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A model representing a system of coupled localized spins and mobile holes and relevant to su-

perconducting oxides is analyzed by performing both exact diagonalizations on small systems and

variational calculations. Ground-state expectation values, susceptibilities, optical conductivity,
and pairing correlations are calculated for systems with up to six unit cells arranged on a ring or
representing a square lattice. With increasing spin-mobile-hole coupling, our results show a tran-

sition to a regime of mobile singlets and short-range magnetic correlations. On the square lattice,
the interaction weakly enhances the d-wave pairing, but suppresses s-wave and extended s -wave

correlations.

I. INTRODUCTION

In the recent search for microscopic models for the
high-T, superconducting (SC) copper oxides, many vari-
ants of the Hubbard model have been studied. Based on
the underlying idea that a purely excitonic mechanism'
might explain the onset of the SC state at high tempera-
tures, single-band Hubbard models were first investigat-
ed;2 these models take into account effectively only a
single orbital per Cu02 unit cell in the oxide layers. Re-
sults on possible electron-pairing mechanisms in these
models are still controversial, 2 s and more accurate (nu-
merical) many-body studies on larger-sized systems and
at lower temperatures will be required to resolve this con-
troversy.

Several authors have recently considered a more realis-
tic two-band Hubbard model, '2 which explicitly in-
cludes both Cu and 0 orbitals in the unit cell. One clear
motivation for studying this more-complicated situation is
that for parameter regimes relevant to the SC copper ox-
ides the results for the two-band model cannot be mapped
(at least not in a straightforward way) onto a single-band
model. Further, it appears that in doping the reference
substance —which for definiteness we consider to be
La204—the resultin~ holes seem predominantly to occupy
p orbitals on 0 sites. 2

To date, most studies of the two-band Hubbard model
have been devoted to the search for local (real-space)
pairing of holes on 0 sites in the presence of the antifer-
romagnetically (AFM) ordered (or correlated) spins on
Cu sites. An attraction due to the spin exchange between
two holes on neighboring 0 sites has been claimed in Refs.
7 and 9; however, this seems to be overcome by the repul-
sion due to the loss of the kinetic energy. Hirsch argues
in favor of the hole-hole attraction due to intermediate
broken (AFM) bonds; the validity of this argument
remains unclear, for it would seem to apply well to a
single-band Hubbard model.

In a previous paper, '0 one of the present authors de-
rived from an initial two-band Hubbard model a reduced
Hamiltonian describing a coupled system of localized
spins on Cu sites and mobile holes on 0 sites. The
simplification, which is based on the elimination of the

strong on-site (Cu) Coulomb repulsion from the problem,
has the conceptual advantage that, for intermediate spin-
hole interaction, it focuses directly on the coupling of two
relevant degrees of freedom —namely, the mobile carriers
on the 0 sites and magnetic fluctuations mainly due to
spin on Cu sites —currently thought to be relevant in SC
oxides. An analogous separation has proved to be a
difficult problem in a single-band Hubbard model. In our
previous paper'0 the simplified model was studied pertur-
batively for a low concentration of holes in the AFM
phase. The results showed a substantial enhancement of
the hole effective mass and a strong sensitivity of the
AFM order to doping. In addition, the hole-hole interac-
tion through the AFM magnons was shown' to be
ineffective for producing SC pairing, at least in the weak-
coupling and the very-low-doping regimes.

Recently, Zhang and Rice" used similar intermediate
steps, taking into account also more explicitly the phases
of p and d orbitals, to map the two-band Hubbard model
onto an eff'ective single-band model for a motion of local
singlets, formed by mobile holes and Cu spins. The quali-
tative difference from our approach'0 stems mainly from
the larger spin-hole interaction assumed in Ref. 11; in

contrast, we are able to study a range of interaction
strengths.

In the present article we study the coupled spin-hole
model via exact diagonalization of small systems and a
variational ansatz. Our aim is to provide results valid
beyond the perturbative coupling regime and, in addition,
beyond the low-doping regime in which AFM ordering
holds. Such nonperturbative, true many-body results are
essential to test the validity (or failure) of the physical in-
tuition supporting the basic model.

We have organized our presentation in the following
manner. First, in Sec. II we present the coupled
spin-mobile-hole model and review briefly its derivation.
In Sec. III we treat a one-dimensional version of this mod-
el in detail. We present results for static and dynamic
quantities, including spin correlations, magnon charac-
teristic frequencies, and the optical conductivity. Experi-
mentally, this last observable is particularly important, for
it gives direct evidence concerning the masses and internal
structure of the mobile quasiparticles in the doped, in-

