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Monte Carlo study of He in two dimensions
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The Green's function Monte Carlo and variational methods have been used to calculate the prop-
erties of the ground state of two-dimensional liquid and solid He described by the HFDHE2 poten-
tial. The equation of state, melting freezing transition, radial distribution functions in the liquid
and solid, and the momentum distribution in the liquid are all presented. Comparisons are made
with three-dimensional He and two-dimensional classical systems.

I. INTRODUCTION

Two-dimensional liquid and solid He are interesting as
idealized models of adsorbed systems and also because
they are low-dimensional quantum systems. We have re-
cently initiated a computational program to study these
systems. This paper contains our results for the basic
properties of the liquid and solid phases. The computa-
tion of these properties is a fundamental preliminary be-
fore we can start on the more interesting studies of heli-
um films on substrates and on detailed structural studies
of the solid phase.

Classical two-dimensional systems have been extensive-
ly studied by computer simulations and by experiments. '

The interest in these systems stems from theoretical work
which predicts that the two-dimensional solid will not ex-
hibit long-range crystalline order at finite tempera-
tures. ' Kosterlitz and Thouless introduced the concept
of topological defects and used it to predict a novel phase
transformation at the melting transition. Clearly it will
be of interest to see which, if any, of these ideas apply in
a quantum-mechanical two-dimensional solid. We should
point out that even the most basic thermodynamic prop-
erties of the system may provide evidence about some of
the novel features we might expect. For example, does
the equation of state predict a strong or weak first-order
transition? Does the solid exhibit long-range spatial or-
der? Can the solid be readily formed from the fiuid
phase? Does the solid exhibit strong rnetastability or
does it readily melt? Underlying these questions is the
basic fact that in two dimensions at absolute zero we
have no reason to believe that long-range spatial order
will be destroyed by long-wavelength phonon Auctua-
tions. We shall see that we are able to provide an answer
to the first of these questions. However, the remaining
questions can only be answered through the use of better
variational and importance functions.

Early computations on two-dimensional He involved
Hartree calculations. ', integral equation calculations,
molecular dynamics, and some Monte Carlo calcula-

tions. The first extensive variational Monte Carlo inves-
tigation of two-dimensional He interacting by the
Lennard-Jones (LJ) potential at T=O was reported by
Liu, Kalos, and Chester. ' More recently Ni and Bruch"
extended the earlier work to other de Boer parameters for
the LJ potential and found some change in the melting
parameters.

In this paper we present the results of both variational
and exact Green's function Monte Carlo (GFMC} calcu-
lations. In both types of simulations we used a two-body
potential, dubbed HFDHE2, developed by Aziz et al. '

We have computed the equations of state of both the
hquid and the solid phases and describe them in Sec. III.
A Maxwell double tangent construction yields the melt-

ing and freezing densities. Other properties of the two-
dirnensional system such as the radial distribution func-
tion, the structure factor, the condensate fraction in the
liquid, and the Lindemann s ratio in the solid are dis-
cussed in Sec. IV. In Sec. V, the quantum two-
dirnensional system, the three-dimensional He, and two-
dimensional classical systems are compared.

II. METHODS OF ANALYSIS

~RH TRdR
EQ ( IQT(R )QT(R )dR

H TR TR TR
gT(R ) I yT(R )yr(R )dR

dR . (2)

The Harniltonian for the system is written as

AH = — g V'+ g V(
i r; —r, i

},
l l J

where V; and r,. are the two-dimensional Laplacian and
the position vector, respectively. In variational calcula-
tions, we calculate the expectation value of the Hamil-
tonian, which is an upper bound to the ground-state ener-
gy EQ,
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The second form of the integral is easily calculated using
the method of Metropolis et al. ' and will often give a low
variance answer since Hgr(R )IQT(R ) will be nearly
constant if QT(R ) is close to the true ground-state wave
function. A good trial wave function will be the one that
minimizes Eq. (2) with respect to parameters of gT(R ).
The minimum energy is the best estimate of Ep for that
class of trial function.

