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Upper critical fields of superconductor-ferromagnet multilayers
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Nucleation of the superconducting phase in superconductor-ferromagnet multilayers is studied

theoretically. When the superconducting layers are thin and decoupled by pair breaking in the fer-

romagnetic layers, the parallel critical field exhibits a nonlinear temperature dependence and non-

monotonic thickness dependence. The perpendicular critical field, corresponding to the nucleation
of strongly modulated vortices, is also calculated. The theoretical results are in good agreement
with experimental data for V/Fe multilayers.

I. INTRODUCTION

Among artificially layered superconductors, ' the study
of alternately stacked superconducing (S) and magnetic
(M) layers is of considerable interest. Such multilayer
structures, as for example, V/Fe (Refs. 2 and 3) and
Mo/Ni (Ref. 4) are ideal model systems for studying the
interplay of superconductivity and magnetism, and may
also contribute to the understanding of multiphase high-
temperature superconductors. In this paper we calculate
the critical temperatures and the upper critical fields of
superconductor-ferromagnet (S/M) multilayer struc-
tures, both parallel (H, z1) and perpendicular (H, 2t) to the
layers.

The first attempts to calculate the critical fields of rne-
tallic multilayers near the critical temperature T, have
been made by using the anisotropic Ginzburg-Landau
(GL) equations, treating the superlattice as an anisotropic
superconductor. ' In such an approach, the temperature
dependence of H,

z~~
is expected to be linear. With de-

creasing temperature, dimensional crossover from three-
dimensional (3D) to two-dimensional (2D) behavior is ex-
pected when the effective perpendicular coherence length

(t becomes smaller than the thickness dN of the normal
(N) metal, separating the S films. However, a 3D behav-
ior may not occur when the normal-metal layers are fer-
romagnetic. In S/M superlattices, where g~&&d~,
H, 21(T) shows a square-root temperature dependence
near T„ typical for thin and isolated superconducting
films. To explain this feature, and strong decrease of T„
we take into account the proximity-induced magnetic
pair breaking in S films.

Recently, Takahashi and Tachiki developed a method
for the calculation of H, z(T) of S/N multilayers, based
on de Genne's microscopic approach. However, these
authors did not evaluate H, z(T) for the case of S/M mul-
tilayers.

We present here, in Sec. II, a general formalism suit-
able for the study of S/M proximity systems, based on
the dirty-limit version of Eilenberger theory. Similar
formalism was applied by Biagi et al. to the study of
S/N multilayers and by Buzdin et al. to the problem of
superconducting domain walls in ferromagnets. In Sec.
III we evaluate T, and H, z~~(T) of a single S film embed-
ded in M metal, assuming that the S film is thin enough
that no vortices appear in it. We apply this result to
S/M superlattices with strongly decoupled thin S layers.
The calculation of T, in the general case is done in Ref.
10. Following Ref. 8, in Sec. IV we calculate H, 2~(T)
corresponding to the nucleation of vortices, whose cores
are strongly modulated in the field direction. We show
that in the present case the ratio H, 2~/H, z~~

is tempera-
ture independent. We compare the theory with experi-
mental data for V/Fe and discuss our results in Sec. V.

II. GENERAL CONSIDERATIONS

Assuming that both S and M metals are dirty, we use
the quasiclassical equations for the Gorkov's Green's
functions integrated over energy and averaged over the
Fermi surface, F(r, to) and G(r, co). The functions F and
6 describe the condensate of pairs and the normal excita-
tions, respectively. Near the second-order phase transi-
tion at H, 2( T), we have

~

F
~

&& 1, and G = 1, such that F
is given by the linearized equation

——II F=——coF .
D
2

Here, b =b, (r) is the pair potential, D is the diffusion
coefficient, fico=trkttT(2n+1) with n =0, 1,2, . . . , and
H=V+2~i A/40 is the gauge-invariant gradient with
vector potential A and Aux quantum 40.

Equation (1) should be completed by the self-
consistency condition relating 5 to F:
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Tco
b ln =2nkaT g F-

T Pleo
(2)

where T,o represents the bulk critical temperature of ei-

ther metal, i.e., T,s or T,M.
Using the ansatz

much smaller than the corresponding length
(——ADJv/2mk&T)' in a normal metal with T,N ——0

and D~ —DM.
To evaluate the critical fields in the general case, Eqs.