38 2494 1988 The American Physical Society



38 COUPLED-SPIN —MOBILE-HOLE MODEL FOR HIGH-T, . . . 2495

teracting system. The early experiments'3 's on poly-
crystalline samples suggested that the low-frequency opti-
cal conductivity was not Drude-like, but rather was dom-
inated by a peak at =0.5 eV. Theoretical proposals have
been advanced interpreting this mode in terms of an exci-
tonic mechanism'6 or alternatively in terms of strong po-
laronic effects, '7 which are reflected in a very large
enhancement of the effect mass and consequently small
weight of the Drude peak. More recent data's on single
crystals of Y-Ba-Cu-0 do show a normal, Drude-like op-
tical structure, suggesting that the earlier results were not
intrinsic to the materials but were due to the unoriented,
polycrystalline nature of the samples. Our study suggests
that within the spin-mobile-hole models the effective
mass of the quasiparticles, although enhanced, remains of
the order of the "bare" hole mass; hence, consistent with
the single-crystal data, 's we expect that a Drude-like
structure should be observed in experiments measuring
the intrinsic optical absorption. In Sec. IV a variational
approach, essentially an extension of the conventional
classical spin approximation'9 in the magnetic polaron
problem, 2p is compared with our exact results. In Sec. V
results for a small two-dimensional "square" lattice, in-
cluding the analysis of the SC pairing, are discussed.

0 0

0 Cu 0 Cu 0

0 0 0

0 Cu 0 Cu 0

II.THE COUPLED%PIN-MOBILE-HOLE MODEL

In our previous paper'P the two-band Hubbard model
for electrons within Cu02 layers (see Fig. 1), as proposed
by Emery, was reduced to a model of coupled localized
spins on Cu sites and mobile holes, predominantly on 0
sites. In terms of the parameters of the original model the
p(0)d(Cu) hybridization energy t p, the difference of hole
energy on the 0 and Cu sites he ep

—ec„, and the on-site

Coulomb repulsions Uc„,Uo, the underlying assumption is
that he) t p and Uc„» tp. The resulting two-orbital mod-

el is expressed in terms of the creation (annihilation)
operators for holes cd (cl, ), occupying p„(p~) orbitals on
0 sites, and spins S; (S —,

' since we use units with 6 1)
on Cu sites,

0- tg—p;+g(Viq;+V2rt;) S;+J S; S, (1)
i i,j&

where (i,j) denotes nearest-neighbor pairs and p;, q;, and
rt; are related to hole operators within a Cu04 group
around the given ith Cu site,

pl ~ Cls Cms s 'ql 2 Z Eggs ~Cise~
l,m, s l,m, s,s'

1~m 6i lwm

(2)
~ ~ss'ClsCls' '

l,s,s'
lEi

The first term in (1) represents effective free-hole motion,
whereas the last one is the exchange coupling between Cu
spins. The interaction term contains a direct exchange
(Vi term) of 0 holes and Cu spins and the exchange
through the hole hopping (V2 term). Note that since in

Eqs. (1) and (2) we do not consider explicitly the phases
of the p and d orbitals, our model is written for effective
s-like orbitals. Zhang and Rice" have recently pointed
out that a proper treatment of this phase problem could
lead to quantitative differences. It should be stressed that
in the Hamiltonian of Eq. (1) the reference substance-
e.g., La2Cu04 —is a magnetic insulator described entirely
by a Heisenberg HatnIiltonian for spins on the Cu sites.
The cd describe holes created relative to this (half-filled)
reference substance, and only these mobile holes, intro-
duced into real superconducting materials by doping the
reference substance, can lead to a normal-state conduc-
tivity and finally (possibly) to superconductivity.

To lowest order in t p, parameters in (1) and (2) are re-
lated to those in the Hubbard model as follows:
2t ti+t2, V~/2 t2 —tl, V2/2 t2+t3, where tl t(t/t), e,
t2 t)/(Uc„—he), and t3 t j/(Up+de). It follows from
these relations that t, Vt, and V2 are of the same order
magnitude, while Jggt p/he2Uc, ((t. Although the deriva-
tion is systematic only for small tp, the model defined by
(1) and (2) can be regarded as the simplest prototype can-
taining the relevant invariants.

A further simplification is possible if Vl, V2 & t. Then a
single symmetrized hole orbital (out of two orbitals on 0
sites per cell) per Cu04 can be used, and the model can be
written as

0 t (c cJg+cJgc;, )+vps; S;+j S; Sl
&i,j,s ij&

(3)

0 0
(a)

0

0 Cu 0 Cu 0

FIG. 1. Copper oxide structures with one Cu per unit ce11.

(a) Cu02 plane. (b) (Cuo)„chain.

where c;t (c;,) now refer to a symmetrized hole orbital
within the ith unit cell and s; is the corresponding local
spin operator for mobile holes. In a square lattice the re-
lation between coupling constants is V 6Vi+2V2. Al-
though for larger Vi, V2 the simplification to Eq. (3) can-
not be justified adequately, we still believe that this re-
duced model contains most of the relevant physics: name-
ly, it leads for large couplings to the formation af localized
singlets (see also Ref. 11), composed by Cu spins and
mobile-hole spins. As we will discuss, the internal struc-
ture of these singlets depends on the particular model.
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For a numerical study, the reduction of the number of fer-
mion sites allows a substantial increase of the number of
unit cells in the system. Hence, for two-dimensional sys-
tems we will consider only the simplified model (3), while
for rings we also present results for the model (1). Note
that the model (3) is effectively a Kondo-lattice Hamil-
tonian, but we are interested in the limit of a large num-
ber of spins and a small number of mobile holes.