The two-dimensional, many-body system was also
simulated using the Green's function Monte Carlo
(GFMC) algorithm. The details of this method have been
described extensively elsewhere' ' and will not be dis-
cussed here. What we shall discuss is the method by
which expectation values are obtained from the GFMC
simulations.

The variance of the GFMC calculation is controlled by
incorporating importance sampling into the algorithm.
A trial wave function is used to guide the random walks
into areas of configuration space where the eigenfunction
is greatest. Good trial wave functions may be obtained
from variational calculations. The output from both
variational and GFMC calculations are configurations,
which are lists of particle coordinates. The importance
sampled GFMC simulation yields sets of configurations
chosen from the asymptotic distribution QTQO. A "mixed
expectation" is defined for any operator Fby

p R F 7 R R
(F) =

f go(R )lb'(R )dR
(3)

However, we want ground-state expectation values taken
with respect to l(0. If go is an eigenfunction of F, then the
mixed expectation is exact, e.g., the total energy calculat-
ed with (3) asymptotically approaches Eo. For other
operators, further corrections are needed. If we assume
that the trial function gT is close to the ground-state
wave function, gr —$0+5$, then a linear extrapolation is
made to obtain (F),„,

(F),„=2(F) —(F ) (4)

PT(R ) =exp —,
' —g u2(r J ) (5)

where u2(r, . )=(blr; ) and b and m are variational pa-

where (F ) T is the expectation value obtained from the
variational calculation. The extrapolated expectation
value gives (F)0 to order 5 . Other methods' exist for
obtaining (F )0, but have higher variance if 5 is small.

The GFMC calculations in three dimensions gave ex-
cellent results for liquid and solid He. ' The codes used
in the three-dimensional calculations were modified to
treat two-dimensional systems and extensively tested.
The variational code was tested by performing calcula-
tions on He with the LJ potential and comparing with
the results of Liu et al. ' The GFMC code was tested on
a model two-dimensional system for which an exact
answer for the energy eigenvalue is known.

The trial function used for liquids in the present calcu-
lations has the "Jastrow" form

III. EQUATION OF STATE FOR THE FLUID
AND SOLID PHASES

A variational search in parameter space was carried
out to minimize the energy with respect to b, m, and c in
the trial function in Eq. (5). In the liquid phase, a system
with 64 particles and periodic boundary conditions was
studied. Size effects were estimated by simulating a sys-
tem with 100 particles. The energies for both size sys-
tems agreed within the statistical errors. For the solid,
systems of 80 particles were used in the simulation. The
values for the variational parameters are listed in Table I
for the liquid and Table II for the triangular solid. The
two highest liquid densities in Table I and the two lowest
solid densities in Table II are metastable liquids and
solids, respectively, in the variational equation of state.
Therefore, the nonmonotonic behavior of b at these den-
sities is not unexpected. The optimized wave functions
were then used as the importance functions in the GFMC
calculations.

The equation of state of the two-dimensional liquid is
shown in Fig. 1. The variational results are close to the
GFMC results at low density but diverge as the density
increases. In Table III, the total energies, potential ener-
gies and kinetic energies from the Monte Carlo calcula-
tions are given. As in three-dimensional He, there is a
large cancellation between the kinetic and potential ener-
gies, with the total energy being a small fraction of either.
The two-dimensional liquid is very weakly bound as com-

TABLE I. Variational parameters for the trial wave function
given by Eq. (5) for the two-dimensional liquid He.

