D p is the
displacement-displacement correlation function given by
Eq. (54). If we assume that the inverse of eo „, is avail-

which is the screened gradient of the electron-ion poten-
tial Ze /r The wavy . line in graph 3 of Fig. 2 is the re-
normalized phonon propagator D p given by

Dap =M(tu Qo+ap g fn(R+G&)[5o, o,+u]n(Q+G&)XMF, ci(Q+Gt~Q+G2itu)v&n(Q+62)]fp(Q+G2) i

(70)

where eM„'„, has been written as 1+v' XM„„u' . Writing out this propagator in more detail, Eq. (70) becomes

D p'(Q, tu)=Mtu 6 p IC p(Q, tu), — (71)

where K p(geo) is the "dynamical matrix, "given by

& p(Q, tu)=& p+ g(Q+G) (Q+G)p, + g (Q+G,),X,|MF(Q+Gi, Q+G2, tu)
4m.Z e 4mZe

Q(Q+G) o o Q(Q+Gi)

4mZe
X

n(Q G)(Q+G2)p (72)
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The second and third parts of Eq. (72) appear in the
theory of phonon dynamics, " being the direct
Coulomb force and the indirect electron mediated parts,
respectively. The remaining piece, K & is given by Eq.
(44), and does not yet have the standard form.

With the help of Eq. (39), Eq. (44) can be written as

the electronic charge density is riV&& p,&(r) ). This change
can be viewed as a response to a perturbation,
gVtJV, &; „(r), where the unscreened electron-ion interac-
tion V,~;,„ is just QZe /

~

r —1 ~, and the response func-
tion is 7,&. In Fourier space, this translates into

4mZeX'. = —+G.G ', [Z+&p„(G)&/&] .
Q, G

(73) G, & p„(G) ) = y X„„(G,G ),, G,',4mZe

6
' QG'

(74)

The first term of E t3 combines with the second term of
Eq. (72) to give the total direct Coulomb part of the
dynamical matrix. The second part of Eq. (73) can be
rewritten as follows. Suppose the entire lattice is dis-
placed by an arbitrary small amount gP. The change in

I

a relation known as the "acoustic sum rule" which the
mean-field approximation obeys. " Using this in Eq.
(73) gives a term which combines with the last term of
Eq. (72). The complete dynamical matrix then has the
form

It p(Q, ~)= g [(Q+G) 4(Q+G, Q+G', a))(Q+G')p —6 4(G, G', 0)Gp],
GG'

where the complete interaction 4 is

2 2 2 2

Q(Q+G)' Q(Q+G)' ' Q(Q+G'}'

(75)

(76)

MQO ——— g [Z 4- & p,)(G})/X] .
G

(77)

It is easy to see from Eq. (45} that this is negative and
diverging to —Do. Although these features seem undesir-
able, they are inevitable consequences of the simple
mean-field procedure which as usual adds an unphysical
self-force (which gets cancelled in the end). This aspect
of mean field theory is explored further in the Appendix.
There it is shown that the mean field treatment is exact
for classical harmonic vibrations, and that the cancella-
tion of self-interactions is exact. Because the particles are
classical point charges, the self-force of the nucleus is
infinite and repulsive. The starting noninteracting model
violates the stability criterion. This should not be
surprising: stability is only restored in the end when

Not surprisingly, this is the electronic part of the total
screened interaction between two test charges Z. Equa-
tions (75) and (76) reproduce the theory of Refs. 9—11.
Thus the simple mean geld theory, Eq. (6I), yields a fully
developed theory for e ' and for the test-charge test-—
charge interaction, Eq. (67), which has poles at the correct
physical phonon frequencies.

The total test-charge —test-charge interaction Eq. (67)
is familiar in the theory of superconductivity, being the
same as Fig. 2, graphs 1-3. Maksimov' in particular,
has written this interaction out, and used it to deftne a to-
tal dielectric function e,„U = V&2. Thus Maksimov's to-
tal dielectric function coincides with the mean-field result
derived here.

Let us now return to the question of the sign and mag-
nitude of the bare-phonon frequencies Qo of Eqs. (44) and
(45), which are eigenfunctions of K

& given in Eq. (73).
The trace of this matrix is the sum of the bare-phonon
frequencies of the three branches, which in cubic symme-
try are all degenerate

charge fluctuations interact, and only if the crystal struc-
tur'e parameters are chosen carefully to yield a stable
structure. The divergence of the sum in Eq. (77} is also
not bothersome. When the divergent sums are rear-
ranged as in Eq. (75), convergence is rapid. A way to jus-
tify the matrix inversion procedure and rearrangement is
as follows: arbitrarily terminate the matrix e(G, G') after
a certain number of shells of reciprocal-lattice vectors,
and keep the same set of shells in the computation of K &

in Eq. (44). Then Qo is large and negative so Xo L Eq. (55}
is small and positive. The inversion procedure is well
defined and the rearrangement of Eq. (75) is legitimate.
Finally, take the limit of this process as the number of
shells goes to infinity.