Since the number of states grows exponentially with
system size, our exact diagonalizations of the spin-hole
model must focus on fairly small systems. Thus we have
focused on four and six unit-cell systems with at most two
mobile holes. Further, for simplicity, we have used an al-
gorithm that restricts only Sf,i and Stot Spot. There are a
few advantages in first solving a d 1 model, i.e., the
problem of CuO chains. First, the consideration of rings
(chains with periodic boundary conditions) permits a
comparison between models (1) and (3). Also, the larger
linear dimensions permit a more-accurate evaluation of
the optical conductivity, since it is a q Q property.

Z&wols'S I itso&/ni

This quantity indicates the extent of the formation of
local singlets. Note that E;„t —

gni, V
(b) The total spin correlations and static susceptibili-

ties:

C(q) -&itso I St' t(q)S«t( —q) I also&,

&(q) -2 X I &vol S«t(q) I y & I /(E Eo),
mw0

where

(6)

S«t(q) - ge" "'(S;+s;).1

N
From the dynamical susceptibilities, we can evaluate fre-
quency moments of magnetic excitations; e.g., the first
frequency moment is given by to(q) C(q)/z(q).

(c) In order to study optical-absorption properties of

(7)

III. NUMERICAL RESULTS FOR RINGS

Let us consider the model (3) on a ring of N cells. The
conserved quantities in this case are the number of holes
ni„ the total z spin St,i of the system, the total spin
squared $«t St,t, and the quasimomentum qp (due to the
translational invariance). We use only the first two sym-
metries to reduce the number of basis states. For the larg-
est case considered, N 6 and ni, 2. For Stot Q, either
both holes have spin up [($) such states) and four of the
six localized spins are down [(f) such states], one hole is
up and the other is down [(f)2 such states] and three of
the six localized spins are down [(f) such states], or both
holes have spin down [(f') again] and two localized spins
are down [(f)]. Our largest matrix, then, has (f)(f)
+ (I')'(f) + ())($) 1170states.

Using the calculated exact wave functions for the
ground state I yp& and excited states I y &, we evaluate
the following observable quantities.

(a) The local spin-hole spin correlation function, given

where ap is the lattice constant and the current operator is
given by

t'ept ~s t t ~ (qtt(
Jq Z(cisci+t, s ci+i,scis)e

(is

It can be shown that for q~0 the conductivity satisfies the
sum rule

e$apt
a(e co)dco Z&itsp I ci+1, sci s+cisci +1, sl itso&

l,S

e$ap
(10)kin s

relating the integrated conductivity to the ground-state
energy. In the case of a parabolic band the sum rule
reduces to a well-known expression, since then
Eq;„ni, /m—a), where m is the eff'ective band mass of
holes. For periodic boundary conditions a(q O, co) does
not directly satisfy Eq. (10); hence, we use the lowest
nonzero q (2n/Nap) allowed in the system for our
analysis.

(d) The possibility of SC pairing can be monitored by
the behavior of the pair correlation functions

z„, -&yo I &st&, I itso&, (11)

where on the ring we consider s-wave, extended s -wave,
and p-wave operators, defined respectively by

~s Zcitcii» ~s~ Zcit(ci lj+ci—+Il)»

(12)
Ap 2+citci+ i 1 ~

A tendency towards real-space pairing would also show

up in the hole-density correlation functions

g;, -&itspln;n; I imp&, (»)
where n; ~~sc;sc;s

In the following we present results for N 6 with nh 1

and 2 and St,i~O. For comparison, we also present N 4,
ni( 1 and 2 cases. Apart from expected diff'erences due
to the different effective doping levels, in most quantities
there is no crucial difference between N 4 and N 6 re-
sults. For the N 6 system, however, the ground state be-
comes degenerate for a certain range of J for large V/t.
This degeneracy is due to the appearance of a stable inho-
mogeneous qp~0 state, which can be interpreted as an
analog in the present case of the Peierls instability that
occurs at finite coupling in finite-size electron-phonon sys-
tems. For all cases with ni, 2, the total singlet state is
lower in energy than S«te0 states. There are, however, a
few subtle differences between ni, 1 and ni, 2 results,
especially in the magnetic properties within the
intermediate-coupling regime; as we shall see, these can
be partly attributed to nonzero St,t ( 2 for ni, 1).

the system, we define the ac conductivity for a finite wave
vector q,

Rea(q, os) NaoX I & go Ijq I ym& I 't's(pi —Em+ Eo)
m ~
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J/l = 0.35

J/t =0.5

0.2

V/t

(b)

In Figs. 2(a) and 2(b) we plot the results for local spin
correlations g as a function of V/t for several J/t. It
should be noted that the relevant values for J, as observed
in the Cu02 layers (e.g., by neutron scattering ' in