Density (A )

0.0321
0.0358
0.0421
0.0536
0.0612
0.0658
0.0719
0.0765

b(A)

3.042
3.067
3.080
3.399
3.425
3.425
3.502
3.451

rameters. For crystal phases of He, the trial function in
Eq. (5) is multiplied by a one-body Gaussian,

N
Cg exp ——(rk —Sk)

k=1 2

which localizes the particles near the lattice sites Sk.
However, this form of the trial function is neither sym-
metric nor translationally invariant. It is expected that
for some properties of the two-dimensional solid, e.g., the
one-body density matrix, the use of a symmetric trial
function will be important. Therefore, some preliminary
calculations were carried out with a trial function con-
taining a symmetric one-body term,

N N

g exp
A=1 1=1 2



2420 P. A. WHITLOCK, G. V. CHESTER, AND M. H. KALOS 38

TABLE II. Variational parameters for the trial wave func-
tion given by Eq. (5) for the two-dimensional triangular solid
4He.

'
/

/

/

/

/

/

/

Density (A )

0.0612
0.0689
0.0765
0.0842
0.0918
0.0995

b (A)

2.927
2.939
2.939
2.914
2.901
2.876

e(A )

0.413
0.536
0.689
0.918
1.071
1.454

0

—1

0.02 0.03 0.04 0.05 0.06
density ( A

'
)

0.07 0.08

'2

E E ~ P Po ~ P Po
3

pared with three-dimensional He. We will discuss this
comparison in more detail in Sec. V.

The calculated total energies were fit to a function of
the form

FIG. 1. The equation of state of two-dimensional liquid He.
The circles with error bars are the GFMC results and the solid
line is a fit to those results. The asterisks are energies derived
from a variational calculations and the dashed line is a fit to the
latter energies.

Po Po

where the parameter po is the predicted density for the
minimum energy Eo. Table IV contains the parameters
fitted to the variational and GFMC results. The
minimum energy occurs at a lower density in the varia-
tional calculation than in the GFMC calculation. The
same effect is seen in three-dimensional He.

Figure 2 exhibits the equation of state for the triangu-
lar solid. The variational and the GFMC results exhibit
similar behavior with the GFMC energies always some-
what lower. The total, potential, and kinetic energies in
the solid phase are given in Table V for both the varia-
tional and the GFMC calculations. As was mentioned
earlier, it is anticipated that a symmetric trial wave func-
tion will be important for some properties in the solid.
Some preliminary calculations were carried out with a
symmetric one-body term in the trial function at a densi-

0

ty of 0.0765 A . It was necessary to reoptirnize the
variational parameters with b changing to 3.195 A and c
becoming 0.459 A . The variational energy calculated
was much higher, 3.59+0.05 K, as compared with
1.67+0.02 K for the localized trial function. The GFMC
calculation converged to an energy of 1.65+0.05 K with
the symmetric trial function which is 0.35 K above the
energy with the original trial function. This value is iden-

tical to the energy of the metastable liquid, 1.65+0.04, at
the same density. Subsequent analysis showed substantial
diffusion of the particles from the lattice sites and the ra-
dial distribution function with the symmetric trial func-
tion was identical within statistics to that of the metasta-
ble liquid. Vitiello, Runge, and Kalos' have recently
proposed a new, symmetric, translationally invariant
wave function which provides a good description of solid,
three-dimensional He. We plan to use this type of wave
function in the near future to improve our results on
two-dimensional solid He.

The equation of state of the solid was fit to a cubic po-
lynomial,

and the fitted parameters are listed in Table VI. The
fitted equations are shown in Fig. 2, as well. The polyno-
rnial equations for the liquid and solid were used to locate
the freezing and melting densities by a Maxwell double-
tangent construction. The results of this calculation are
shown in Table VII. Several other determinations of the
freezing and melting densities have been carried out from
variational calculations using the Lennard-Jones poten-
tial. Liu, Kalos, and Chester' found that pi

——0.061 A

TABLE III. Total, kinetic, and potential energies from variational and GFMC calculations in the liquid phase computed using the
HFDHE2 potential. All energies are in K/particle.

