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Vortex lattice structures in uniaxial superconductors
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The structure of the vortex lattice in anisotropic, unaxial superconductors in the domain

H, l«H«H, 2 is considered within the London approach. To first order in the small parameter
(L/A. )2, where L is the average intervortex spacing and X is the average penetration depth, there
exists a continuum of different lattices with the same free energy for any direction of the magnet-
ic induction B with respect to the crystal. It is shown that the degeneracy is removed if terms in

the free energy of order (L/X)4 are taken into account, yielding both a unique structure and a
preferred orientation of the vortex lattice with respect to the direction of B within the crystal.
Parameters of the primitive cell for this structure are obtained and evaluated for known values of
the anisotropy of YBa2Cu307. For the particular case of vortices parallel to the Cu-0 planes the
degeneracy remains exact (within the London approach), which should make this lattice more

susceptible to disorder. The magnetization is shown to be almost parallel to the c crystal direc-
tion for all orientations of the external field Ho, except in a narrow domain where Ho is nearly
normal to c.

It is well established that all known high-T, supercon-
ductors are strongly anisotropic. In the orthorhombic
YtBazCu307, the c axis of the primitive cell is about 3
times larger than either the a or b dimensions in the basal
Cu-0 plane. The "in-plane" anisotropy is relatively weak:
the a and b sizes differ by about 1%. Therefore, major an-
isotropy effects can be described within a uniaxial model,
which simplifies the matter considerably. The decoration
experiments' done in a magnetic field parallel to c re-
vealed a predominantly hexagonal arrangement of the
Abrikosov vortices —a feature of a uniaxial superconduc-
tor. Hence, the uniaxial approximation is a reasonable
first step in a description of the anisotropy of 1:2:3-type
materials. The equilibrium vortex lattice structure for an
arbitrary fteld orientation with respect to the uniaxial
crystal is a subject of this paper.

The coherence length g of the materials in question is

considerably shorter than the magnetic field penetration
depth X. This means that the vortex core size is small with
respect to the characteristic sike k of the current and field
distributions (unless the external field H approaches the
upper critical field H, 2, a domain that is hardly attain-
able). Thus, the London equations are applicable in a
wide domain H «H, 2.

Major effects of a strong uniaxial anisotropy can be
taken into account by replacing the scalar A, 2(curlh)2 in

the London free-energy density of an isotropic material
with an invariant combination it, m;kcurl;hcurlkh (for de-
tails the reader may turn to Refs. 2 and 3). Here X,

2 is
proportional to the "average mass" M,„(MtM2M3) '/3

with M, being the principal values of the "mass tensor"
M.k,

' ttt.k Mtt, /M&. . Although m;k is often called "the

effective-mass tensor, " the tensor X ttt;k presumably in-

cludes all possible sources of anisotropy of the tensor type.
The free energy (per unit length in the direction of vor-

tices) then reads
fO

F (h +X rn;kcurl;hcurlkh)dxdy/Str, (1)

where h(x,y) is the local magnetic field and dxdy is an
element of area in the plane normal to the direction i of
vortex axes. For a vortex along z, the field h in an aniso-
tropic material has h„and b» nonzero components, unless
the vortex axis coincides with one of the principal crystal
directions.

We wish to consider vortices oriented arbitrarily with
respect to the crystal frame (X,Y,z) defined in Fig. 1,
and therefore we transform m;k from the crystal frame

Y,y:

FIG. 1. In the crystal frame (X,Y,Z) the plane 2'Ycoincides
with the basal Cu-0 planes. Axis z is para11el to the vortex axes.
The frame ( y, zx) is obtained by a rotation 8 of the (X,Y,Z)
system about the Yaxis.
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(where mxx my@ m ~, mzz =m3) to the "vortex
frame" (x,y, z):

m» m~cos 8+m3sin 8, mzy myz

myy m~, mzz myosin 8+m3cos 8,2 2

m» - (rn ~

—m3)stn8cos8,

(2)

where 8 is the angle between c (or Z) and the vortex axes
z. The London equations are obtained by varying F with

respect to h(x, y); they are given, e.g., in Refs. 2-4. For a
vortex lattice, h(x,y) is a periodic function with nonzero
Fourier components it(6), where 6's form the reciprocal
lattice. After straightforward algebra one obtains for the
free-energy density f:

2 2I+A, m„G
(3)

G (I+X m„G, +k m G )(I+&'miG')

Here the induction 8 poN, where po is the flux quantum
and N is the number density of vortices.