La2Cu04), seem to be in the range J/t 0.1-0.2. From
Fig. 2(a) it follows that ( increases nearly linearly for
small V/t and then jumps to a more-correlated state for
V & V (J). At large V ~, g approaches the maximum
value ( —,', showing that the s; and S; form local singlets.
A linear variation of f for small V and low hole concentra-
tion was obtained analytically for a square lattice in Ref.
10 using the expansion in the magnons within the AFM
ground state. Note that E;„t/n/, —(V can be interpreted
as the main contribution to the magnetic polaron binding
energy. The same perturbation procedure cannot be
directly applied to the d 1 problem due to the absence of
AFM long-range order for V 0. Nevertheless, the quali-
tative behavior seems to remain the same, e.g., for small
V, ( is nearly independent of J.

The transition at V*(J), which is clearly discontinuous
for J/t &0.1, shows up in all quantities. The state at
V & V* is characterized by well-formed local singlets, but
also by a change in the short-range order of St spins.
Whereas for V& V short-range correlations C~ (S;
S;+t) are AFM or even more singletlike, e.g.,

C&
—0.46, they are strongly reduced for V& V* (and

J/t 0.35, 0.5) and even become weakly ferromagnetic
(FM), i.e., C~ & J/t 0.1. These qualitative changes, at
least for J/t 0.1, are well described by the variational
ansatz as described in Sec. IV. We note also that the
ground states for J/t 0.35, 0.5 are inhomogeneous, i.e.,
qo~0, and hence degenerate.

Figure 2(b) shows results for g as calculated for
different concentrations of holes, as simulated by choosing
different combinations of system sizes N 4,6 and holes
nt, 1,2. The transition value V (J) decreases with de-
creasing concentration c/, n/, /N. V, however, seems to
approach a finite value at c/, 0; in Sec. IV we will argue
that this is natural, since the transition is "local."

Results for spin correlations, as defined by Eq. (5), are
presented in Fig. 3. For both J/t 0.1 and 0.5, the corre-
lations have a clear maximum at q tr/ao for V& V .
The abrupt change at V V moves the maximum to
q Wtr/ap, ' in particular, in our small system we find

q tr/3ao for J/t 0.1 and q 2tr/3ao for J/t 05.
These different q can be explained by noting that smaller
J allows for more FM local correlations which induce
smaller q . The same is not the case for larger J due to
the loss of the exchange energy of Cu spins. The abrupt-
ness of the transition at V V is also connected with the
result that for V& V the emerging local singlets (for the
case nt, 2) occupy most distant possible sites; this is
clearly indicated by the hole-density correlations, i.e., the
large values of g;,;+/v/z»gt, ;+&. Thus, in the N 6 sys-
tem, g;,J~t 0.055 for V 0, while g;,;+~ 0.03 and
g', t+3 0.1 for V 1.5 and J/t 0.1. When formed,
these singlets effectively break the ring into weakly com-
municating parts; obviously this is an effect particular to
d 1. It is refiected also in a rather peculiar behavior of
magnon modes ro(q) for V & V, as shown in Fig. 4. For

0.6— J/t = 0.5

0.4—

0.2

I /

I /
/

I p
I ./t
I/' / Ch= 0.17

———Ch= 0.25

—.--- Ch= 0.33

ch= 0.5

0.6—

L~

J/t — 0.5

q = z/30 0

———
q = 2TI;/3ao

q = Tl;/ao

J/t =0.1

1 2 3

V/t

FIG. 2. Local spin correlation g as a function of V/t for (a)
different J/t at fixed hole concentration es ~ (N 6 sites,
ns 2 holes), and (b) at fixed J/t 0.5 for various es (combina-
tions of N 4, 6 and nq 1,2). In (a) dashed curves denote
analytical results, Eqs. (20)-(22), following from the variation-
al approach.

0.2—

o o
oW~o

4
0-

-o

V/t

FIG. 3. Total spin correlation C(q) as a function of V/t for a
d 1 ring with N 6 and nq 2.
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—- —-
q =~/300

---
q =2'/30 0

0

V & V, the modes qualitatively follow the AFM magnon
dispersion to(q) J

~ sin(qap) with values somewhat
enhanced over the random-phase-approximation result.
Again, the minimum frequency n7(q) moves from

q n/a ptov aluesq ~n/apfor V& V .
In the limit q 0, the optical conductivity as defined

by Eq. (8) is relevant to the optical absorption and
reflectance measurements. For N 6 the lowest nonzero

q n/3ap is used for the analysis. For illustration we
present in Fig. 5 a typical behavior of the integrated con-
ductivities, defined by

L (ta) —= Reer(q, ta') dtu',
ape ~p (14)

as they evolve for n» 2 and J/t 0.5 with the increasing
coupling V. From the sum rule, Eq. (10), we expect and
find (co ~) —Ek;„. In all cases considered L(to) re-

V/t = 1.5

V/i = I.O

FIG. 5. Integrated optical conductivity L(co) of a ring with
J/t 0.5 and N 6, nq 2. Results are for the lowest nonzero

q x/3ap.