An alternate route that leads to finite and sensible
answers is to let &pL ) refer to an average taken with

some finite rms thermal displacement included. Then

p„,(r =0) is finite [see Eq. (45)] and QO2, although still

negative, is finite.
The mean-field total dielectric function is apparently

quite peculiar. It consists of an electronic part which in
RPA has eigenvalues all ) 1, in spite of the fact that sta-
bility also permits eigenvalues & 0. In addition, there is a
phonon part which is negative (i.e., has eigenvalues (0}
but each matrix element is infinitesimally small as the
number of G shells goes to infinity. However, this does
not mean that eMF has no negative eigenvalues, because
the phonon contributions to eMF do not diminish in size
as

~
G ~, ~

G' ~, or
~
G —G'

~

increases. It is an infinitely
large matrix of infinitesimal elements, so the eigenvalues
are not necessarily constrained by simple bounds. The
final results for XMF or e,„' are very strongly altered by
the infinitesimal elements of eM„, to the point that XMF
will surely have unstable behavior unless the crystal
structure parameters are carefully chosen to yield stabili-
ty. Thus, we have an extremely simple form for the pho-
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non contribution to eMF. While it is not one which is

computationally useful, it may prove to be useful analyti-
cally.

It is also instructive to examine the form of
XMF(Q+G, Q+G', co) which emerges from this treat-
ment. This can be found from V, 2 M„by use of Eq. (23),

XMF u I l2, MF u}u '. The answer ls

XMF(Q+G&Q+G &} XMF, el+XMF, L (78)

X u(Q+G, )](Q+G, ). . (80)

This has a simple interpretation. If the subscript sc for
"screening" is omitted [i.e., (Q+6)„, is replaced by

(Q +G) ] then Eq. (79) is just the nuclear
density-nuclear density correlation function, or the part
of Eq. (50) quadratic in pi. The screening enters Eq. (79}
as three additive corrections to the unscreened susceptibi-
ilty. The first, XM„,lu [(Q+Gl)+ &(Q+G')&] has

XMF, ~
to the left of D p and arises from the part of Eq.

(50) with [p„,pL]. Another arises from [pL,p„], and a
third arises from [p,l,p, l] and has XM„„on both sides of
D &. These corrections take into account the Coulomb
coupling between electronic and lattice density Auctua-
tions.

The Coulomb and electron-phonon interactions cause
the phonon propagator D & to be fully renormalized. In
terms of eact phonon eigenstates, D p is

D p(Q, a) ) = g e'(Q )[Mco Mcoq ] 'ep(Q—J ),
J

where e(Qj ) is the eigenvector of K(Q, co) in Eq. (75), and

Mao is the corresponding eigenvalue. In the limit co=0,
E is Hermitian, and co@ and e,(Qj) are real. A negative
eigenvalue M~@ would correspond to an unstable sys-
tern. If the system is stable, co+ &0 holds for all modes

(Qj) (except the three acoustic branches at Q=O) and D
is a nonpositive matrix (at re=0). Similarly XMF I is non-
positive, following the algebra of Eq. (58) but with
(Q+G) in place of (Q+G) and co@ in place of Qo.
The purely electronic part XM„,~

is also nonpositive.
This follows from Eq. (57}which shows that Xo,l

is nega-
tive and from Eq. (47) which can be written as
JMF ——70 ' —u and holds for the purely electronic part of
7 as well as for the total X. The sum of two negative
operators is negative. Thus the condition co gO is
suScient to guarantee that 7 is nonpositive and that e
and e ' obey the stability conditions.

These results enable us to see more vividly the way in
which many real materials undoubtedly have negative

where XMF, ~
is the result when the lattice is frozen. The

lattice term can be written as in Eq. (52)

XMF L(Q+G&Q+G'&~)

=NZ (Q+ G )„D p(Q, cu)(Q+ G')„p, (79)

(Q+G)„.
X [~G,G + XMF, I(Q+G Q+Gl )

Gl

eigenvalues of e,„' and thus of e„, at co=0. In order to
avoid negative eigenvalues of e ', U

& &2XU] &2 must not
have eigenvalues less than —1. But XM„L has the factor
—Mco@ in the denominator. If the system has any "soft
modes, " there will be a strong tendency for large negative
eigenvalues of X. In the li~it that an eigenfrequency goes
to zero, 7 and e ' will have eigenvalues diverging to
—ao, and e will have eigenvalues approaching zero from
the negative side. Thus, well before any "soft mode" goes
unstable, there will be negative eigenvalues of et

