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Three-dimensional vortex dynamics in super8uid He: Homogeneous superfluid turbulence
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The behavior of a tangle of quantized vortex lines subject to uniform super6uid and normal-Quid

driving velocities is investigated. The dynamical equation of the quantized vortices in the local ap-
proximation is supplemented by the assumption that when two such singularities cross, they under-

go a reconnection. The properties of the dynamical equation, when combined with the assumption
of homogeneity, imply numerous scaling relations, which are in fact observed experimentally. The
primitive dynamical rules are utilized to perform extensive numerical simulations of the vortex tan-

gle, using not only periodic, but also smooth-wall and rough-wall boundary conditions. All lead to
the same homogeneous vortex-tangle state, although the case of periodic boundary conditions re-
quires an additional trick to eliminate artificial features. The quantitative results obtained from
these simulations are found to be in excellent absolute agreement with a large variety of experi-
ments, including recent studies of the vortex-tangle anisotropy.

I. INTRODUCTION

It has long been appreciated' that many of the dynami-
cal phenomena exhibited by superfluid He involve the
appearance and motion of quantized vortex lines, and
that these singularities provide a mechanism through
which the superfluid can couple dissipatively to its envi-
ronment. More specifically, the notion that superfluid
He (also referred to as He II) behaves as a frictionless

fluid containing vortex filaments in addition to a freely
moving population of thermally excited elementary exci-
tations (the normal fluid) was well advanced by the early
1960's. Detailed fluid-dynamical calculations based on
this picture had yielded convincing quantitative agree-
ment when applied to relatively simple vortex
configurations such as the vortex array in rotating He II
or the propagating quantized vortex ring.

More recently, considerable progress has been made in
extending the fluid dynamical approach to the more com-
plicated problems raised by the phenomenon of
superfluid turbulence. We recall that at low velocities He
II is observed to flow in the frictionless, presumably lami-
nar manner consistent with the ideal-fluid description.
Above some critical velocity, however, it enters a chaotic
state having the nature of a dynamically self-sustaining
random tangle of quantized vortex lines (Fig. 1). This
description having been well established experimentally,
the issue is to understand why such a state of motion ex-
ists and to calculate its properties.

Although the extensive literature of the field is replete
with imaginative speculations to the contrary, it seems
reasonable to assume that the physics determining the
onset and development of superfluid turbulence is the
same as that which describes the vortex array and the
propagating vortex ring. This indeed is the point of view
adopted by Vinen in his remarkable pioneering studies.
Developing a deeper understanding of superfluid tur-
bulence in terms of the fluid dynamical description, how-
ever, has required significant further developments, '

where the primes denote instantaneous derivatives with
respect to the arc length g, a and a' are temperature-
dependent parameters' which measure the frictional
force exerted by the normal fluid on the vortex line,
v„,=v„—v, is the difference between the average
normal-fluid velocity and the applied superflow field, and

P=(~ 4/n. )l (en~/s"
~
ao), (2)

where a is the quantum of circulation, c a constant of or-
der 1,

~

s"
~

the average curvature of the filament, and
a0-1.3&10 cm the effective core radius of the fila-
ment. Since

~

s"
~

is just the inverse of the local radius of
curvature R, it is convenient to interpret (

~

s"
) )

' as the
characteristic radius of curvature in the vortex tangle.
This definition avoids overweighting straight sections of

which owe much to the field of classical hydrodynamics.
The most important features of this new methodology are
careful analysis of the motion of quantized vortices, espe-
cially as regards the relative importance of self-induced,
nonlocal, and frictional effects; utilization of dynamical
scaling arguments; recognition of the fact that line-line
reconnections are the essential mechanism which sustains
the chaotic vortex-tangle state; and introduction of nu-
merical simulation as the only method capable of extract-
ing quantitative predictions from the highly nonlinear
underlying vortex dynamics.

A previous paper has dealt with the dynamics of
three-dimensionally configured quantized vortex lines,
and the reader is referred to this earlier paper for the
background and justification of the brief review we shall
now give. If the curve traced out by a vortex filament is
specified in the parametric form s=s(g, t), then the in-
stantaneous velocity of a given point of the filament can
be approximated by the equation

a=ps'Xs" +v, +as'X(v„, —ps'Xs")

—a' s' X [s' X ( v„, —ps' Xs" )),
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vortex, for which R~~. The first term on the right of
Eq. (1) is the motion which the vortex induces on itself
because it is curved. It causes every point on the vortex
filament to move in the direction of the local binormal
with a speed equal to PiR. As illustrated in Fig. 6 of
Ref. 8, this gives rise to a very complicated thrashing

about in the case of a three-dimensionally curving vortex
filament. The second term shows that the vortex is
washed along with any superflow fields superimposed on
that of the vortex itself. The third and fourth terms
reflect the fact that the normal fluid streaming past the
vortex core exerts a frictional force f per unit length
given by

f lap, = —as' X [s' X ( v —ps' Xs" )]
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(b)
FIG. 1. Typical example of a vortex tangle in a rough chan-

nel, generated using the methods described in this paper. (a) A
projection along the flow direction, and (b) a section of the
channel viewed perpendicularly to the flow direction. The tan-
gle is driven by a pure superfluid velocity field flowing from
right to left (b). Note the atypical behavior very near the chan-
nel walls and the dragging of vortex lines by the surface rough-
ness.

—a' s' X ( v„, —ps' Xs" )

on the fluid in the neighborhood of the core. The resul-
tant motion of the vortex is such as to pass this force on
to the superfluid as a reaction force. The term in a' is
usually assumed to represent a small correction and has
not been included in previous calculations. Since its im-
portance is an issue to be investigated here, it wi11 be car-
ried along in the equations. We will usually be interested
in the situation where a, a' are small compared to 1, so
that the frictional motion is basically a perturbation on
the ideal-fluid behavior of the first two terms. It is to be
noted, however, that while the first two terms conserve
line length, the frictional motion not only causes the pref-
erential decay of the more highly curved regions of vor-
tex line, it also gives rise to a ballooning outward of sec-
tions of the vortex line which experience a strong enough
normal-fluid tailwind (see Fig. 7 of Ref. 8}.

Equation (1}neglects all dynamical effects arising from
other vortices or from any boundaries that may be
present. As shown in Ref. 8, this is expected to be a good
approximation (i.e., to order 10%) provided the vortex-
vortex or vortex-image spacing is greater than
b, =2Rlln(cR/ao). When two vortices happen to ap-
proach each other more closely than this, a local instabil-
ity occurs in which the velocity field of each vortex acts
to deform the other such that the two vortices are driven
together at a point with their vorticity vectors oppositely
directed. What happens to a classical vortex in this limit
is a matter of current research. " For a quantized vortex,
where the approach of the two filaments can be followed
all the way down to the angstrom level, it is supposed
that the end result is a vortex-vortex reconnection, lead-
ing to an immediate separation of the two vortices to
macroscopic distances. Thus Eq. (1) must be supplement-
ed by the statement that the only important consequence
of the nonlocal interaction is that whenever two vortices
approach each other closely enough, they will rather sud-
denly undergo a reconnection of the approximate form
shown in Fig. 2(a). Similarly, a vortex approaching a
boundary closely enough is assumed to undergo a recon-
nection of the approximate form shown in Fig. 2(b). As
will be discussed later, the details of when and how the
vortices are reconnected or of how they behave immedi-
ately thereafter have no significant influence on the be-
havior of the vortex tangle, so that one can be satisfied
with the simplified models of Fig. 2. We shall refer to the
approximate description consisting of Eq. (1) and Fig. 2
(as well as some later refinements) as the reconnecting
vortex-tangle model.

Referring to Fig. 1, the following qualitative picture of
the self-sustaining vortex-tangle state can now be offered.
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be restricted to the simple, limiting steady-state behavior
observed experimentally when u is kept constant and is
much larger than the critical velocity for the onset of tur-
bulence. The more complicated phenomena observed un-
der other circumstances will be discussed in later papers.