In the field domain H, & «H«H, 2, the average vortex

spacing L satisfies («L«X. Then one can expand the
free energy (3) in powers of the small parameter
L2/X2«1. To obtain this expansion we introduce dimen-

sionless reciprocal-lattice vectors g L6 with L (pp/
8) '/2 and write, e.g. ,

(I+A, m G ) '-(L/A, ) (m~g )

x(1 —L /A, m~g + ).

The zero- and the first-order terms then read4

m«(fo+f&) -8'+8' ",g (m„g„'+m3gy')
m~

(4)

where g' denotes the summation over all nonzero g's.
The second-order term is readily obtained:

r4 m m I I2m L m1 m 2 2 ~ 4
g4

where we have introduced g( m„g„2+m3gy2 for brevity.
It was shown in Ref. 4, that the free energy (4) is the

same for two different types of lattices, shown as (8)1 and
(B)3 in Fig. 2. We are going to show now that, in fact,
there exists a continuous set of structures, which all have
the same free energy (4) in the ftrst approximation in
L 2/g2

To this end we first notice that in the isotropic material
there exists a continuous set of hexagonal lattices, which
differ only in orientation of their primitive cells with
respect to an arbitrary system of axes xy. Each one of
these lattices can be labeled with the angle a of one of its
basis vectors, say, at of Fig. 2(A), with respect to the x
axis. All essentially different lattices correspond to
0 & a & n/6 [choose primitive cells as hexagons centered
at the origin for cases (A)1 and (A)3j. The basis lattice
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FIG. 2. (A) All possible orientations of a triangular lattice with respect to the x axis can be described by the angle a between x and
one of the unit vectors a&, where 0 & a & x/6. (B) Lattice structures obtained with (A)1, (A)2, (A)3 above by uniform deformations
(different in the x and y directions) which conserve the unit-cell area. The lowest free energy corresponds to the case (B)l.
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vectors of this set are

a1 L&(xcosa+ysina),

a2 L&[xcos(a+a/3)+ysin(a+x/3)],
(6)

Due to the flux quantization, the unit-cell area should be
conserved; this yields y, yy 1 and we denote y y„

1/y„. The reciprocal lattice corresponding to the cell
(7) is given by

g„gp [p sin (a+ n/3) —
q sina]/y,

gr gp[ —p cos(a+ x/3) +q cosa] y,
(S)

where g 2 /2n/3'/ and p, q 0, ~1,. . . . It is now easy
to verify that the combination gf m„g2+m3gy2, which
enters the energy (4), is a independent, if

y (m„/m3) ' (9)

Thus, we have proved that all lattices (7) labeled by a
(which may take any value between 0 and n/6) with pa-
rameter y of Eq. (9), belon;~ to the same free energy, if
the terms (5) of the order L '/), 4 are neglected.

In order to find out which of these structures is actually
realized, one can consider the small correction f2~L4/7 4

as a perturbation, which may remove the above degenera-
cy. Hence, one should evaluate f2 for the "lowest-order
solution" given in Eqs. (7) and (9). The sum p'g1 can-
not contribute to possible energy differences, because g1 is
a independent. The a-dependent part off2 is given by

Snf2(a) 8' "g g1 'g '(a). (10)
X4 mf

The results of numerical evaluation of the sum in this
equation are given in Fig. 3, where the free energy f2(a)
normalized on 82L /Sx). is plotted as a function of pa-
rameter a for two different directions 8 of the magnetic
induction (or vortex axes) with respect to the c axis of the
crystal. It is seen clearly that the minimum free energy
corresponds to a 0 for all 8's. Because the angle 8 enters
the calculation only through the "effective" masses, one
concludes that this is the case (a 0) for any ratio m3/m1.
[In fact, one can show that the exact free energy (3) has
extremums at a 0 and x/6]. Thus, the structure (B)1 of
Fig. 2, which corresponds to a 0, has the lowest free en-
ergy. This structure should be realized in a uniform mag-
netic field (in a pinning free material).