Density (A )

0.0321
0.0358
0.0421
0.0536
0.0612
0.0658
0.0719
0.0765

—0.69+0.01
—0.71+0.01
—0.67+0.01
—0.35+0.01

0.31+0.02
0.92+0.03
2.13+0.02
3.36+0.03

( v)„
—3.26+0.02
—3.80+0.03
—4.75+0.01
—6.30+0.01
—7.57+0.01
—8.23+0.03
—9.58+0.04
—9.58+0.06

2.57+0.02
3.09+0.08
4.07+0.02
5.94+0.02
7.87+0.07
9.15+0.06

11.71+0.07
12.94+0.09

—0.78+0.02
—0.81+0.01
—0.85+0.03
—0.67+0.03
—0.30+0.04
—0.01+0.04

0.82+0.05
1.65+0.04

(v)
—3.29+0.07
—3.69+0.05
—4.7+0. 1

—6.41+0.04
—7.97+0.06
—9.03+0.07
—10.2+0. 1

—11.51+0.07

2.52+0.07
2.89+0.05
3.9+0.1

5.74+0.05
7.68+0.07
9.03+0.08
11.0+0.2

13.17+0.08
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TABLE IV. The parameters fitted to the equation of state
function in Eq. (6) for the variational and GFMC results for
two-dimensional liquid He.

Parameter

po (A )

E, (K)
8 (K)
C (K)

X/vof fit

Variational

0.03731
—0.6923

0.477
3.026
1.08

GFMC

0.04356
—0.8357

1.659
3.493
1.45

6

5

z
LLI

2

—1

0.05 0.06 0.07 0.08 0.09
density (A ')

0. 1 0.1 1

and p, =0.070 A . Further calculations by Ni and
Bruch" reduced the values to 0.057 and 0.067 A, re-
spectively. Variationally, somewhat similar values are
seen with the HFDHE2 potential, pi

——0.0569 A and

p, =0.0642 A, as with the LJ results of Ni and Bruch.
The GFMC results for the HFDHE2 potential are shifted
to higher densities, pi ——0.0678 A and p, =0.0721
A . Similar behavior was observed in three-
dimensional He (Ref. 17) where the GFMC freezing and
melting densities are shifted to higher values (and thereby
closer to experiment) compared with the variational re-
sults. In that work it was argued that the variational
lower bounds are better for the energy of the solid phase
than for the liquid phase. Since the configuration space
of the solid is simpler than that of the liquid, it is easier
to construct good solid trial functions. A glance at Fig. 2
suggests that the analogous argument may also be made
for two-dimensional He. If there is a basic asymmetry in
the variational results which always favors the solid
phase, then the variational results will produce transition
densities that are too low.

IV. OTHER PROPERTIES

A. The radial distribution function

The radial distribution function was determined for
several densities in the liquid and solid phase from the
(GFMC) configurations. In Fig. 3, g (r ) is shown for two
densities in the liquid. The solid line represents the data

for p=0.0421 A, the liquid density nearest equilibri-
um. The peak value of g(r) is 1.23. This can be com-
pared with the value of 1.38 observed at equilibrium in

FIG. 2. The equation of state for the two-dimensional, tri-
angular solid He. The circles with error bars are the GFMC
results with the associated polynomial fit shown by the solid
line. Variational energies are indicated by asterisks and the
dashed line is a fit to the latter energies.

the three-dimensional He system. ' The dashed line
shows the data for p=0.0658 A, the liquid density
nearest the freezing density. At the higher density there
is considerably more structure present though no strong
indication of the longer-range order seen in the solid.
The maximum value of g(r ) is 1.54 which is the same as
the value observed at the freezing density in three-
dimensional He.

Figure 4 presents the structure function for the two
liquid densities discussed above. The peak of s(k) at the
higher liquid density is 1.69 to be compared with 1.59 ob-
served in the three-dimensional system. For a wide range
of classical central-force fiuids, the first peak in s(k)
reaches a value of 2.85 along the freezing line. Thus the
two-dimensional quantum liquid more closely resembles
the quantum three-dimensional system than a classical
liquid.