It is the practice to characterize the intensity of
superfluid turbulence by specifying L, the quantized-
vortex line length per unit volume. Although some ex-
periments have given information about the spatial and
temporal variations of L, most measure L averaged over
time and over a fixed, experimentally probed volume.
Many experiments involving superfluid turbulence under
various conditions and using a variety of measuring tech-
niques have been performed to determine L in this gross
fashion. Essentially all find that if v„, (the magnitude of
v„, ) is large enough, L obeys the relation

L 'i =y(T, P)(v —vv), (4)

(b)

FIG. 2. Illustration of {a) a line-line reconnection, and {b) a
line-surface reconnection. In actual calculations, the reconnec-
tions are made in a way very similar to this.

The self-induced velocity causes a complicated three-
dimensional internal motion of the vortex tangle, the
whole thing being washed along by any applied superflow
field v, which may be present. Highly curved sections of
line, and sections propagating opposite to v, decay.
Simultaneously, other parts of the vortex tangle where
the self-induced motion is being overtaken by the v„, field

grow by ballooning outwards. This cross-stream nature
of the vortex growth implies that in the steady state at
least a certain fraction of the singularities is constantly
being driven toward the walls. The line-line reconnec-
tions which occur as the vortex tangle undergoes its com-
plicated dance play several important roles. First, they
provide a mechanism by which new vortex singularities
can be created (Fig. 3), allowing the vortex tangle to be
established and sustained against the loss of singularities
at the walls. Secondly, and more subtly, since the vortex
amplification process is essentially a two-dimensional out-
ward motion in the plane perpendicular to v, the recon-
nections and the subsequent motions along v which re-
sults are necessary to maintain the three-dimensional ran-
dom nature of the vortex tangle. Finally, reconnections
occur more often as the tangle becomes denser. The in-
creasing frictional line loss associated with the creation of
a more and more highly curved vortex tangle is the factor
which eventually limits the tangle density. All of these
complicated dynamical features interact self-consistently
to produce the turbulent steady state.

The above picture seems quite plausible. It is, howev-
er, far from obvious that Eq. (l) plus the reconnection
mechanism lead to a self-sustaining vortex-tangle state,
much less one which exhibits properties in agreement
with experiment. That is precisely the issue which the
present paper is intended to address. Consideration will

where y is a universal function depending only on the
temperature and pressure, ' and uo is a small parameter
of indeterminate origin. The fact that the measured aver-
age line-length density is independent of channel
geometry has generally been interpreted to imply that the
vortex tangle is in this limit spatially homogeneous, at
least over most of the channel. In actuality, the vortex
tangle interacts strongly with the channel walls and is
usually driven at least partially by a normal-fluid-velocity
field which must go to zero at the channel walls and
hence be nonuniform across the channel. It is therefore
not a priori obvious that the tangle should ever approach
spatially homogeneous behavior. On the other hand, one
can argue that the effect of the walls on the vortex tangle

FIG. 3. Multiplication of singularities through the reconnec-
tion process. Here two vortex lines reconnect to form five.
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should become negligible at higher line-length densities,
when the characteristic line-line spacing 5=L '~ be-
comes very small compared to the smallest cross-
sectional dimension of the channel. It is moreover easy
to see that the mutual friction forces acting between the
vortices and the normal fluid are much greater than the
viscous forces acting within the normal fluid. Except
very near the walls, therefore, the normal-fluid-velocity
profile should in fact be dominated by its interaction with
the vortex tangle. These ideas are supported by a recent
experiment' which employs pulsed-ion techniques to
yield spatially resolved measurements of the line-length
density and the normal-fluid velocity in a channel with a
1)&2.3 cm cross section. It is found that both L and v„
are constant to a high degree of accuracy over almost the
whole channel. This result implies that one is justified in
interpreting channel experiments in terms of a homo-
geneous turbulence theory. ' We note that the situation
differs from that of classical turbulence, where it is well
known that homogeneously turbulent channel flow is not
possible, in that here the normal-fluid friction provides a
driving mechanism which can act uniformly throughout
the fluid.

Several distinct issues arise in exploring the implica-
tions of the reconnection model. The next section of this
paper will be devoted to a discussion of how much one
can conclude from this model if one simply assumes that
the vortex tangle is spatially homogeneous. These gen-
eral scaling considerations not only explain much of the
functional behavior observed experimentally, but also
provide a background for the more detailed considera-
tions to come. Section III will describe the particulars of
how the reconnection model has been implemented nu-

merically to provide quantitative predictions. Finally, in
Sec. IV, various computed properties of the homogeneous
vortex-tangle state are reported and compared with
selected experiments.

II. DYNAMICAL SCALING

Dimensional analysis often yields nontrivial results
when applied to nonlinear problems, and it is appropriate
to consider what it can do here. Strictly speaking, no
rigorous scaling is possible. It may be recalled from Ref.
8 that the ratio of the local to the nonlocal contributions
is of order ln(R/ap). Since the core size ap is a fixed
physical quantity, any attempt to multiply the vortex
geometry (i.e., R} by some scaling factor will result in a
change in the relative importance of the nonlocal correc-
tions.

Within the context of the reconnection model, in
which nonlocal corrections are neglected, this problem
arises in vestigial form through the fact that the critical
reconnection distance 5=2R/ln(cR/ap) does not scale
linearly with R. However, the logarithmic variation is
weak, ln(cR /ap) changing from about 18 at R = 1 cm to
about 7 at R =10 cm. If it can be shown that the
properties of the vortex tangle are not very sensitive to
the exact value of the reconnection distance, this distance
can be treated as scaling along with the other dimensions.
It will be demonstrated in Sec. III that such an assump-

tion is indeed justified (see Fig. 15). On this basis, the
reconnection model leads to powerful approximate scal-
ing arguments, capable of yielding unexpected predic-
tions. Conversely, experimental verification of these pre-
dictions provides potent support for the validity of the
model and for the existence of a homogeneous vortex-
tangle state. The following is an elaboration of the ideas
first presented in Ref. 7. A somewhat different elabora-
tion has been offered by Swanson and Donnelly. '

The analysis of Eq. (1) is a simple two-step process.
First, the factor P is absorbed into reduced time and ve-

locity scales tp =Pt, up =v/P to yield

=s'Xs' +v p+as'X(v„, p
—s'Xs")

0

—

cats

X[s X(v p
—s Xs )] (5)

This equation is invariant under a transformation in
which spatial dimensions are multiplied by a scale factor
A, , times by A, , and velocities by A, ', subject to the previ-
ously mentioned caveat that the reconnection distances
can also be assumed to scale with A, and that the critical
angles are unchanged by the scaling. ' If a vortex
configuration contained in some particular geometry with
dimensions D' and subject to some particular set of ve-
locities vp has the particular evolution s=s'(g', tp ), one
can then conclude that

P(r, tp, vp, D, . . . )=P(Ar', A, tp, up /A, , AD', . . . )

=f (A, )P'(r', t pv pD', . . .), (6)

where f (A, ) is obtained from the definition of P. Where
such an equation applies, statements about the functional
form of P are magically expanded into statements about
how P scales with respect to various parameters. Con-
versely, information about how P scales leads to restric-
tions on its functional form.

s(g tp)=s(Ag A. tp }=As (g fp )

is the solution appropriate to D =A,D' and up=vp /A, .
Simply put, if all coordinates are magnified by the factor
A, , and all applied velocities divided by the factor A, , then
the vortex motion will still look the same, except that
everything takes A, times as long to accomplish.

Suppose a specific value P'(r', tp u~f, D', . . . ) of
some property P(r, tp, vp, D, . . .} of the vortices is calcu-
lated or measured in some particular geometry D*. In-
teresting candidates for P might be the local line-length
density, the density of the mutual friction force between
the normal fluid and the vortex tangle, the characteristic
radius of curvature of the vortex lines in the tangle, their
structural anisotropy, or more esoteric things such as the
reconnection rate, the fractal dimension of the tangle, or
the power spectrum of fluctuations in L These may, . in
general, depend not only on obvious variables of the type
shown, but also on more subtle qualities such as the de-
gree of surface roughness, the shape of the channel, the
distance from the ends of the channel, or the length of
time that the driving field has been applied. Because of
the transformation properties of Eq. (5), one can then
write



2402 K. W. SCHWARZ 38

v, p=(D'/D)v, 'p .