VI. CONCLUSIONS

Previous work relating stability requirements to re-
strictions on the total dielectric function have been gen-
eralized to the case of inhomogeneous materials. It is
concluded that the eigenvalues of the inverse dielectric
matrix, A, , satisfy 1,, &1. A consequence of this is that
the electron-electron interaction (as determined by test
charges} which enters BCS theory is not restricted to pos-
itive values by general stability requirements, i.e., p —A,

can be negative.
The total dielectric function for a combined system of

electron plus lattice is calculated in mean-field theory
with remarkably simple results, Eqs. (51) and (55). The
poles of the inverse dielectric function are shown to be at
the phonon frequencies determined by the usual dynami-
cal matrix.
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APPENDIX: RENORMALIZED AND BARE
FREQUENCIES IN RPA

The treatment given in Secs. IV and V uses a natural
version of the RPA to generate renormalized phonon fre-
quencies from a noninteracting reference system. How-
ever, the reader may be puzzled by the fact that the
"bare" squared phonon frequencies Qo diHer from other
definitions which arise in other contexts. More discon-
certing is the fact that Qo remains in the RPA formula
for e, and it is negative and diverging to minus infinity.
This divergence comes about because of a nonphysical
self interaction u(r; r~) which blows up whe—n r,=r.
Almost by magic, the true finite frequencies co& emerge as
poles of 7 after e ' is constructed. This Appendix at-
tempts to demystify these features by tracing their ap-
pearance in a much simpler problem.
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Consider a classical one-dimensional model for a dia-
tornic molecule

H =p, /2M +pz/2M+v (r, r—z), (Al)

where the potential v has a stable minimum at a separa-
tion rv (for example, v might be a Lennard-Jones interac-
tion. ) We know that the two eigenmodes of this system
have cubi

——0 and co& v "——(rv )/(M/2) where the first mode
is the uniform translation of the center of mass, and the
second mode is the vibration of the relative coordinate
rz r„w—ith reduced mass M/2. Let us derive these by a
mean-field treatment of the response function. Ultimate-
ly we want to do the susceptibility, but it is illuminating
first to calculate the displacement response function
D;J(vz), defined as

(u, (t)) = gD; (iv)F, e
J

(A2)

That is, D gives the displacement of the ith atom when
forces F„F2 are applied to each atom at the same fre-
quency co. D is the phonon Green's function, and has
poles at the resonant frequencies of the system.

We work in harmonic approximation around the stable
minimum, which permits us to replace (Al) by

H =pi/2M+pz/2M+ —,'v "(rp)(uz u, ) (A3)

where u; are the displacements from the minima at

R harv/2, and R is the center of mass. A mean field

theory can be made by replacing u; by ( u, ) +5u; (where

5u; is u; —( u; ) ) and temporarily ignoring the term quad-
ratic in 5u;. Now since ( u; ) =0 in the absence of exter-
nal forces, the reference system is just free particles with

Hv (p i +p z ) /2——M. The response function is D,
/Mco, just hke tlM Drude response of the nonin

teracting electron gas. Now the interaction v" is taken
into account in the usual mean field fashion, by assuming
that the actual response of the particles is the nonin-
teracting response to the total force consisting of the
external force plus the harmonic force caused by the
mean displacement of the atoms.

(u;) = QDJ(co)
J

(A7)

i.e., the uniform translation and the optic vibration. The
corresponding poles of D are at co =0 and co =2v" /M,
exactly as expected.

The following lessons can be drawn from this example.
(1) Mean-field theory gives an exact treatment of dynam-
ics in harmonic approximation. (2) The reference system
does not have to be close to the true system, or even
stable. In this example, the reference system was free
particles with no restoring forces; the "bare" frequencies
Qv were zero. (3) The generalization to large or infinite

systems of bound particles with harmonic interactions is
immediate. The "bare frequencies" are zero, the nonin-
teracting response function is Do ' ———Mco and the
mean field answer, which is exact, is D '= —M~ +K
where K is the force constant matrix, given by

i j &mn}

(A8)

and (mn ) indicates that the sum goes over each bond
once.

Now let us solve for the susceptibility 7 by a mean field
theory analogous to Sec. IV. For the 1D diatomic classi-
cal model, the nuclear density is

p(r) =5(r r~ )+5(—r rz), —

and the Hamiltonian (Al) becomes

(A9)

H =p i /2M +pz /2M + ,' 1 dr dr'—p(r)v (r —r')p(r')

—v(r =0), (A 10)

+ r dr' p r v r —r' p r' —p r' +const.