The radial distribution function at two solid densities is
displayed in Fig. 5. At the lower density, p=0.0765A, just above the melting density of 0.0719 A, the
peak height is 1.67+0.02. In the three-dimensional He
system, the maximum value of g(r ) at the melting density
is 1.60+0.02.

TABLE V. Total, kinetic, and potential energies from variational and GFMC calculations in the triangular solid computed using
the HFDHE2 potential. All energies are in K/particle.

Density (A )

0.0612
0.0689
0.0765
0.0842
0.0918
0.0995

0.23+0.02
0.75+0.01
1.67+0.02
3.18+0.02
5.43+0.03
8.71+0.02

& v)„
—7.54+0.04
—9.19+0.02

—11.03+0.06
—12.62+0.05
—13.69+0.02
—14.77+0.05

7.78+0.07
9.94+0.04
12.7+0. 1

15.79+0.07
19.05+0.06
23.49+0.08

—0.07+0.03
0.43+0.03
1.30+0.02
2.78+0.07
4.91+0.03
8.26+0.04

—7.85+0.08
—9.42+0.08

—11.07+0.06
—12.7+0. 1

—14.2+0.2
—15.1+0.2

7.79+0.09
9.85+0.09

12.37+0.06
15.5+0.2
19.1+0.2
23.4+0.2



2422 P. A. WHITLOCK, G. V. CHESTER, AND M. H. KALOS 38

TABLE VI. The fitted parameters to the equation-of-state
function in Eq. (7) for the variational and GFMC results for the
triangular solid He.

1.4

1.2
Parameter

a(K)
P(K A')
5(KA )

y(KA )

X/vof fit

Variational

—13.540
671.79
-1.1772x 10'

7.3043 x 104

0.14

GFMC

—23.545
1061.9
—1.6875 x 10

9.4608 x 10'
0.48

0.8
U)

0.6

0.4 ;

0.2

B. The single-particle distribution
r(A)

12 16

Further insight concerning the solid can be gained
from the single-particle distribution function and its mo-
ments. In the three-dimensional study of He with the
Lennard-Jones potential, ' it was found that the particles
exhibited a Gaussian distribution about the lattice sites.
The quantity, P=(r )l2 —(r ), which is identically
zero for a two-dimensional Gaussian distribution, is a
measure of the departure from the latter. In Table VIII
(r ), (r ), and P are given for several densities in the
solid. The single-particle distribution function is an accu-
rate Gaussian within our errors at all densities con-
sidered. Another quantity of interest is Lindemann s ra-
tio, L = ( r ) 'i Id, where d is the nearest-neighbor dis-
tance. In the three-dimensional Lennard-Jones study
mentioned above, the Lindemann's ratio at melting was
0.267. In path-integral Monte Carlo calculations of
three-dimensional He with the HFDHE2 potential,
Runge finds L to be 0.23 at the melting density at T=4
K. A linear interpolation of the data in Table VIII, gives
a Lindemann ratio of 0.254 at the melting density of
0.0719 A . The Lindemann ratio decreases rapidly
with increasing density and by p=0.0995 A it is
0.182+0.001; thus the particles are tightly localized
about their lattice sites. This is also reflected in the struc-
ture seen in g(r ) at this density in Fig. 5.