This relation depends on the assumption that other vari-
ables such as channel length, cross-sectional shape, sur-
face roughness, and so on either are scaled appropriately
or do not affect the critical velocity. Thus the mere asser-
tion that the critical velocity depends only on D leads im-
mediately to the prediction (in real units and with P writ-
ten out)

pc c'D
U, =c„ ln" 4m.D ao

where c„=D'v,'p =D*v,*/P*. Here it has been assumed
that the characteristic radius of curvature at onset is
some fraction of D, so that c' is some fraction of the con-
stant c appearing in Eq. (2). This functional dependence
of the critical velocity on channel size has long been es-
tablished experimentally, and practically every critical
velocity model, no matter how vague or farfetched, has
managed to produce it, often with considerable fanfare.
From our perspective, according to which the functional

Clearly, A, in Eq. (6) can be replaced by the appropriate
ratio of final to initial values of whichever of the scaled
quantities are deemed to be physically relevant. For ex-
ample, A, might take the forms D /D ', v p /vp, or
(tp/t p

)'~, among others. Of course, these ratios are still
in reduced units. To express A, and Eq. (6) in terms of the
real world, one must make the identification tp=Pt,
vp = v /P. Because P itself depends logarithmically on the

scale through its dependence on
~

s" ~, this transforma-
tion will add logarithmic corrections to the scaling rela-
tions. While the logarithmic variation of P tends to be-
come significant only when a wide range of channel sizes
or driving velocities is involved, it is good practice when
comparing experimental results with each other or with
theoretical predictions to transform the data into univer-
sal form by expressing it in reduced units. Finally, it
should be noted that the friction constants a, a' enter Eq.
(5) as unscaled parameters: Because the equation is non-
linear, every set of values of these parameters in principle
represents a separate problem. In discussing any proper-
ty P, therefore, an unpredictable dependence on a, a' is
understood. '

Equation (6) relates a particular situation to a set of
others where the relevant variables take on a different
collection of values. It is obviously useful in defining the
amount of information necessary to completely charac-
terize the property of interest. It will be recognized,
however, that the greater the number of variables on
which P depends, the less general and useful are the scal-
ing relations which are obtained. Conversely, if Eq. (6)
can be supplemented by the assertion that P is indepen-
dent of all except a very few important parameters, rath-
er powerful and surprising conclusions about the func-
tional form of P can be drawn.

Suppose, for example, that the critical velocity for the
onset of superfluid turbulence in a particular channel of
cross-sectional dimension D' is found to be v,'p =v,'/P'.
Then since for velocities f(A, )=A, , and expressing A, as
D/D',

L '(r', D', v„', p), (10)

where a number of the factors enumerated earlier have
already been assumed to be irrelevant. If it is now assert-
ed that L does not depend on position within the channel
or on channel size, and A, is expressed as v„', p/v p it fol-
lows that

L =CRAU~ p
2 2

or, in real units

L =ci (v„,/P) (12)

where czar
L'/v„', 2p L'p'——/v„', . Su——ch a state, in

which the time average of L is independent of position or
any geometrical features, will be referred to as the homo-
geneous state. To put the above argument more concrete-
ly, for such a state one can take L at a single velocity, and
scale various channel sizes and positions back to a single
channel size and position at various velocities, thus im-
mediately obtaining Eq. (11).

It is not difficult to see that of the three requirements,
namely spatial homogeneity, independence from D, and

form follows automatically from the equation for vortex
motion, such an achievement is less than impressive. The
constant c„, on the other hand, cannot be calculated
without a detailed understanding of what is happening at
the onset —such questions constitute the real critical-
velocity problem. '

Various ways of summing over the tangle need to be
distinguished. Most basic is the line integral over all of
the vortex line within some sample volume 0, evaluated
for a particular instantaneous configuration of the tangle.
This kind of sum will exhibit the intrinsic fluctuations as-
sociated with the tangle, the fluctuations taking on an in-
creasing importance as the sample is made smaller. Such
fluctuations are sometimes of interest. More usually,
however, one will be interested in an ensemble-averaged
property P, by which we mean the integral averaged over
all tangle configurations in accord with their probability
of occurrence. In the steady state, the ensemble average
will be the same as the time average. More generally, P
can represent a time-dependent quantity. For example, a
study of transient behavior might involve averaging the
transients generated from a suitably weighted collection
of starting configurations to obtain an ensemble-averaged
transient.

Consider now the line-length density

L=—J dg.1

0
Suppose one measures a particular steady-state average
L ' at a point r* in a channel of characteristic width D',
when the driving velocities are v„'p and v,'p. Although
the argument can easily be given in terms of more com-
plicated functional dependences on U„p and U, p, it will be
assumed here than in fact L depends only on the relative
velocity v„, p. From Eq. (9) it is plain that for L,
f (A, ) =A, , so that

L(r, D, v p) =L(Ar ', AD', v„', p/A )
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v„, o velocity dependence, any two imply the third. It
must be noted here, however, that arguments of this type
depend on the fact that the property in question is a
well-defined, single-valued function of the relevant vari-
ables. In the case of L, it is in fact quite possible to con-
struct spatially homogeneous vortex states that will not
change when the driving velocity is increased. The first
of these is somewhat artificial, but will be of interest in
discussing the vortex-tangle simulations. Consider a
three-dimensionally periodic space filled with a uniform
random distribution of straight vortex lines lying only in
planes perpendicular to the driving velocity v„,. If it is
assumed that the reconnection distance has some value
less than the spacing between the lines, then the lines will
always remain straight and never reconnect. Below a cer-
tain value, therefore, L will not depend on the driving ve-
locity and Eq. (11} does not apply. A second, less
artificial example of interest is the case when a uniform
distribution of vortices exists which are pinned by rough-
ness on the channel walls. It can be shown that below
some critical density, such vortices do not act on each
other sufficiently strongly to reconnect. ' Thus they
reach a stationary state not uniquely related to v. In this
case, as well, spatially homogeneous, steady-state behav-
ior without Uo scaling arises because the vortex lines can-
not interact dynamically through the reconnection mech-
anism.

For a numerical simulation of the vortex tangle, an in-
consistency between the three conditions given above is a
sign of serious trouble. It either indicates that the vortex
tangle has degenerated into a collection of noninteracting
lines, i.e., that there is no steady-state, dynamically active
vortex tangle within the context of the simulation, or it
implies a faulty calculation. Thus a demonstration of the
simultaneous validity of all three conditions is an impor-
tant test of any simulation purporting to describe the
homogeneous limit.

Whether or not a homogeneous vortex tangle exists
within the context of our model will be discussed in the
next section. The discussion here, however, already pro-
vides grounds for optimism in view of the fact that all ex-
periments, when carried out at sufficiently high velocities,
have given the result of Eq. (12). Although previously
Eq. (4) had been used to correlate the data, reexamination
of some of the better experiments in view of our predic-
tion has shown the remarkable accuracy with which Eq.
(12) is obeyed. As will be discussed in Sec. IV, even the
weak logarithmic dependence of P on

~

s"
~

is clearly ob-
served. This has been emphasized by Swanson and Don-
nelly. ' Experts in the dynamics of classical Quids are
often skeptical about the omission of nonlocal effects
such as vortex-line stretching from any model purporting
to describe a kind of turbulence. However, the experi-
mental observation of precisely the predicted scaling be-
havior offers a solid indication that a homogeneous
vortex-tangle state exists within the context of Eq (1).