1 2
V/t

FIG. 4. Spin-Iluctuation frequencies co(q) for a d I ring
with N 6 and nq 2.

veals a pronounced two-step structure, which emerges
from a single step at V 0. Note that since there are only
two holes in the system, the absorption spectra at V 0
would show, for a given q, a single line at

to -heq -e, ep
—-2t [I —cos(qap) f .

Hence, for N 6 with the lowest allowed q n/3ap, we
have ro t T.his simple structure for the bare holes clear-
ly splits, for VwO, into the two frequency regimes shown
in Fig. 5.

The step at lower to, broadened for larger V/t, can be
interpreted as the absorption of mobile quasiparticles.
This part is also expected to merge into the Drude peak
that would be present for q 0 in a larger system. Sup-
port for this expectation comes from the observations that
in o(q O, tu) only the low-co part is missing from the
response, while the higher-m behavior remains nearly
unaffected. Importantly, one must recognize that our use
of the terminology "Drude peak" is simply to be con-
sistent with the colloquial usage in this area. In particu-
lar, since our (small) system size is possibly smaller than
the mean free path of the quasiparticle, we are unable to
make a meaningful frequency analysis of this regime.
Specifically, we cannot estimate the relaxation time, r, al-
though some relaxation effects can already be resolved in

the spectra for tn & to„when V & V . From L(to) we can
extract the eff'ective mass m * of holes, enhanced over the
band mass m* due to interactions with spin fluctuations.
Since the quasiparticle line at Aeq is shifted to lower fre-
quencies, one possible definition of the mass enhancement,

pl m /m, would be pt /3. eq//3eq. It is, however, evi-
dent from Fig. 5 that due to the broadened quasiparticle
absorption spectra this evaluation is not meaningful at
V & V . Clearer is the division into the low-to response of
mobile quasiparticles and the higher-ta absorption related
to internal quasiparticle excitations. This separation
defines an enhancement p2 through the sum rule
L(ta, )/L(oo) 1 —I/p2, where the cutoff ta, is chosen in

the plateau region ta, & Aeq. I/p2 can be in this case in-
terpreted as the weight of the Drude peak in the total opti-
cal absorption. The remaining absorption appears at
much higher frequencies co nbo: V, where eb is the mea-
sure of the binding energy of the quasiparticle (magnetic
polaron). As yet another indication of the enhanced mass
one can use the reduced ground-state kinetic energy,
p3 Ekjs(V)/Ekl (V 0), where for ns 2, Eh„(V 0)—4t.

Results for the various mass enhancements are present-
ed in Fig. 6. The emphasis is on the sum-rule mass p3
which shows a substantial increase for V& V (J). The
variation Pz is approximately quadratic for small V. It
can be described within the perturbation theory, as used in
Ref. 10, which modified to the d 1 case yields

p3 1+Vz/8' . Note that the dependence on J is pre-
dicted to be stronger here than in the d 2 case; this is
indeed seen from the diff'erence between the J/t O. l and
0.5 results. Again, the perturbation result for d 1 is only
qualitatively correct, due to the absence of the long-range
order.

Beyond V*(J) the enhancement decreases, approach-
ing in the large- V limit the value p2 2 for the mass of the
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2.0

1.0

model (3). In the large-V2 limit, a localized s; spin forms
a St,& 2 state with neighboring S; and S;+~ spins, where

The situation in the V~ ~ is more in-
volved, since here the hopping is essential and the forma-
tion of the singlet is nonlocal.

The optical conductivity spectra were studied also in the
presence of a V2 term, and the results for the masses are
similar to those given in Fig. 6. The calculation would be
different for the V~ term, since it would require a
redefinition of the current operator (9) due to nonlocal
hole scattering.

IV. VARIATIONAL APPROACH

V/t

FIG. 6. Effective-mass enhancements P m */m of V/t for
a ring. Full curves denote the sum-rule mass p.2, while dashed
and dash-dotted curves show p] and p3 behavior, as defined in

the text.

bound singlets. The singlets are thus quite mobile entities,
since their effective hopping matrix element is reduced
only by t, =t/2 with respect to the single-hole hopping.
In particular, within the coupled-spin-mobile-hole model
we would expect a clear Drude peak; this is as observed in

the single-crystal samples of Y-Ba-Cu-o. ' In Fig. 6 we
present also the results for the two other measures of the
effective mass, P~ and P3. P~ shows a similar, but smaller
increase at V & V, while the kinetic-energy reduction P3
interpolates very smoothly between the two limits, i.e.,
P3 1 at V 0 and P3 2 at V

As far as the SC pairing is concerned, our results do not
indicate a constructive role of the coupling V in the d 1

model. As discussed earlier, density correlations gj for
V& V are consistent with a pronounced repulsion be-
tween holes. At the same time, pairing correlations Z„
and Z, ~ ... as defined by Eqs. (11) and (12) are clearly
suppressed by finite V, especially for V & V; the effect is
much stronger on Z„. Z~~, which vanishes for V 0, in-

creases slightly for V & 0, but remains small, e.g. ,
Zt,~ &0.05 for V/t & 3 and l/t =0.1.