1.8

1.6

1.4

1.2 L

w 0.8-
0.6

0.4

0.2

0
0 2 3 4

) (A-')

FIG. 4. The structure function for two densities in the liquid.
The solid line is a density near equilibrium, p=0.0421 A, and
the dashed line displays a density just before freezing, p=0.0658
A

FIG. 3. The radial distribution function at two densities in
the liquid. The solid line represents a density near equilibrium,
p=0.0421 A, and the dashed line is a density just before
freezing, p=0.0658 A

C. Condensate fraction and the momentum distribution

Another quantity of interest is the one-body density
matrix n (r ) whose asymptotic limit no is the fraction of
particles condensed into the zero-momentum state. In
their variational calculations, Liu, Kalos, and Chester'
found a value of 0.38 of the condensate fraction at the
density p=0.0358 A . At solidification, p=0.0612A, they calculated a value of 0.12 for no. In the
present calculations, the variational and GFMC results
exhibit different density dependence. Near the equilibri-

2.2

1.8

1.4
1.2

cn 1

0.8
0.6
0 ' 4

0.2

I
/

/

I
I
j

/

i I

I /

/
/

TABLE VII. The melting-freezing transition for two-
dimensional He from variationa1 and GFMC calculations.

r(A)
10 15

Method

Variational
GFMC

pi (A )

0.0569
0.0678

p, (A )

0.0642
0.0721

FIG. 5 ~ The radial distribution function for two densities in
the triangular solid. The solid line is a density near melting,
p=0.0765 A, and the dashed line is a higher density solid,
p=0.0995 A
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Density (A )

TABLE VIII. Moments of the single-particle distribution function.

0.0689
0.0765
0.0842
0.0995

0.178+0.007
0.132+0.004

(9.7+0.4) X 10-"
(5.9+0.2) X 10-"

(6.3+0.5) )& 10
(3.5+0.2) g 10
(1.9+0.2) x 10
(6.9+0.5)X 10

(0.4+4.7) )& 10
(3.4+1.7) X10-

( —1.1+1.4) x 10
(—3.5+3.3)x 10

0.264+0.001
0.239+0.002
0.215+0.001
0.182+0.001

um density (see Table IX), the variational value for no is
0.44+0.05 and the GFMC result is 0.36+0.05 for the
64-particle system. Similar values were observed in the
100 particle system, with n p" =0.46+0.01 and
n po" =0.34+0.02. As the density increases, the
GFMC result drops rapidly to a value near zero at the
freezing density. While the variational value of np drops
somewhat with increasing density, the condensate frac-
tion is still substantial at p=0.0658 A . An important
observation needs to be stressed here. At this high densi-
ty, the GFMC liquid has not yet frozen but the variation-
al liquid is well into the density regime of the variational
solid (see Table VII). The simple Jastrow form for the
trial function is not a good representation for the high-
density liquid. This is seen in the equation of state and is
clearly manifested in the calculation of the condensate
fraction. The condensate fraction at high densities for
the variational wave function differ so much from the
mixed estimates that extrapolation is no longer likely to
be reliable. A clear picture of the behavior of the high-
density liquid awaits the use of the improved variational
wave function referred to previously.

The Fourier transform of the one-body density matrix
is the momentum distribution n(k }. Displayed in Fig. 6
is the momentum distribution near the equilibrium densi-
ty p=0.0421 A . The solid line is a sphericalized n(k )

obtained by Fourier transforming n(r ). The circles with
error bars are n(k ) calculated directly from the particle
configurations at individual wave vectors and all values
with

~

k
~

the same have been averaged together. The
structure at large k is probably an artifact of the Fourier
transform arising from the significant noise in the calcu-
lation of n(r ).

V. COMPARISONS WITH THREE-DIMENSIONAL He
AND TWO-DIMENSIONAL CLASSICAL SYSTEMS

the same interaction potential. The difference, of course,
is dimensionality. In this section we comment on the
differences in the ground-state properties of these two
systems. To compare densities, we use reduced densities
defined in terms of the characteristic length of the
HFDHE2 interaction, aH„=2.6385 A, that distance at
which the potential is zero.