There is no difficulty in extending the scaling argu-
ments to other quantities of' interest. For the homogene-
ous state, to which the present discussion is restricted, it
is sometimes convenient to use (L /L )'~ as the scaling
parameter k, as can readily be seen to follow from Eq.

where the explicit form of the constant will no longer be
given since it is trivial to establish in each case. The
characteristic radius of curvature

~

s"
~

' or any other
characteristic distance in the tangle, such as, for example,
the average interline spacing 5, will therefore scale as
L '~ . Similarly,

f

s"
f

=c2L, (14)

a result which will prove useful later.
A plethora of other scaling relationships can be de-

rived, of which we choose only those with particular
relevance to the interpretation of past experimental work.
An especially important set of properties relates to the
fact that even though the vortex state may be homogene-
ous, it need not be isotropic: Because the vortices tend to
grow by ballooning outwards in the plane perpendicular
to v, the vortex lines can be expected to run preferen-
tially in such planes, the quantity s')(8" then being pref-
erentially oriented parallel to the driving velocity. It is,
of course, required that on average the distribution
s', s", . . . be rotationally symmetric about the preferred
direction defined by v„„and that the probability of s' be
the same as —s'. Although the characterization of the
anisotropy is to some extent a matter of choice, experi-
ments define certain measures

(15}

J f 1 —(s 'ri} )d0

Igrl= s Xs dg/

which need to be calculated if a comparison with theory
is to be possible. Here r~~ and rj stand for unit vectors
parallel and perpendicular to the v„, direction. As
defined, the averages of these measures are independent
of scaling, sample size, and line-length density for the
homogeneous state. It is not difficult to show that if the
tangle is isotropic, Ii Ii=—'„and I

&

————0. At the other
extreme, if the tangle consists entirely of curves lying in
planes normal to v, then I

~~

——1 and I~= —,', with I
&

de-

pending on the more subtle consideration of how the bi-
normal is distributed. The relation

I i/2+I j.——1

which follows from the symmetry of the problem' will
prove to be useful.

Several quantities of experimental relevance can be ex-
pressed in terms of the scale-invariant anisotropy
coefficients defined above. Of greatest interest historical-
ly is the mutual friction force density F,„exerted by the
normal fiuid on the superffuid. From Eq. (3) it follows
that

(10). Thus, for example, the line-length weighted curva-
ture (QL) 'lt

~

s"
~
dg obeys

c Li/2
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PSKa
F,„=— s'X s'X v —s'Xs" (19)

the term in a' vanishing by symmetry. Hence.

F,„=p,aa(cLI
~~

c—l I &)U„, /P (20)

in the v„, direction, where cL is defined in Eq. (11). Simi-
larly, the drift velocity of the vortex tangle with respect
to the superfluid rest frame

v, = „ fsdg v—, ,
1

u„, —C2V(V.u)+ f,„=0,
PsPn

where from Eq. (3)

(24)

act anisotropically on such propagating probes as
second-sound waves and ion currents. To first order, a
second-sound wave represents a propagating wave in the
relative velocity field u =u„—u„ the two fluids coun-
teroscillating so as to keep the total density constant. In
the presence of the vortex tangle, this field obeys the
equation

where s is given by Eq. (1), averages to

UI ——[cz (1 a')II—+a'I (22)

sK
f,„=— f [as'X(s'Xu„, )+a's'Xu ]dg (25)

in the direction of v . Here the term in a has vanished
by symmetry. Again, Eqs. (20) and (22) have the form of
scaling relations, which could just as well have been de-
rived using Eq. (6) and the definitions. Thus the expres-
sion in parentheses in Eq. (20} is just the force coefficient
Fo /vo defined in Ref. 7. Here, we have gone a step far-
ther by expressing such coefficients in terms of the more
fundamental parameters ci, It, and II. By using Eq.
(12}, Eq. (20} can be rewritten in the useful alternative
form

is the force density acting between u„and u, because of
the vortex tangle. Although the main effect of this term
is to cause an attenuation of the second-sound wave, the
fact that f„, is not in general along u„, gives rise to other
complications. The solution is simple only when the
propagation direction r is parallel or perpendicular to the
symmetry axis v . For parallel propagation, one obtains
a longitudinal wave which decays with an attenuation
coefficient

F,„=p,xa(I~~ cL II )Lv„,—. (23)
PQK

II 2 C II

Pn 2

(26)

The above results provide a clarifying perspective on
the way in which past experimental work should be used
to test theoretical predictions. The vast majority of ex-
periments done on the homogeneous vortex state deter-
mine F,„by exploiting the fact that it gives rise to a
measurable temperature gradient V T =F,„/p, S along the
flow direction, where S is the entropy per unit mass. L is
then deduced from Eq. (23) by assuming that the vortex
tangle is isotropic, i.e., III ———', and II ——0. Given the range
of the anisotropy measures, this determination of L is
likely to be accurate to 10 or 20%%uo. Independent
confirmation at this level of accuracy has come from
second-sound attenuation measurements ' and ion-
trapping experiments. ' The relative accuracy is, of
course, expected to be much better, so that, for example,
the functional dependence of L on v can be tested quite
precisely using this type of data analysis. In general,
however, the accurate absolute interpretation of a given
experiment requires anisotropy to be taken into account,
as in the equations above. For the quantities that have so
far proven to be of experimental interest, this is accom-
plished by calculating the parameters cL, II, and either III
or Ij.

It is of interest at this stage not just to predict a partic-
ular quantity such as F,„ from the theory, but to derive
the parameters cL III and I& from the experimental data,
Ii then being given by Eq. (18). This has not proved
practical in the past since, in addition to an accurate
measurement of F,„, it requires independent absolute
determinations of vi and L to an accuracy well beyond
any which has been attained. An interesting new ap-
proach, pioneered by Donnelly and co-workers, ' is to
make use of the fact that the vortex tangle is expected to

A similar equation governs perpendicular propagation.
Thus by determining the second-sound attenuation
coefficients al and ai, and making use of Eq. (18), I~~~, Ii,
and cL can be determined. In particular, the anisotropy
ratio Ii/Il is measured relatively directly. Simultaneous
measurement of Fsn then allows one to determine II.
Such an experiment has recently been performed by
Wang, Swanson, and Donnelly ' and will be discussed in
Sec. IV.

Other measures of the tangle anisotropy may eventual-
ly prove to be of importance. For example, the fraction
of the linelength seen when viewing the vortex tangle
along the particular direction r is just

J(r)= f [1—(s'.r) ]'~~dg .
QL

(27)

Again, in an anisotropic tangle this quantity will depend
on the direction of r, and one can define Jt and Ji. Aside
from the intuitive appeal of these measures, which tell us
what we would see if we could look at the tangle from
various directions, they may be of some use in interpret-
ing ion-trapping experiments. At least in the high-field
limit, ions pulled through the superfluid see the vortex
lines simply as curves with an effective capture width,
and the ion trapping rate is then just proportional to
J(r).

To conclude this section, we consider the dynamical
balance between vortex-line growth and decay processes
at or near equilibrium. The instantaneous fractional rate
of change of the line length at some particular point on a
vortex is equal to s'-Bs'/Bt. Consequently, a given ele-
ment of length hg obeys
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=a[v o.(s'&(s")—
~

s'&(s"
~ ]—a'v„, 0's",

Bto

(28)

which leads to

=—v„, o f s'Xs"d( ——f i

s"
i
'dg,

0
(29)

where the term in a' has been dropped for reasons of
symmetry. In the steady state, the ensemble average of
this equation must be zero. In addition, the assumption
of homogeneity allows use of Eqs. (11) and (17) to obtain
the equation

BL

tp
=aIt un', oL ac zL—3/2 2 2 (30}

where cz is defined by Eq. (14}. Strictly speaking, this is
valid only when BL /Bto =0. 'It is, however, to be expect-
ed that the scaling coefficients do not change much for
small deviations from the steady state. A linear-response
argument then implies that Eq. (30) also describes the
ensemble-averaged time-dependent behavior of L near
equilibrium. Setting dL /dto to zero and comparing with
Eq. (11) also implies that ct II/cz, re——flecting the fact
that in the final analysis the equilibrium density of the
tangle is achieved by balancing the mean anisotropy of
the self-induced velocity s'Xs" against its magnitude.
Equation (30) can then be reexpressed in terms of just
those scaling coefficients we have chosen to emphasize

dL

tp
=aII(u„, oL

~
cL 'L ) . — (31)

Equations (30) and (31) are of the form first devised by
Vinen to describe the growth and decay of superfluid
turbulence. The conventional Vinen coefficients are given
in terms of the more fundamental coefficients defined
here by X, =I& and Xi 2m aPI&/ac&. ——Because a more fun-
damental theory has been lacking, the Vinen equation has
provided the major phenomenological approach to the in-
terpretation of experiments. It is deduced here from ar-
guments which are very general and which trace back
directly to the fundamental equation of vortex motion in
the local approximation. At the same time, we now see
that these arguments apply only to the average time-
dependent behavior near the steady state. Neither the
average behavior far from the steady state, nor the intrin-
sic fluctuations of L about the average steady-state value
are necessarily described by this equation, although it has
frequently been applied to such phenomena. In addition,
it is known ' that the free decay of the turbulence
proceeds much more slowly than indicated by Eq. (30),
and hence must involve some additional physics. For the
time being, only the average steady-state behavior will be
considered. Fluctuations and transients will be explored
in a later paper.