For purposes of comparison, we have also performed
numerical analysis of the initial model (1) on rings. In
d 1 this model does not require a larger number of basis
states; it merely involves additional terms in the
Hamiltonian —e.g., for V2eO we add to the S; s; term
also a S;+~ s; term assuming that 0 site i is between Cu
sites i and i+1. We have diagonalized systems with
V2&0, V~ 0 and V~ &0, V2=0. We will not discuss
these results in great detail since they generally show the
behavior observed for the simplified model (3). In partic-
ular, upon increasing the coupling in both cases V~ 0
and V2=0, we find a rather abrupt change from the state
with AFM correlations to a state where the maximum of
C(q) is at q & x/an. Also, local correlations
g+ —P;($; s;)/nt„being equal to g — —P;(S;+~ s;)/
nt, in the qn 0 ground state, show qualitatively the same
behavior as in Fig. 2. However, the limiting value for
large couplings is smaller than g- —,

' allowed for in the

A single mobile hole within the AFM state was studied
in our previous paper' using a perturbation expansion in
V. The validity of the latter is expected to break down for
V» t, where local singlets composed of localized spins and
mobile-hole spins form. In order to describe analytically
the properties of a single hole (or low concentration of
holes) in model (3) in the intermediate-coupling regime,
we modify the variational approach'9 applied previously
to the magnetic polaron problem. 2o

In traditional variational theories, '9'2n which become
exact in the classical spin limit S Oe for localized spins,
the ansatz for a single fermion in the environment of lo-
calized spins is chosen to be

I yo& -Za;c;tt 10)g I yj(&, (i5)
J

where both the hole operator c;tt and the local spin state
I p;~) refer, in general, to different local spin axes given by

the angles y; and 8;, i.e.,

c;tt cos c;tt +sin c;t~,

8;
I tt;~) =cos—

I i t & +sin —Ii )),
2 2

and g;a; 1. Since the ansatz (15) does not allow for a
formation of a local singlet out of s; S;, which we have ar-
gued is crucial for S —,', we supplement Eq. (15) by al-
lowing configurations with locally flipped spins,

I y) ga;(cosv;c;t+sinv;ctjS;+) I 0)Q I pj)),
l J

where S; flips the localized spin on site, i.e.,

(i7)

S;+ Ip;~&= Ip;t&=sin —'
Iit&+cos '

Ii&). —(is)

+—icos(8; —8J)[1—2(a; sin v;+aj sin vJ)].J
(i,j )

(i9)

Note that Eq. (17) reproduces both limits —the unper-
turbed hole motion with v; 0 and the local singlet forma-
tion with v; —n/4 —correctly. With the ansatz (17) we
6nd the energy to be

E —t g a;aj cos v; cos vjcos

+—ga; [cos(8; —p;)(I+sin2v;) —sin2'v;]
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The expression (19) is identical to that of Umehara and
Kasuya when v; 0. Solutions for a;, v;, p;, 8; can be
found through the minimization of E.

In general, Eqs. (19) have to solved numerically. The
problem can be greatly simplified, however, by noting that
a delocalization function, i.e., a; a~/JN, represents one
of the solutions. The 8;, following the AFM order, then
alternate between the values 0 and x; also, we can choose

0. a; and v then have only two values: namely,
a~, a2 (2 —a~)' and vi 0, while v2 0 on sites with

+2 82. Thus the problem reduces to two coupled equa-
tions for a ~ and v~'.

2sinv~(2ta2+ Ja~ cosv~) Va~ cos2vi,

2tcosv~(a~ —1) a~a2[V(l+sin2vt)+ Jcos v~].

(20)

(21)

(22)

with a 1
—I/Nt, so that finally v —V/a(2t —J). As is

also indicated in Fig. 2(a), for larger V, the localized state
shows a larger correlation g than a delocalized one. It also
accounts properly for the behavior above the transition
V& V . In the case J/t 0.1, the minimum of M is ob-
tained for Nt 5, while it reduces to Nt 3 for J/t 0.5.
An estimate of the transition point V, obtained by com-
paring the energies of localized an delocalized solutions, is
less satisfactory, e.g. , at J/t 0.1 we get V /t 1.9 while
the numerical results give V*/t 1.15. The latter state is
consistent with the observation that above V short-range
AFM correlations are greatly reduced or even turn to
weakly FM ones. It should be stressed, however, that the
main effect for V & V is a nearly complete formation of
a local singlet with g —,

' . A description of the magnetic
polaron (with S —,

' spins) only in terms of a classical
spin ansatz (15) would be thus quite inappropriate. In
V& V regime there is also a substantial similarity with
the concept of mobile holes within the single-band Hub-
bard model, as discussed in Refs. 1-4.