It is worth noting that this result agrees with that given
in Ref. 3. However, Ref. 6 states that only the a n/6

where La is the side of the equilateral triangle with the
area pp/28.

Let us now "turn on" the anisotropy so that the defor-
mation y„ in the x direction differs from yy. The defor-
mations are assumed uniform; the deformed structures are
still periodic. The triangular primitive cell (6) then trans-
forms to

b1 La(xy„cosa+yyrsina),

b2 La[xy cos(a+ n/3) +yy~sin(a+ x/3)] .

case [(B)3 lattice] is observed in experiment (with uniaxi-
al materials).

Having found the equilibrium parameter a 0, one ob-
tains the unit-cell parameters for an arbitrary orientation
8 of the magnetic induction, using Eqs. (7) and (9):

b~ L&yx, b2 La(iy+y J3/y)/2.

The side-to-base ratio b2/b1 of the isosceles triangle (11)
and the angle p between b1 and b2 are readily found:

2b2/b~ (1+3m3/m„)', tang (3m3/m„)' 2. (12)

Thus, when the orientation of vortices changes from 8 0
(parallel to c) to 8 n/2, the ratio b2/b1 changes from
unity to 0.5(1+3m3/mt)', while the angle p increases
from n/3 to tan '(3m 3/m1) '/ .

Note that the primitive cell of Eqs. (11) and (12) de-
scribes the flux line lattice in the plane (x,y) normal to B
(or to Hp in high enough fields). Crystals of high-T, ma-
terials (available to date) usually have smooth-plane sur-
faces normal' or parallel to the c axis. Having in mind
possible decoration experiments for an arbitrary jleld
orientation within the crystal, we project the cell (11)
upon the plane normal to c, denoted with subscript n and
on the plane parallel to c and perpendicular to the B,c
plane, p:

b~„L&yx/cos8, b2„L&(xy/cos8+ y J3/y)/2,

b~r =L~yx/sin8, be La(xy/sin8+y J3/y)/2.
(i3)

The ratio m3/m~ for single crystals of YBaqCu307 can
be estimated from the upper critical fields ratio:

H, 2(n/2)/H, 2(0) (m3/m t) '

which ranges from 6 (Ref. 9) to about 10 (Ref. S). Tak-

0 20 40 60 80 100 120 140 160 180
CX

FIG. 3. Numerical results for the a-dependent part of the
free energy (FE) given by Eq. (10). The magnetic induction is
inclined to the c axis by 8 60 for the upper curve and by
8 75' for the lower. In both cases m3/m~ 50. The summa-
tion in Eq. (10) was taken over 100 lattices sites in each direc-
tion, which seem sufficient. (Summing over only 10 lattice sites
caused a variation of 0.4% in the value of the free energy for
both curves, with the position of the minimum remaining an in-
tegral multiple of 60'.)
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ing for an estimate m3/m~ =50, we obtain for vortices in
Cu-0 planes b2/b~=6 and &=85'. Thus, the flux line
lattice in this material should be strongly distorted with
respect to the equilateral triangle unless the magnetic in-
duction B is parallel to c. This distortion, in turn, should
influence such features of the vortex lattice as elastic
moduli and the response to transport currents. '

The case 8 x/2, i.e., vortices aligned with the basal
Cu-0 plane, calls for separate consideration, because as is
seen from Eq. (10), the "perturbation" energy vanishes at
this orientation: m„(x/2) m~. In fact, the perturbation
argument is not needed in this case; one can work with the
exact free energy (3), which simplifies to

8'(n/2) ~82+[1+(g2/L 2)gf]
—

1 (i4)

where gj-m~g„+m3g~ at this orientation. As was
pointed out above, g ~ is a independent, which means that
all structures (7) [Fig. 2(B)] with y„ I/y3 (m~/m3) '

belong to the same London free energy.
A simple way to see this degeneracy is to note that Eq.