III. COMPUTATIONAL CONSIDERATIONS

To investigate the implications of the reconnecting
vortex-tangle model, an arbitrary initial configuration of

vortex-tangle model, an arbitrary initial configuration of
vortex lines, subject to a fixed driving velocity v„, p is al-
lowed to evolve according to Eq. (5), and its fate is
tracked. The algorithms used for stepping the vortex
configuration forward in time are discussed in Ref. 8.
Vortices are reconnected in the manner shown in Fig. 2
when they approach to within 6 of each other, as dis-
cussed above and in Ref. 8. The motion of the resultant
smoothed kinks is handled with sufficient accuracy by
our computational scheme. Since the calculation must be
performed in a finite sample of the fluid, it is necessary to
specify how boundaries are treated. In our calculations,
the sample is always a rectangular box with one set of
faces perpendicular to the flow direction v„, p. This set of
faces is subject to periodic boundary conditions, that is,
any line leaving the box appears to reenter it from the op-
posite face. The aim of this procedure is to make the
fluid appear infinite in the direction of flow. Depending
on the situation, the box may be chosen to be stationary,
or to be moving, e.g., with the superfluid velocity. The
other boundaries are treated in one of three ways: as
periodic, if the intent is to make the Quid appear infinite
in all directions; as smooth, rigid boundaries, in which
case vortex lines approaching a face will reconnect to the
wall as shown in Fig. 2(b}, the end then gliding freely
along the wall; or as rough, rigid boundaries, in which
case vortex lines terminating on the wall undergo a corn-
plicated pinning and depinning motion as they move
along. The second and third approaches are meant to
represent the vortex tangle in an ideally smooth and in a
real channel, respectively. Although developed to inves-
tigate critical velocities, ' they will turn out to provide an
important check on the calculations done with periodic
boundary conditions.

The computational box is usually taken to be of unit
size in all three directions, although sometimes a smaller
dimension is used in the streamwise direction to save
computer time. It should go without saying that, because
the calculation is done in reduced units and can be scaled
out to arbitrary dimension, no particular real scale is im-
plied by our choice of computational box size.

The outcome of a typical numerical experiment is
shown in Figs. 4 and 5. Here an initial configuration of
six vortex rings is allowed to evolve in a rough channel
under the influence of a pure superflow driving field. It is
clear that this particular situation evolves towards a self-
sustaining chaotic steady state with well-defined average
properties independent of the initial conditions. To give
some idea of what is and is not possible with this kind of
approach, it is worth noting that the particular simula-
tion shown here required about 20 h of central-
processing-unit (CPU) time on an IBM 3090 mainframe.
Thus these simulations, each of which must run for long
enough to overcome transients as well as to allow a suit-
able average over the intrinsic Quctuations exhibited by
the vortex tangle, require significant computing
resources. Since the running time scales roughly as the
square of the line-length density, it is not practical to go
far beyond the order of complication shown in Fig. 4.

The focus of the present paper is the high-density,
presumably homogeneous limit. The most realistic way
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FIG. 4. Case study of the development of a vortex tangle in a
real channel. Here, a=0. 10, corresponding to a temperature of
about 1.6 K, and v, p

——75 into the front face of the channel sec-
tion sho~n. Upper left: tp ——0, no reconnections; upper right;

tp ——0.0028, three reconnections; middle left: tp ——0.05, 18
reconnections; middle right: tp ——0.20, 844 reconnections; lower

left: tp ——0.55, 12128 reconnections; lower right: tp=2. 75,
124 781 reconnections.

of trying to simulate this limit is to use rough-wall
boundary conditions as in Fig. 4 and to sample the tangle
near the center of the channel at driving velocities high
enough to assure that 5 «D. This is a relatively expen-
sive procedure because modeling the effects of surface
roughness takes extra computation, because only a part
of the tangle near the center of the channel can be used
for taking averages, and because the driving velocity
must be far above the critical velocity to approach homo-
geneous behavior. Smooth-wall boundary conditions are
not much better. By far the most eScient method of gen-
erating the homogeneous limit is to use periodic bound-
ary conditions on all faces. This kind of simu1ation
effectively enforces spatially homogeneous behavior and
is expected to be physically realistic provided the line
density in the sample is high enough so that the vortices
can maintain random behavior.

One objection to the use of periodic boundary condi-
tions is that they introduce artificial features the implica-
tions of which bear investigation. It is now possible for a
vortex leaving one side to reenter the opposite and con-

neet to "itself, " forming infinite vortex lines in the
extended-zone representation. The simplest example of
this is shown in Fig. 6. Because of the nonconservative
vortex growth is across the Row direction, only reentry
across the side faces is of concern. A given infinite line
need not be periodic with the elementary box dimension
but can map through the sample many times. Hence, it is
not necessarily obvious when such lines are present. Un-
folding any particular sample as in Fig. 7, however,
shows that in practice even a very dense-looking sample
consists primarily of a few infinite lines. This leads to an
interesting qualitative insight about the nature of the vor-
tex tangle. It has often been thought useful to visualize
the vortex tangle as a gas of vortex rings with radii of or-
der 5. In actuality, the number of closed loops appears to
be small, consisting mainly of small loops which have just
been pinched o8' and which have not yet collided with
another line. Larger vortex lines resemble the trail of a
random walk and will either intersect a boundary (almost
all of the lines in Fig. 4 terminate on the boundaries) or
return to form a closed loop only after an enormous ex-

FIG. 6. A closed loop reconnecting to itself to produce two

infinite lines. %'ith v„, p into the figure, the closed loop would

grow while the infinite lines will not.
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cursion.
The dominance of infinite lines observed in the periodic

boundary condition simulations presumably reflects the
fact that these simulations have no hope of representing
long-range features of the vortex tangle. Although it ap-
pears that this does not matter much in the determina-
tion of the tangle properties, the existence of infinite
lines does lead to an interesting computational problem.
We recall that the processes which sustain the vortex tan-
gle involve a delicate balance between two- and three-
dimensional effects. The line-amplification process takes
place by the outward ballooning of vortex lines in the
plane perpendicular to v 0, and if this were the only im-
portant mechanism, the tangle could not stay three-
dimensionally random. In fact, the existence of the vor-
tex tangle depends on a certain level of self-consistently
maintained three-dimensional behavior in which vortex-
vortex reconnections produce regions of high curvature,
leading to three-dimensionally random self-induced
motions, which in turn cause other reconnections. The

periodic infinite lines created when periodic boundary
conditions are imposed have a strong tendency to
straighten out because of the preferential decay of the
more highly curved sections. Once they begin to
straighten out, they cease to grow and their self-induced
velocity decreases. If they happen to approach a largely
parallel configuration, so that they map into the compu-
tational unit cell as shown in the middle row of Fig. 8,
the system will never be able to reestablish three-
dimensional behavior. One may contrast this with the
mapping of large loops, shown in the top row of Fig. 8,
which, since it weighs all directions equally, favors ran-
dom reconnections. We find that the replacement of
large loops by periodic infinite lines disrupts the balance
between two- and three-dimensional processes, prevent-
ing the maintenance of a dynamically active, homogene-
ous vortex-tangle state when periodic boundary condi-
tions are imposed on the side faces. Although the details
remain somewhat cloudy, it appears that sooner or later
the simulation fluctuates into a dead-end state consisting

FIG. 7. Extended-zone view of a vortex tangle generated us-
ing periodic boundary conditions. Lines ending outside the
computational volume are infinite. The vortex tangle fills all
space with this configuration, with a periodicity determined by
the sample cell dimensions.