(4) and (8) should be completed by appropriate boundary
conditions at S/M interfaces. '

F =6/ffico+2nkliT, pp(t)], (3) III. PARALLEL CRITICAL FIELD

we find that for the S metal Eq. (1) reduces to

Fs= —ksFs

with

and

ks =2p( r )/(s

((T) =—(s(1—T/T, )

fs =(RDs/2n ks T~s )

Note that Eq. (4) is formally identical to the linearized
first GL equation, and that the GL coherence length is
related to gs by

'2
2+H —ks Fs=o
40

and

We confine ourselves to the case of strongly decoupled
S layers, thin enough that no vortices appear in them.
The problem of H,

2~~
of such multilayers is then reduced

to that (pf a thin S film embedded in a ferromagnet, the
nucleation of superconductivity starting in the middle of
the film, and F varying in the transverse direction only.
Taking the applied magnetic field H =Hz parallel to the S
film of thickness ds situated in the y-z plane, we choose
the midplane of the film as x =0 and use the gauge
A=(O, Hx, O). When F(r)=F(x), Eqs. (4) and (8) be-
come

d Fs
(12a)

dx

Equation (2), which relates the pair-breaking parame-
ter p(t) to the reduced temperature t =T/T, s, becomes

d FM

dx

2
2mH x +kM FM ——0.

0
(12b)

int =4( —,
'

) —Re%'( —,'+p/t),

(8)

with

kM = (7l'kg T + lIP )2= 2

RDM

Assuming that Ip ))k~ T,s, we may take kM as tempera-
ture independent:

(9)

kM ——(1+i) 2 (10)

where

= (4fiDM /I p )

is the characteristic distance of decay of F in M layers. It
is worth noting that the decoupling of S films by an M
layer is much more effective than by an N layer of the
same thickness, since g'M is temperature independent and

where Re means that the real part has to be taken, and
%(x) is the digamma function. Although p remains real
in S/N proximity systems, it is complex in S/M multi-
layers because of the exchange field effect. We neglect
other possible depairing mechanisms in S, as the Pauli
paramagnetism or the spin-orbit scattering. When neces-
sary, these contributions can be easily included in Eq.
(7), " due to the additivity of the pair-breaking parame-
ters.

For M metal where the dominant effect is the polariza-
tion of the conduction electrons by the strong exchange
field, Eq. (1) holds with fico~Rco+iIp, where Ip is the
exchange energy. Taking FM&0 due to the proximity
effect and using Eq. (3) with p/t = —

—,
' corresponding to

T,M =0, we obtain

11'FM kMFM, ——

Taking into account the symmetry of the problem and
the boundary condition

~
FM

~

~0 for x ~+~, the solu-
tions of Eqs. (12) can be written as even functions of x:

F Q e OM
2

+oks1—
2mH 1 2mHx 2

4 '2' 4o

and
I
x

I
& "s/2

—nHx /4O
2

@okM
1+ 2' 1 2rHx 2

4 '2' 40

ix i
)ds/2 (13b)

where M(a, b, c) and U(a, b, c) are Kummer's hyper-
geometric functions, ' and C, and C2 are arbitrary con-
stants.

Solutions (13) are subject to the generalized de
Gennes-Werthamer boundary condition' at the S/M in-
terfaces:

d d
lnFs =~

d
lnFM

dx dx
(14)

x =+d~/2

The parameter g characterizes the interfaces. In the dir-
ty limit and for specular scattering, g=a.M/cps is the ra-
tio of the normal-state conductivities.