Two-dimensional (2D} and three-dimensional (3D) He
form low-density liquids at zero pressure in the ground
state. The striking difference between them is the much
lower reduced density, pp=0. 304+H„, af the 2D liquid as
compared with the 3D liquid, pp =0.4000'HF. This
difference is further emphasized by comparing the mean
particle separation, ' 2.70 and 2.22 A, respectively. The
particles are 22% further apart in 2D than in 3D. Such a
difference suggests that there will be rather different bind-
ing energies in the two systems. In 2D, the binding ener-

gy at zero pressure is 0.84 K/particle, which is much less
than the 7.12 K/particle in 3D. Further insight is gained
from comparing the balance of kinetic energy ( T ) and
potential energy ( V) in the two systems. The values of
(T) and potential energy ( V) are only 18% apart in
2D. In 3D, they are 33% apart.

The larger interparticle distances in the zero pressure
2D system can be expected to affect the correlation func-
tions. The height of the first peak of the radial distribu-
tion function near equilibrium is 1.23, 11% lower in 2D
than the value in 3D, viz. 1.38. The second peak heights
are 1.06 and 1.04, respectively. Turning to the structure
function, we find only a 4%%uo difference in the height of the

1.2

A. Three-dimensional He

We have results for two quantum-mechanical systems,
two-dimensional He, and three-dimensional He, using

0.8
o~

Density (A )
var

np n mixed
np n GFMc

np

TABLE IX. Fraction of particles condensed in the zero
momentum state from variational and GFMC calculations.

0.2

0.2 0.4 0.6 0.8
k(A-')

1.2 1.4

0.0421
0.0536
0.0612
0.0658

0.44+0.05
0.33+0.02
0.23+0.01
0.25+0.03

0.40+0.01
0.28+0.02
0.15+0.01
0.10+0.01

0.36+0.05
0.24+0.03
0.07+0.Q2

FIG. 6. The momentum distribution in the liquid near equi-
0

librium, p =0.0421 A . The solid line is the Fourier transform
of n(r ). The circles with error bars are calculated directly from
the particle configurations.
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first peak, 1.30 in 2D, and 1.35 in 3D. This similarity is a
consequence of the weak spatial correlations shown by
both fluids at large distances.

The low reduced density and large mean particle sepa-
ration of the zero pressure liquid has a great influence on
the condensate fraction in the 2D system. The value of
no is 36% near the equilibrium density. This is to be
compared with 9% at po in 3D.

The next striking difference between the two systems is
the much wider range of densities over which the 2D sys-
tem is a liquid than the 3D system. Two-dimensional He
must be compressed by 60% before freezing takes place
at a reduced density, p=0.4720.&F. The mean particle
separation has been reduced to 2.17 A. In 3D, freezing
takes place after only a 20% compression from the zero
pressure density, p=0.481cr&F and the mean particle sep-
aration is 2.09 A. The reduced freezing densities differ by
2% and the particles are only 4% further apart at freez-
ing in the 2D system than in the 3D system. Thus, we
conjecture that the very wide range of fluid densities in
2D comes about because the low density zero pressure
phase must be compressed to a similar mean particle sep-
aration as that at which the 3D fluid He freezes. How-
ever, the balance of kinetic and potential energy remains
quite different in the two systems. In 2D, ( T ) and ( V)
are equal at freezing, while in 3D, they are 24% apart.
The 3D system is again more tightly bound at the freez-
ing density.

Since the mean interparticle spacings are similar in the
two systems at freezing, it is not surprising that the peak
height of the first peak of the radial distribution function
is the same value, 1.54, in both systems. The second peak
heights are similar as well, 1.13 in 2D and 1.09 in 3D.
An indication that there might be somewhat more corre-
lation in the 2D system at freezing is that the first peak of
the structure function is 1.69 as compared with a value of
1.6 in 3D.

Based on our previous discussion of the Bose conden-
sate fraction, we would expect that the 2D system at
freezing would have a similar value to the 3D system.
Unfortunately, our extrapolation procedures break down
before we reach the freezing density in 2D, and we are
unable to extract the exact value. The 3D fluid has a
small condensate fraction of 4% at the freezing density.
It is unclear now what value the 2D system will have at
freezing.