FIG. 8. Mapping of various vortex configurations into the
computational volume, showing the appearance of the unit cell
when all space is filled by the repetition of these objects. The
end points of the lines represent equivalent points in the unit
cell. Top row: closed loops; rniddle row: parallel infinite lines
characteristic of a dead-end fluctuation; bottom row: infinite
lines after randomizing procedure designed to reestablish
three-dimensional behavior. The illustrations are intended to be
purely schematic.
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primarily of infinite lines which are suSciently parallel so
that three-dimensional behavior can never be re-
established.

We have found that this presumably unphysical
diSculty can be suppressed by the ad hoc procedure of
adding an occasional mixing step to the simulation. In
the mixing step, half of the infinite lines are randomly
selected to be rotated by 90' around the axis defined by
the flow velocity passing through the center of the box.
For example, half of the lines terminating outside the box
in Fig. 7 would be so rotated and then mapped back into
the box. This procedure satisfies energy and momentum
conservation and preserves the proper symmetry. Never-
theless, as is apparent from the bottom row of Fig. 8, it
allows the simulation to escape from its occasional dead-
end fluctuation. Provided the mixing step is applied
suSciently often, a dynamically stable, homogeneous
vortex-tangle state is then achieved without diSculty.
We have not investigated the required frequency of mix-
ing at length, but find roughly that the time interval be-
tween mixing steps should be shorter than the charac-
teristic time D/I s"

I
needed for an individual line to

cross the computational volume. As a becomes large,
however, the mixing step needs to be applied more fre-
quently to keep the vortex tangle three dimensional.
Within these constraints, it is found that not only the
average properties of the vortex tangle but also the
relevant fluctuation spectra are, over a wide range, in-
dependent of the frequency with which the mixing step is
applied (Fig. 9).

The somewhat artificial nature of the periodic bound-
ary conditions, and the uncertain consequences of adding
the heuristic mixing step, raise the possibility that such
simulations distort the physics in some unrealistic way.
Real-wall calculations, on the other hand, do not require

20
a&.10

the mixing procedure but they are expensive, and it is
diScult to be certain that they fully attain the homogene-
ous limit. To resolve such doubts, an extensive intercom-
parison has been carried out between these quite diferent
ways of generating the dense vortex-tangle state. This
study was performed using a=0. 10, a'=0, and assum-
ing (as always) a uniform driving velocity v~o. The re-
sults are exhibited in Figs. 10 and 11. Each point shown
is obtained from a study of the type illustrated in Fig. 5,
covering a long enough reduced time interval to define
accurate steady-state values. Figure 10 shows the aver-
age line-length density, evaluated in a (0.4) box centered
in the (1.0) computational volume to avoid wall effects.
It is observed, first, that while the results obtained using
periodic boundary conditions with mixing lie systemati-
cally slightly lower, they are in good absolute agreement
with those obtained using the two types of solid-wall con-
ditions. Secondly, L as computed is found to be accu-
rately proportional to U z as required by Eq. (11),imply-
ing that all of these methods produce results correspond-
ing to the homogeneous limit. Figure 11 shows cz, and
various of the other important scaling coefficients derived
from these runs. Again, all of the coefficients are sub-
stantially independent of L, indicating that the simula-
tions produce the homogeneous state and obey the scal-
ing relations expressed by Eqs. (11), (13), (20), (23), and
(31) to a high order of accuracy. The reader will again
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FIG. 9. Dependence of the calculated line-length density on
the number of computational time steps between invocations of
the mixing step. In this example, D/I s"

I
amounts to about

5000 time steps. Typical values used in computations lie be-
tween the two arrows.

FIG. 10. Line-length density as a function of velocity calcu-
lated with rough walls (triangles), smooth walls (squares), and
periodic boundary conditions with mixing (dots). The upper
line is a fit to the real-wall calculations, the lower is a St to the
periodic boundary condition calculations.
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FIG. 11. Important scaling coeScients evaluated from the
runs shown in Fig. 9. The lines have been drawn to guide the
eye.

note the existence of some small systematic discrepancies
between periodic and real-wall boundary conditions, but
the overall agreement is very good.

The above results give one confidence that the use of
periodic boundary conditions with a mixing step is a
satisfactory way of reproducing the high-density limiting
behavior of a system with real walls, and that this behav-
ior is homogeneous. The remainder of the results report-
ed in this paper were all obtained using periodic bound-
ary conditions with mixing. On the basis of the results
displayed in Figs. 10 and ll (as well as other computa-
tional uncertainties to be discussed shortly), we estimate
the absolute error in these results to be of order 10%. By
happy coincidence, this is of the same magnitude as the
errors involved in deriving Eq. (l) and is moreover typical
of the accuracy with which the best experiments can be
interpreted. Thus, agreement between experiment and
theory to order 10 or 20% constitutes perfection here,
and anything better is meaningless.

A host of other studies have been performed to vali-
date our calculations. The following discussion provides
a set of representative computations for v o

——40,
a=0. 10, and a'=0 carried out within the context of
periodic boundary conditions. A typical snapshot of the
vortex tangle generated with these parameters is
displayed in Fig. 12. Similar studies have also been car-

ried out for real-wall boundary conditions. We first ad-
dress the issue of numerical convergence. For a typical
simulation, the spacing 6$ between points along the line
is chosen to be an order of magnitude smaller than the
characteristic radius of curvature

~

s"
~

'. Since
~

s"
~

scales linearly with Uo „„this means that g' must be
scaled as Uo „',. The time step Sto is then adjusted to be
less than half the time step at which our algorithm shows
signs of instability (see Ref. 8). Figure 13 illustrates that
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FIG. 13. Dependence of the calculated line-length density on
time step. Here, g'=0. 0125 and 6=0.0125. The time step at
which evidence of instability first occurs is 5tpL =15)(10
Usual running conditions lie between the two arrows.
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further reductions in the time step do not change the re-
sults. Figure 14 demonstrates that as expected on physi-
cal grounds the calculations are fully converged with
respect to point spacing 5$ when 5$ I

s"
I
«1, and lose

accuracy only gradually as 5$ is increased.
A separate issue to be considered is the extent to which

the results depend on the choice of reconnection distance
In Ref. 8 we reported the results of fully nonlocal,

infinitely-variable point spacing calculations of interact-
ing vortex lines. There it was found that the reconnec-
tions are initiated when the lines are still a distance of or-
der b, =2R/ln(cR/ao) apart, and that the end result of
such an event is well approximated by making a smooth
reconnection over a distance of order 6 as shown in Fig.
2. As discussed in the previous section, the derivation of
the various scaling relations depends on the assumption
that the behavior of the vortex tangle is relatively insensi-
tive to small variations in 5/R, i.e., to the variation of
the logarithmic term in 6 with the basic length scale
L '~ in the vortex tangle. In Fig. 15 one sees how in
fact the computed L varies with b, . The eff'ect of varying
b, is noticeable but, in view of the fact that L must vary
by a factor of 10 in order to change the logarithm by a
factor of 2, any efFect on the scaling relations will be com-
pletely negligible. The main efFect of the b, dependence
is that it introduces an uncertainty of order 10% in the
determination of cL, which is seen to depend to this ex-
tent on exactly how one chooses to make the reconnec-
tions. As discussed earlier, this is comparable to other
uncertainties in the calculations.

The 4 dependence shown in Fig. 15 can be understood
as arising from the fact that as 5 becomes larger, the
chance for reconnections increases. As the reconnection
rate increases, more kinks are created, the characteristic
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FIG. 15. Dependence of L on reconnection distance b. For
these calculations, g'=0.0125 and Sto =2 X 10 '.

curvature and associated line loss [Eq. (29)] increases, and
the tangle finds a new balance at a lower L. The sensitivi-
ty of L to the reconnection rate is dramatically illustrated
in Fig. 16. Here, lines which pass within 6 are recon-
nected only with some probability, rather than every
time, as is the usual procedure. In accord with the above
reasoning, a reduction in reconnection rates leads to a
rapid increase in L. It is furthermore of interest to point
out that the agreement between theory and experiment to
be discussed in the next section indicates that lines which
encounter each other closely will in fact reconnect essen-
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FIG. 14. Typical example of the change in the calculated
values of L as the spacing 5$ between the points used to de-
scribe the line is varied. For these calculations, 5=0.025. Usu-
al running condition lies between the two arrows and is chosen
to give good accuracy at minimum cost.