For a thin S film and strong pair breaking in M, we
have 2rrHx /@p&1 for x &ds/2 and

~
kMx

~
))1 for

x )ds/2, which enables us to use a series expansion for
the M function and an asymptotic expression for the U
function. '3 Then, instead of Eqs. (13) we obtain
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1 2rrHx
'

3 cosP(x } sing(x)
Fs x Ct cos x + z + 3

2P (x)
(lsa)

where

and

P(x) =ksx, 0 & Re/(x) & n /2,

FM(x)=C2exp( —
kyar ~

x
~

) . (15b)

The latter approximation of FM means that the effect of the external field is negligible in comparison with the strong ex-
change field in M regions. From Eqs. (14) and (15) we obtain for H, 2l

2

1
cosP+

2&He 2((
ds

0

2', 2((
P sing — ds

0

3 cosP 3 sing 1

3 cosP sing 3

. ds4s=(I+i)
E'

(16)

where e = (M /res and P =k, d, /2.
For H, 2~~

——0, Eq. (16) reduces to (19a)

ds 4s
Potango ——( 1+i ) ( 17)

with

5~(x)= ,",,x —+i(,'x —
——,",Ox )+

where Po is the value of P at T = T, . Solving this equa-
tion for given ds/gs and e, and using Eq. (5) rewritten in
the form

In the second case, Fs is close to zero at the S/M in-

terfaces,
~

tr/2 —Po ~
&& 1, and we obtain

20o
p(t, )=

(ds/gs )' (18)

m. /2
&

Cs
(ds/gs ) ds

(19b)

we calculate the reduced critical temperature t, = T, /T, s
from Eq. (7). The results of numerical calculations are
shown in Fig. 1. Simple analytical solutions for Po, and
hence for p(t, }, can be found only in two limiting cases:
relatively thin S films, where ds/gs «e, and relatively
thick S films, where ds/gs y&e. In the first case, Fs is
nearly constant within the film,

~ Po ~
&& 1, so that

with

52(x)=x ,'x —t —(x———', x + —,'x )+

Note that the superconductivity persists only for d&

larger than a certain critical thickness ds, (T, =O for
ds &ds, ). The dependence of ds, /gs on e, shown in Fig.
2, is calculated from Eqs. (17) and (18) by using the
asymptotic form

~

p(0)
~

=exp(% —,
'

) =0.14 in Eq. (18). In

1.0

0.8—

0.6-

0.4-

0.2—

0
0 2 4 6 8 10 12

dsI ls
14 0

O.t 10 ~00 200300

FIG. 1. The reduced critical temperature T, /T, z as a func-
tion of the reduced S film thickness ds /gs for different values of FIG. 2. The reduced critical thickness ds, /gs vs e. The low

and the high e approximations are shown (dashed curves).
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particular, for e&&1 the critical thickness is given by

ds, /gs ——20.1505/e, and for E((1 by ds, /gs ——5.9293
—0.5e.

For T & T„we calculate P from Eq. (16) to the first
order in (2mH,

&~wads
/4o) & 1 and use Eq. (5) to include in

p the orbital effect of the magnetic field:

0.7

0.6

0.5

I I I I I I I I

'2
g (po) 2n.H, 2(

p(r) =p(r, )+ d'4 . (20)
0.4

Here p(t, ) is given by Eq. (18) and the second term is the
same as for a single thin S film in vacuum, except for the
factor

3 3+2$otango
g(go)=I —,+

2yo go+ yotanyo+(yotanyo)'
0.1

1; go~0
1 —6/m'; Po~rr/2 .

(21)

I I I I I I I

For given ds/gs and e, H, zl(t) is calculated from Eq. (7)
with p determined by Eqs. (17)—(21). The results of nu-
merical calculations of p(t) p(t, ) —for two limiting cases
are shown in Fig. 3. The temperature variation of critical
fields is illustrated in Fig. 4 for different values of e and
ds /gs. The square-root dePendence of H, zl on
(1—T/T, ) in the vicinity of T„where the curves

0.3 =

0.2

O. l

0 02 0.4 0.6 0.8
T I T„

1.0

0.11

0.10

0.09

FIG. 4. Reduced upper critical fields 2mgH2/4p both
parallel (heavy curves) and perpendicular (light curves), as func-
tions of the reduced temperature T/T, q for (a) ds/fs 2 5an——d.
(b) ds /gs ——6, and for different values of e.

0.08

0.07
lJ

0.06

0.05

0.Otal

0.03

0.02

p(t) p(t, ) are li—near, is clearly seen. Note that for ds
close to ds„such that t, & 0.5, both H, 2~~(0) and the slope
( —dH 2~~/dT)r increase rapidly with ds (See Fig. 5).