The melting and freezing transition shows some
differences in the two systems. In 3D there is a density
difference between the fluid and solid phase of approxi-
mately 11%. In 2D the density difference is only 6%.
One is tempted to say that the transition is weakly first
order. Later we will compare this density difference with
the behavior of classical systems. We need to explore the
consequences of this speculation with more detailed
simulations.

The two-dimensional system forms a triangular solid
with a Gaussian distribution of particles about their lat-
tice. The three-dimensional solid was studied in an fcc
lattice where the distribution of particles about the lattice
sites was nearly Gaussian. The 2D solid melts at a re-
duced density of 0.501o.&F which corresponds to a

0
nearest-neighbor distance of 4.00 A. The melting re-
duced density in 2D is 8% less than the melting reduced
density in 3D, 0.540o.&F and the nearest-neighbor dis-

0
tance is 9% smaller in 3D, 3.64 A. The Lindemann ratio
in the 2D system at freezing is 0.25, to be compared with
a value of 0.27 in 3D (for a Lennard-Jones system). The
height of the first peak of g(r ) is somewhat higher in the
2D system, 1.67, than in the 3D system, 1.60. The two
solids melt at similar reduced densities; however, the
two-dimensional system appears to have greater spatial
correlations.

B. Two-dimensional classical systems

It is worthwhile making a few comparisons with simple
classical systems. To make these comparisons precise we
compare our quantum systems with the classical hard-
disc and hard-sphere systems.

Our first comment concerns the freezing densities.
When we compare the density differences between the
fluid and solid phases, we find a great similarity. In 2D,
both quantum and classical systems show about a 5%
difference, while in 3D the difFerence is about 10%.
Clearly the 2D transitions are comparatively weak.
However, we must point out that both near freezing and
in the solid phase 2D and 3D classical systems show
much larger spatial correlations. For example, at freez-
ing the height of the first peak of the radial distribution
function is about 6 (Ref. 23) in 2D and about 5 (Ref. 24)
in 3D. These are strikingly diff'erent values from those of
the quantum counterparts.

VI. CONCLUSIONS

Our simulation studies provide the following picture of
two-dimensional fluid and solid He. The fluid forms at
zero pressure as a low density and weakly correlated
phase. As a consequence, there is a large Bose conden-
sate of 36%. However, the fluid freezes at a similar re-
duced density as three-dimensional liquid He. Many
properties of the two-dimensional system near freezing
and melting are very similar to those of the three-
dimensional system. The melting, freezing transition is
probably weakly first order showing only a 6% difference
in the densities of the two phases.

We have a major mystery to resolve. At high fluid
densities, the configurations from the variational wave
function are in some subtle way very different from those
generated by the GFMC code. This is revealed in the
very different values we have obtained for the condensate
function from our variational calculation as compared
with the result from the GFMC code, Table IX. We need
to investigate the discrepancy in detail. It is an indicator
that we need a much improved variational wave function.
The new symmetric, translationally invariant wave func-
tion that has recently been proposed' for three-
dimensional He may yield interesting new results for the
two-dimensional system.

Our next priority will be to implement a code for this
new wave function in 2D. With it we will investigate the
nature of the freezing transition. Classically in two-
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dimensions, it is possible to form a well-ordered solid
from a highly disordered state. In other words, one can
anneal out the disorder very rapidly. This is thought to
be strong evidence that the freezing transition is weakly
first order. It will be important to see if the same
phenomenon occurs in the quantum system. The new
wave function should also allow us to study whether
there are topological defects in the solid phase and
whether there is diffusion in that phase.

Finally, we plan to embark on simulations of thin films
of helium on a substrate. A variational calculation will
be undertaken for the surface plus film system using the
HFDHE2 potential in which some account will be taken
of adsorption-induced effects. Once good trial functions
have been identified, Green's-function Monte Carlo simu-
lations can be carried out.
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