FIG. 16. Dependence of line-length density on reconnection
probability. Here, U,„0=40, a=0. 10, a'=0, 5/=0. 0125,
5t0 ——2)(10, 5=0.025. The arrows indicate the time during
the run at which the probabilities were changed. The lines have
been drawn to guide the eye.
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tially every time. While this is implied by the Quid

dynamical calculations of Ref. 8, it has still been to some
extent an assumption of the theory, since the ultimate mi-
croscopic reconnection process is beyond the scope of the
classical approximations.

We next address the question of whether the simula-
tion using periodic boundary conditions with mixing pro-
duces turbulence which is homogeneous in the sense of
Sec. II. It has already been demonstrated (Fig. 10) that L
is strictly proportional to U„, o. To demonstrate spatial
uniformity, the average line length was evaluated in sam-
pling volumes constructed by dividing the (1.0} compu-
tational volume into the concentric shells formed by the
cubes (0.2), (0.4), (0.6), (0.8)3, and (1.0), and computing
L separately within each volume. Figure I7 shows that L
is the same in each shell to essentially perfect accuracy.
This is to be contrasted with the results obtained when
real-wall boundary conditions are specified (Fig. 18): Be-
cause of surface eff'ects, there is now a boundary layer
near the wall where L varies significantly. Again, this
eff'ect would introduce errors of at most 10%. For the
final test, the average value of L at a fixed driving velocity
was computed using computational boxes of size (0.67},
(1.0), (1.5), and (2.0), covering a range of about 25 in
computational volume (Fig. 19). As expected, the results
are independent of D, which in this case takes the mean-
ing of the size of the computational box. The simultane-
ous validity of the three homogeneity conditions
identified in Sec. II is therefore demonstrated. There is
no reason to doubt that our implementation of the recon-
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FIG. 18. Line-length densities evaluated in concentric shells
of the computational volume for various driving velocities and
a =0.10. Rough-wall boundary conditions.
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necting vortex-tangle model leads to a truly homogeneous
state.

To complete this section, Fig. 20 shows the effects on a
typical simulation of using nonzero values of a . Experi-
mentally, a and a' cannot be varied independently, and
since a' becomes comparable to a at lower temperatures,
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FIG. 17. Line-length densities evaluated in concentric shells
of the computational volume for various driving velocities and
a =0.10. Periodic boundary conditions.

FIG. 19. Dependence of L on computational volume. For
these calculations, g'=0. 0125 and b, =0.0125. The tangle can-
not be sustained below a computational volume of 0.25.
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one might expect a' to give rise to nonnegligible correc-
tions. Somewhat unexpectedly, we find that even values
of a' comparable to a lead to no significant changes in
the behavior of the fully developed vortex tangle. This is
probably ascribable to the fact that the a' term in Eq. (28)
averages to zero. While all of the results presented in the
next section have in fact been calculated utilizing the ap-
propriate nonzero values of a', the results are insensitive
to this choice —it appears to be an excellent approxima-
tion to set a' equal to zero in developing the theory.

IV. RESULTS
I—
C3

LIJ

LLJ

50—

"ns,o = 0
a&.100
a'%.100

I I I

2 4 6

REDUCED TIME to

FIG. 20. Two runs illustrating the insensitivity of the vortex
tangle to a'. The dashed lines indicate average values derived
from these samples. The difference is within the uncertainty
arising from the intrinsic fluctuations and much less than other
estimated errors discussed previously.

The theory presented in the previous sections makes
specific, absolute predictions involving no adjustable pa-
rameters whatsoever. As discussed in Sec. III, these pre-
dictions are expected to be accurate at best to order 10%%uo

for quantities which vary linearly with U 0, with corre-
spondingly larger percentage errors for quantities which
vary as a higher power. In the present section, the results
of our theory are presented and compared with selected
experimental measurements. The comparison is not in-
tended to be exhaustive, but rather aims to illustrate the
point that the theory provides a quantitative explanation
for a variety of observations.

The various kinds of scaling predicted by the theory
have been discussed in Sec. II. The actual values of the
relevant scaling coefficients can be determined by measur-
ing the properties of the simulated vortex tangle, generat-
ed as described in Sec. III. The results of these calcula-
tions, all of which were carried out using periodic bound-
ary conditions with mixing as previously discussed, are
given in Table I. For each a, at least two runs were car-

TABLE I. Summary of numerical results. For each friction constant a (and the associated a' and T)
simulations at two velocities U„, o were carried out. The associated measured values of L and of the
scaling coefficients, as obtained from each individual run, are shown. The reproducibility of the scaling
coefficients indicates both that reliable average values have been obtained and that homogeneous scal-
ing holds to a high degree of accuracy.

a'

Uns, 0

CL

c)

C2

0.010

0.005
1.07

140
190
24.5
48.1

0.0353
0.0365
2.91
2.81
3.47
3.33
0.721
0.719
0.437
0.428
0.825
0.823
0.756
0.766

0.030

0.0125
1.26

55
80
16.0
34.0
0.0728
0.0729
2.00
1.97
2.46
2.42
0.746
0.749
0.454
0.442
0.841
0.844
0.756
0.755

0.100

0.016
1.62

40
135
31.7

323.4
0.141
0.133
1.41
1.48
1.79
1.84
0.787
0.770
0.461
0.454
0.870
0.858
0.739
0.745

0.300

0.010
2.01

20
30
19.4
43.6
0.220
0.220
1.02
1.05
1.40
1.43
0.875
0.870
0.440
0.460
0.927
0.924
0.700
0.705

1.00

—0.270
2.15

25
35
45.8
95.8
0.270
0.280
0.718
0.719
1.16
1.14
0.954
0.952
0.355
0.358
0.975
0.973
0.665
0.667
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ried out, with velocities sufficiently diS'erent to provide a
variation in l. of at least a factor of 2. This not only per-
mits a check on the validity of homogeneous scaling for
each set of friction coefficients, but also provides a feel
for the numerical accuracy with which the scaling
coefficients can be evaluated from the fluctuating tangle.
Although the reader can gather from Figs. 5, 16, and 20
that the fluctuations are in fact rather pronounced, the
results of Table I illustrate that the individual runs
(which typically have a duration ht0=8} produce ex-

tremely well-defined average behavior. The variations of
l or 2% seen here are negligible compared to other er-
rors discussed previously. Various reductions of the data
in Table I, useful for interpolation and required for the
subsequent discussion, are given in Figs. 21 —23. The
temperature scales indicated in Table I and in the figures
are based on Table I of Ref. 8. For convenience, the as-
sumed relation between a and T is reproduced in Fig. 24.
It should be emphasized that this relation is approximate
and that it may depend somewhat on the experimental
circumstances. ' For our purposes, Fig. 24 represents a
reasonable compromise which introduces errors no
greater than those already discussed.

The calculations have been carried out for a as large as
1.0, but the theory may be expected to become less accu-
rate in this limit. Among other reasons, the friction is no
longer a small perturbation on the motion, the dragging
of the normal fiuid by the vortex becomes severe, and
nonlocal velocity corrections may take on increased
significance.

A most striking and direct illustration of the degree to
which our theory matches experimental observation is
shown in Fig. 25. The data points are obtained from Fig.
1 of the classic paper by Brewer and Edwards, which

1.1
4

1.2
I

TEMPERATURE (K)
1.4 1.6 1.8 2.0 2.1

I I I I I

.01 .1

FRICTION CONSTANT n

shows L ' versus U„, for various temperatures, as mea-
sured in a glass capillary tube with an internal diameter
of 0.0366 cm. Since these authors deduce L from their
measurements of F,„by using the not-quite-correct for-
mula

P
(32}

FIG. 22. Scaling coefficients c& (dots) and c2 (triangles) as de-

rived from Table I. The lines are cubic spline fits.