Finally, we note that the clear semiquantitative agree-
ment of this (large system) variational approach with our

These equations indicate a linear dependence v~~V at
small V. The result for g, following from Eqs. (19)-(21),
is also presented in Fig. 2. It is only weakly dependent on
J/t and is seen to represent numerical values at V( V
quite well. Note that spin correlations in this state are
still of the AFM type.

Although Eqs. (20) and (21) reproduce the singlet state
in the V ao limit, the lowest-energy solution of Eq. (19)
in this regime does not correspond to a delocalized hole in
an AFM ordered environment. The solution is rather a lo-
calized hole within a locally distorted configuration of
spins S;. We restrict ourselves here to a rather crude
analysis of this case. We assume that within a chain there
is a region (of length Nt) of spins S; with a predominantly
FM correlation, i.e., 8; 0, i 1,NI. In the same way we

simplify Eq. (19) by taking a; 1/JNt, v; v, and a; 0
outside this region. Since in this case also p; 0, the ener-

gy of a localized hole can be written as

&F. —2at cos v ——(1 —2sin2v)+Nta ——Jasin v,
V

(small system) exact diagonalization studies of the prop-
erties of single holes provides strong evidence that, despite
our limited range, finite-system-size effects are not distort-
ing our conclusions for these properties.

V. NUMERICAL RESULTS FOR
A SQUARE LA'I I'ICE

We study model (3) numerically also on a small system
of N-2x 3 6 sites, embedded in a square lattice. In or-
der to allow for a AFM order we require staggered bound-
ary conditions, as shown in Fig. 7. For the model (3) nu-
merical requirements are the same as for a system on a
ring; in contrast the model defined by (1) and (2) would
need a much larger Hilbert space in d 2. We do not at-
teinpt to compute the optical conductivity, since the linear
dimensions are too small for a reasonable extrapolation of
results cr(q, ro) to q 0.

In Fig. 8 results for g on a square lattice are presented.
The linear increase at small V and the saturation at large
V are similar to results observed on a ring. In the inter-
mediate regime, however, g shows a gradual increase, as
opposed to a discontinuous one in d 1. Still, a region of
a qualitative change in (and other quantities can be locat-
ed, e.g., V /t -1 7at. J/t 0.1 and V /t -2 3at.
J/t 0.3. The discontinuity at V& V»-3t for the
J/t 0.3 case is due to the instability against qp~0 state
and seems not to be indicative of the general qualitative
behavior.

Similar conclusions follow from susceptibilities X(q)
and frequency moments m(q), as drawn in Figs. 9 and 10.
Note that for given boundary conditions we can define
three inequivalent q, i.e., q~ n(1, 1)/ap corresponding to
AFM ordering, q2 n( 3,1)/ap, and q3 n( —', ,0)/ap. For
all J/t there is a clear maximum in X(q&) at small V.
AFM correlations gradually disappear at V-V (J).

JL1F

BL

4 IIE

FIG. 7. Boundary conditions used for a N 6 system, embed-
ded in the square lattice.
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FI&G. 10. Spin-fluctuation frequency moments r0(q) for a
square lattice with N 6 and nz 2.

2+c;tc/t, hd 2 ( —1)""c;c
&i,j &

it jl ~

where (i,j ) are nearest-neighbor 0 sites

(23)

and

The continuous change is clearly evident in the softening
of highest-frequency modes in Fig. 10. Beyond V, X(q)
exhibits only a weak q dependence (for J/t 0.3 and 0.5
cases) with a slight dominance of qt and q3 values. For
J/t 0.1 the smallest q3 dominates, indicating a tendency
toward a short-range FM ordering. The results for ro(q)
qualitatively follow the expected AFM magnon dispersion
at V (V . Moreover, they show that also for V & V the
frequency range is determined by J, i.e., ro(q) ce J, and not
by much larger V. Thus, the spin dynamics seem to be
dominated still by localized spins and their interactions.

For a square lattice, in addition to d, and h~, as defined
in Eqs. (12), we study also s - and d-wave SC pairing
operators,

x;~;/" e„/ao. The results for Z„, Z... , and Zgd are
presented in Fig. 11. The s-wave pairing is strongly
suppressed for finite V, especially for V& V . The de-
crease of Z,...with V is weaker. Zz~ is negligible in the
whole regime. On the other hand, Zdd increases with V,
although it remains small for all V. The startin
Zdg(V 0) 0 stems from the fact, that for np 2 both

oles are in the ground state with a well defined wave vec-
tor k 0. Ignoring the discontinuity due to the appear-
ance of a degenerate state for J/t 0.3, our results could
be an indication for a SC d-wave pairing. This interpreta-
tion should be taken with care since Zgg is still small 'n, 1Il

act not larger than Z, ..., and may be also enhanced due
to our use of a nonsymmetric 3 &2 cluster.