(14) is equivalent to the expansion in reciprocal-lattice
space of the pairwise vortex interactions Kp(r;J/X), where
Kp is the modified Bessel function and

rp2-(x; x, ) '/—m )+ (y; —
y, ) '/m 3.

gf -gJ (m3rn„) '~2(p2+q' pq) . —

We obtain

Sxf 8 +(qppB Jm„/k )In(H, 2/8), (i5)

where g is a number of the order unity. The angular
dependence of H, 2 (or () is ignored in (15); this would
amount to an addition to a large In(Hc2/8), which is
beyond the accuracy of the London approximation. In the
crystal frame (X,Y,Z), Bx Bsin8, Bz Bcos8, and
rn„B =m~Bx+m38$. Thus, the free energy (15) as-
sumes the form

S~f 8 +( p r/iX p) Jm~8$+m38)ln(H, 2/8), (16)

It is obvious that any change in the anisotropy m ~/m3 can
be canceled by rescaling the coordinates, and therefore the
degeneracy of the continuum of orientations of the equila-
teral triangular lattice that occurs for m~/m3 1 is main-
tained for the corresponding continuum of inequivalent
distortions of the triangular lattice for rn~/m3~1. For an
arbitrary field orientation this observation is true provided
L /X ((l.

Given the free energy for H » H, ~, Eq. (4), one can find
the constitutive relation H 4z8f/8B in this domain. To
this end, we note first that a cutoff at G,„-l/g (or
g -L/P) should be introduced in the logarithmically
divergent sum of Eq. (4) (see, e.g., Ref. 11). Then, we
write explicitly the quantity g& [for any lattice (7)] in or-
der to extract the 8 dependence:

and we obtain

+ riyp m38z Hc2
Hz -Bz+ ln»' Bgm„

(i7)

Mx m& Hpx

Mz m3 Hoz
(20)

This remarkably simple and shape-dependent result
means that for rn3/m ~ && 1 the direction of M is close to c
for almost any orientation of the external field Hp (if
Hp»H, ~). A substantial deviation of the M direction
from that of c occurs only if Hp is close to the a-b plane:

8p-tan '(m3/m~)=z/2~m~/m3.

It is interesting to observe that the same relation (20)
holds in high fields near H, 2 (see Ref. 12), so that the va-
lidity domain for (20) might be broader than the London
region. The situation, however, is different in the field
domain close to H, ~. At H, ~,

—4zMp=H~ Hpg(1
n~) For a—sphe. rical particle, for example, M is anti-

parallel to Hp. Therefore, when Hp—in a certain
direction —increases from H, ~, the magnetization direc-
tion changes from being antiparallel to Hp to that of Eq.
(20) (i.e., to c for all orientations of Hp except a narrow
domain 8p- x/2 ~ m &/m 3).

This work was supported in part by the Office of Basic
Energy Sciences of the U.S. Department of Energy and by
the Electric Power Research Institute.

+ gap m IBx
1

Hc2
Hx -&x+ ln

2X' 8Jm„
The quantity capri/X is of order of H, &', it is, therefore,
small with respect to both H and 8 in the field domain of
interest. Equations (17) then show that B is almost aral-
lel to the thermodynamic field H inside the sample. The
reversible magnetization M =(B—H)/4x is small (of the
order H, ~); its orientation 8' with respect to the c axis is
given by

Mx m(
tan8~ tan8

Mz m3

(recall: 8 is the angle between B and c).
It is worth noting that for an arbitrarily shaped sample

in a homogeneous external field Hp, the internal fields H
and B are not uniform. For a general ellipsoid, however,
B and H are uniform and linearly related to the external
field Hp'P

H pp Bp
—4z(1 np)—Mp,

where P denotes the principal ellipsoid directions and n~
are the corresponding demagnetization coefficients. As we
pointed out, in the domain Hp»H, ~, M is small; Eq. (19)
then shows that B is close to Hp. One can, therefore, re-
place 8 in Eq. (18) with 8p, which gives the orientation of
Hp with respect to c:
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