1.1
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I

TEMPERATURE (K)
1.4 1.6 1.8 2.0 2, 1

I I I I I

1.2
I I I I I I

TEMPERATURE (K)
1.4 1.6 1.8 2.0 2.1

.01

I s i & i & i I
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1.0
0.
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I I

FRICTION CONSTANT n

FIG. 21. Line-length density scaling coefficient c& (dots) and
mutual friction coefficient (cL II~

—cI II )' (triangles) derived
from Table I. The lines are cubic spline fits.

FIG. 23. Anisotropy coefficients I}~ (dots) and II (triangles)
from Table I. The squares show the quantity I~~

—cLI~, which
would equal 3 (dashed line) if the tangle were isotropic. The

solid lines are cubic spline fits.
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2.0

I I I I I I I
I viation of the data. The theory presented here, however,

predicts that it is

( «/4m. ) ln(1/c, L ' ~ ao )L '~2,

1.5
CL

LIJI—

1.0
0.01

I I

0.10

FRICTION CONSTANT a
1.0

we have reconstituted their values of F,„using the origi-
nal values2 of B The s. olid lines in Fig. 25, however,
represent the prediction of Eq. (20). Here a is obtained
from Fig. 24, (c&I1 ci II )'~ —from Fig. 21, and p is taken
to equal «/4ir ln(1/c, L ' ao), where ci is obtained from

Fig. 22, and L is obtained self-consistently using Eq. (12)
and cL as read off Fig. 21. It is indeed remarkable that a
calculation based simply on Eq. (1) and the reconnection
concept, along with some practical input such as the
dependence of a on temperature, should be so successful
in explaining a very complicated set of measurements

made some 25 years ago.
A second example of the success of the theory is

displayed in Fig. 26, which represents a very precise
study by Martin and Tough of the functional relation-
ship between L and v . The upper half of the figure
shows the historically accepted way of plotting such data.
A straight-line fit results in a mysterious nonzero inter-
cept [uiz Eq. (4)], a. s well as a slight upwardly curving de-

FIG. 24. Assumed relation between the friction constant a
and the temperature.

not L ', that should be proportional to v„,. When the
data are plotted according to this prescription, perfect
agreement is obtained. One concludes that even the weak
logarithmic corrections predicted by the theory are clear-
ly observed, and that the nonzero velocity intercept, ubi-
quitous in the extensive literature of the field, is an ar-
tifact of trying to fit the functional form of Eq. (12) by a
straight line. This has also been noticed by Swanson and
Donnelly. '

A more wide-ranging comparison between theory and
experiment is shown in Fig. 27. The great majority of ex-
periments on fully developed superfluid turbulence have
measured I',„, which can be unambiguously determined
from the temperature gradient. Equation (20) can be ap-
plied to such measurements to deduce el I~~

—cJ I&. For
the purpose of estimating P=(«/4n)ln(1/c, L ' ao) in
this equation, L can be obtained with sufficient accuracy
from +. (23), by assuining the homogeneity conditions

I))
———'„ II ——0, and c& can be read off Fig. 22. The main

source of uncertainty in this kind of data reduction
comes in determining the relationship between tempera-
ture and a appropriate to each particular experiment.
%e have simply used Fig. 24, which may account for
some of the residual scatter in the figure. In addition,
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FIG. 25. Predicted mutual friction force as a function of tem-
perature and driving velocity. The dots are the measurements
of Brewer and Edwards (Ref. 26) in a 0.0366-cm-glass capillary.

FIG. 26. Data of Martin and Tough (Ref. 27) exhibiting the
logarithmic corrections predicted by our theory. The two ways
of plotting the data are discussed in the text.
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since historically every author has reduced his data in a
different way, none of them strictly correct from our
present perspective, a fair amount of tedious data recon-
struction is required, contributing its own ambiguities.
There have been numerous other measurements of F,„.
They could all be added to Fig. 27 without changing it

FIG. 27. Comparison of the theoretically predicted mutual
friction force coefficient with selected experiments. Triangles
are from Ref. 5, dots from Ref. 26, crosses from Ref. 28, and

squares from Ref. 20. In all of these experiments, a is varied by
changing the temperature.

very much. However, the points plotted here already
represent quite a variety of experimental conditions:
pure superflow and counterAow, channel sizes ranging
from 0.0366 to 1 cm, channel shapes varying from circu-
lar to rectangular with a 10:1aspect ratio, and line-length
densities covering a range of 10 to 10 . The properties of
the fully turbulent state are manifestly independent of all
such details and are seen to be in excellent absolute agree-
ment with the predictions of the theory presented here.

It is possible in the laboratory to vary the friction con-
stants by changing the pressure or the He impurity con-
centration, rather than the temperature. Measurements
of this kind provide an independent check on the theory,
and in particular test the notion that the properties of the
vortex tangle are determined almost entirely by the value
of a. Figure 28, adapted from a very recent paper by
Mimura and Luszczynski, makes it obvious that equally
good agreement between theory and experiment is ob-
tained when a is tuned by changing the pressure.

Finally, it is apparent from the numbers given in Table
I that the internal structure of the vortex tangle depends

jIJ'&Ii

a = 1.QQ

0.5 I I I I I I I I I I I I I I 1 I

0.4

a = 0.10

~ 0Q

0
I

0.2

0.1

a = 0.01

0.0
0.01

I I I illlll s I

0.1 1.0
FRICTION COEFFICIENT a

FIG. 28. Comparison of the theoretically predicted mutual
friction force coefficient with experiments where a is varied by
changing the pressure. The dots are from Ref. 30, while the
squares and triangles are from Ref. 29.

FIG. 29. Illustration of the predicted changes in the internal
structure of the vortex tangle as a is varied. Each figure on the
left shows the computationa1 volume at a particular instant,
viewed along the flow direction. The corresponding figure on
the right shows the same instant viewed across the flow direc-
tion. These tangles were generated using periodic boundary
conditions with mixing, and the driving velocities were chosen
to give L approximately equal to 47 in each instance.
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FIG. 30. Comparison of the computed anisotropy ratio (dots)
with the experimental results of Ref. 21 (vertical bars).

FIG. 31. Comparison of the predicted vortex drift factor
(dots) with the data of Ref. 21 (vertical bars).

on a. For example, the tangle changes from being quite
anisotropic at large a to a more isotropic structure as the
friction constant is decreased. Also, the variation in c&

and c2 shows that the vortex tangle becomes increasingly
kinky as a is made smaller. The sequence of snapshots
given in Fig. 29 exhibits this evolution quite clearly. The
variations seen here can be understood qualitatively as
being due to the fact that the regions of high curvature,
and the associated three-dimensionally random motion of
the vortex line, tend to be increasingly damped out as a
becomes larger, whereas the two-dimensional frictional
growth becomes relatively more dominant.

A recent set of experiments by Wang, Swanson, and
Donnelly ' provides a test of some of these more refined
predictions of the theory. These authors have measured
the spanwise and streamwise second-sound absorption
coe%cients a~ and a~~ As discussed in connection with
Eq. (26), their results can be analyzed ' to yield IjL and

IlL. The ratio of these is just the anisotropy ratio Ij /Il,
shown in Fig. 30. Use of the relation given in Eq. (18)
also allows the extraction of L. In addition, Wang et al.
measure the mutual friction force directly from the tem-
perature gradient, to obtain (I~~ cLII)L from Eq—. (23).

Thus they can derive the quantity cl II from their mea-
surements. From Eq. (22) one can see that this quantity
approximates vi /U„„and the authors make this
identification. Figure 31 shows how their experimental
estimates compare with theory.

The authors of Ref. 21 make it clear that the extraction
of the anisotropy ratio and the line-drift velocity from
their experiments is a difficult business. The error limits
they quote, i.e., those shown in Figs. 30 and 31, are corre-
spondingly conservative. Nevertheless, it is very en-
couraging to observe that their results, which represent
an entirely new kind of experimental information about
the superffuid turbulent state, once again turn out to be
in good agreement with the predictions of our theory.
Figure 30 especially indicates that the predicted structur-
al variation illustrated in Fig. 29 does indeed occur.
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