There is, however, an essential difference between d 1

and d 2 systems for V & V . Whereas on a ring the
ensity correlations reveal a repulsion between holes,

10—

x (qlt
q = Tt'(1, 1)/a,

0—.~ «0~
15-

———s wave

———
q =~ (1/3, 1)/a,

——
q

= ~ (2/3, 0)/a,

0« p
p —-o—- —-

J/t = ll.3

2 p»

p~ p
«p

]j
I l

2
tr/t

FIG. 9. Susceptibility X(q) as a function of V/t for a square
lattice with N 6 and ny, 2.

0

\

d wave
+——- s wave

0

0,

3/t = 05 o~
&~II~ 8~~~ I

2

10—

J/t = 0.1

V/t

FIG. 11. Pairing correlations Z„ for r s-, d-, and s*-wave
functions, respectively, on a square lattice.
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there is no such effect on a square lattice. Specifically, g;J
is nearly constant for i ~j, although we observe a weak de-
crease in g;1 for neighboring ij. This result provides an in-
dication against a real-space pairing, but it would possibly
allow an attractive interaction in the k space in the pres-
ence of a Fermi sea of holes. In this regard, it is impor-
tant to stress that for superconducting pairing properties,
finite-size eN'ects may influence our results substantially.
This is in contrast to the situation for the single-hole prop-
erties of our model, where by similarity of both the N 4
and 6 results with the conclusions of the variational an-
satz, finite system effects could be shown to be negligible.

VI. CONCLUSIONS

In this paper we have treated a model, potentially
relevant to the SC copper oxides, involving a coupled sys-
tem of localized spins and mobile holes. Exact numerical
diagonalizations of small systems, performed at a fixed
number of mobile holes nq 1,2, show as a function of the
coupling strength V a transition from a regime of weakly
perturbed hole motion to the regime of mobile local sing-
lets. The latter are formed locally out of localized Cu
spins and mobile holes, mainly on 0 sites. The internal
structure of a singlet depends on details of the particular
model; in particular, the results are somewhat different for
models (1) and (3). In contrast, the general properties of
the system are expected to be more universal. Our results
for a square lattice (d 2) indicate a rather continuous,
soft-mode-like transition between the two regimes, while
on the d 1 ring the transition is more abrupt. The tran-
sition at V- V is also connected with qualitative changes
in most relevant quantities. Whereas for V( V, total
spin correlations show at least a short-range AFM order,
AFM correlations are reduced or even become FM above
the transition, depending on the parameter J/t

Clearly, the understanding of a single hole in the per-
turbed AFM environment is crucial for a description of
the above results. We denote this entity still as the "mag-
netic polaron, " although as noted above it is far from the
conventional classical spin ansatz, Eq. (16). In the inter-
mediate (or strong) V regime, it is in fact much closer to a
concept of local singlets" or even resonating-valence-
band droplets.

A very important quantity for comparison with experi-
ments is the optical conductivity of the magnetic polarons.
The effective hole mass m, defined by a low-frequency

sum rule relevant to optical-absorption experiments, is
shown (for the d 1 ring) to increase with the coupling at
small V. Moreover, it goes through a maximum at
V- V* and then decreases to the value appropriate for
the singlets, where the mass enhancement is

P2 m**/m =2. Our results do not support the large
enhancements P2 & 5, such as were used in Ref. 17 to in-
terpret the optical conductivity results on ceramic sam-
ples. ' ' Rather, we find modest enhancements which
are consistent with the recent measurements on single
crystals of Y-Ba-Cu-O. '

With respect to SC pairing our results are less con-
clusive. They give no indications for a formation of real-
space hole pairs, which should show up, for example, in
hole-density correlations. Moreover, in the d 1 ring,
strong hole-hole repulsion is evident for V& V, leading
to hole ordering at distances Lo N/nl, On a. square lat-
tice there is no evidence for a repulsion between holes if
they are more distant than nearest neighbors. For the
same reasons, the SC pair correlations Z„, are either small
or suppressed by finite coupling V. In the intermediate V
regime s-wave pairing is reduced much more strongly
than s -wave pairing, while d-wave pair correlations in-
crease with V. Still Zdg remains small, even smaller than
Z,... in the whole V regime, so that our evidence in favor
of d- or s-wave pairing should be taken with care.

On a more phenomenological level, we can argue that
for larger doping the mobile holes (or quasiparticles) in-
teract via spin fiuctuations, which are mainly due to local-
ized spins on Cu sites. This concept seems to remain
reasonable even for larger V, since the paramagnon fre-
quencies ro(q) are still governed by J« t, and not by the
much larger V. In a phenomenological theory the static
susceptibility X(q) serves as input; an example is the
analysis of heavy fermion SC. In a weak-coupling re-
gime we have shown' that in an ordered AFM state mag-
nons do not lead to a constructive pairing in any of the s-,
p-, or d-wave channels. However, our numerical results
show that beyond V& V, X(q) changes in an essential
manner with the maximum moving away from q q~FM.
This could allow for an attractive interaction, leading to a
d-wave pairing, or possibly even s -wave pairing
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