(Al 1)

where the last piece subtracts off the self-interactions
contained in the previous piece. Now replace the density
p(r) by (p(r) ) +5p(r). The part quadratic in 5p(r) is the
interaction H;„„and the remaining part is

Ho = (p i +pz )/2M

I
X F — —e "(»,—e, )') e

Bu 2J

= QDi(co) F —QR~k(uk) e (A4)

The average density (p(r)) is just the static molecule
5(r r~ )+5(r r—

z ). Ap—art from constant terms, the po-
tential in (Al 1) consists of an identical single-particle po-
tential for each atom

where the matrix R is
V rf rJ' V rf rJ 2

V rI' QJ
IJ fJ

(A12)

II—V

II II—V V
(A5)

This reference system has each atom vibrating indepen-
dently. The eigenfrequencies are the same for each atom

D '=Do '+R =
—Mao +v"

II—V

The solution is easily found

—Mao +v" (A6)

MQO ——v"(r =0)+v"(r =ro) .

The displacement correlation function is

Do '(co)=M(Q() —iv )1 .

(A13)

(A14)

The eigenvalues are —Mao and —Mao +2v", and the
correponding eigenvectors

We now consider the effect of an external potential and of
the interactions
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H,„,=fdr 5p(r) V,„,(r)e

H;„,= —,
' f dr dr'5p(r)u(r —r')5p(r') .

(A15}

(A16)

The mean field treatment of the susceptibility assumes
that the system reponds as the noninteracting reference
system does, except driven by V,„, plus a Hartree-type
field.

(5p(r))e

=fdr'Xo(r, r', to)

X V,„,(r')+ fdr"u(r' r")—(5p(r")) e

X '(r, r', to)=10 '(r, r', to) u—(r —r') . (A18)

Rather than compute (A18} directly, we find a relation
between 7 ' and D '. The external perturbation can be
expressed either through a potential or through a force

H,„,=fdr 5p(r) V,„,(r) = —g u,.I'; . (A19)

The density 5p(r) is gu;V;p, which enables us to identify

By inverting the definitions of X and D, (A19) can be writ-
ten as

fdr dr'5p(r)g '(r, r')5p(r')= —g u;D J 'ui .

The resulting susceptibility obeys

(A17) D, '= —V, V X '(R;,R, co) .

Then Eq. (A18) becomes

(A21)

—Mco +vp'+v, "
r =R,r'=R.

I J

—Mco +vp'+v„"

II—vp

II—v
Pp

II—v fp

II—vp

(A22)

(A23}

(A24)

Equation (A23) agrees exactly with (A6), so we have
again correctly found the vibrational eigenfrequencies.

The lessons to be drawn from this second calculation
are the following.

(1) As in the calculation of D in Eqs. (Al) —(A7), the
mean field treatment of 7 gives the exact dynamics of a
harmonic system.

(2) Again the reference system is very different from
the true system, and is typically unstable. When density
rather than displacement is used as the dynamical vari-
able, the reference system contains unphysical self forces,
expressed as v "(r =0) in Eq. (A13}. When the poles of X
are found by mean field theory, the self forces cancel.
The bare frequencies Qp are generally unstable and diver-
gent. For example, the Lennard-Jones system has
u (r) =e(trlr)' so th—at 0() is more severely divergent than
the Coulomb case in Secs. IV and V.

(3) The generalization to large systems is again immedi-
ate, and it is easy to see that the answer (A22) is
equivalent to (A8).

It is useful to consider the form of the bare frequencies
when (A12} is applied to a periodic system.

g —,'u "(r
J )uJ = g —,'MQou;

&I

Mtoo5 &
———g v(G)GaG& .

G

I

This is the precise analog of Eq. (44). When the complete
problem of the periodic lattice with potential u (r r'} is-
solved by any of the methods above, followed by Fourier
transforming, a 3 X 3 dynamical matrix E t)(Q) is found

& p(Q)= g [ v(Q+G)(Q+G), (Q+G)t)

—u(G)G Gt)], (A25)

which is the analog of Eqs. (75) and (76}.
It is natural to wonder whether the form for e given by

Eqs. (48), (51), and (55) is compulsory. More precisely,
can we avoid the peculiarity that the lattice part 7p L of
Eq. (55) is infinitesimal owing to the diverging bare fre-
quencies of Eqs. (44) and (45)? The answer seems to be
no. We are stuck with these forms. We can make Qp
large but finite by truncation or a smooth cutoff, but we
cannot replace these formulas by something different.
The form of e ' in Sec. V is not at all peculiar, and in
fact quite compelling. Then the form of t..is dictated by
the fact that an inverse, if it exists, is unique.
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