C

This effect, which is observed in Mo/Ni superlattices, is
connected with the corresponding rapid variation of T,
with ds. For thicker films, t, &0.7, the thickness depen-
dence approaches the law H, 2~~

cc I/ds, as for the single
thin film in vacuum. In our approach, the latter case cor-
resPonds to F1=0 (E= ~ ), and hence g(go)=1, and
p(t, )=0, t, = l. In the vicinity of T„Eq. (20) reduces
now to the well-known Ginzburg-Landau result, '

H, z~~~(T)=&12@o/2nd~((T), and at low temperature to
the result of de Gennes and Tinkham, '

0.01 H~2ll(0) 0' 832+12@o/2~dsg(0)

0
0 0.1 0.2 0.3 0.I 0.5 0.6 0.7 0.8 0,9

t

FIG. 3. Graphs of p(t) —p(t, ) vs t =T/T, z for different
values of t, = T, /T, z in two limiting cases: @&&1 (solid curves)
and e»1 (dashed curves). Inset: Rep(t, ) vs t, . For @&&1
Imp(t, ) =0, and for e»1 Imp(t, ) =Rep(t, ).

obtained by the correlation function method and valid for
I dz, where I is the electronic mean free path. These re-
sults are valid up to the thickness ds ——1.84$(T) at which
the vortices appear in the film. However, the nucleation
of vortices in S/M multilayers starts at dz considerably
larger, since the superconductivity is suppressed near the
S/M interfaces.
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l I i j I t i t

t;-0.5
0.3

qs~s
qstan =gq~tanh

2
(22)

with

and

qs=ks 2nH, zt/@o (23a)

wu~
x- ~
C7
Cv ul

laP

qsr kM ——+2m'H~tt/4o (23b)

Still assuming, as before, that
~ kid~/2 ~

&&1 and

~
k~

~

~ &&2mH, z /4o, from Eq. (22) we obtain

qsds qsds
2

tan
. "sos=(1+i) (22')

0.3
4=0.5

From this equation, which is identical to Eq. (17), we find

gsds/2 =Pp and using Eq. (23a) we obtain

I I I I I I i 1 t

15 d, /d„

FIG. 5. Thickness dependence of the slope —(dH,'&~~/dt), ,
C

calculated as —H,'z~~(t, /2)/(t, /2) in two limiting cases: e &&1
(upper curve) and e~&1 (lower curve).

IV. PERPENDICULAR CRITICAL FIELD

6

ta)
I 1 ( I ) I I

0

6, E =31.6Ap

~, = 355 Ap

8.5, g = 40.4AP

When the applied field is perpendicular to the layers,
the magnetic flux penetrates through the superlattice in
form of Abrikosov vortices, whose cores are strongly
modulated in the field direction. The perpendicular criti-
cal field H, z~ is given by the generalized de Gennes-
Werthamer equation, as in the case of S/N superlattice,
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0
1.6 2.0 2.4

T (K)

2.8 3.2

FIG. 6. Upper critical fields H, zl~
and H, z& vs T. The points

are experimental data for V/Fe multilayer with dv ——297 AP
and dF, ——9.8 AP (Ref. 2). The theoretical curves are calculated
using the parameters listed in the figure.

0 l i l i i I l

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

FIG. 7. Comparison with the experimental data for Fe/V/Fe
sandwiches (Ref. 3): (a) T, vs d& and (b) H,

&~~
vs T/T, . For the

chosen four values of the vanadium film thickness dz, the
theoretical curves are calculated taking T,& ——5.4 K and the
atomic plane distance 2.14 A, for e and gs listed in the figure.
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(24)

Here the proximity effect enters only through p(t, ), given

by Eq. (18}. The linear dependence of H, zi on (1—T/T, }
in the vicinity of T, is clearly seen from Fig. 4. In the
limit ds~ ao or e~ ~, and hence p(t, )~0 and t, ~l,
Eqs. (24) and (7) give, as expected, the bulk upper critical
field H, z. From Eqs. (20) and (24}one can see that the ra-
tio H, zt /H, zi is temperature independent. For two limit-

ing cases when g (Po) is real we have the simple relation
r

Cs
6/tt,

H, ~i ( T)

H, zi( T) 6/m. Cs
1 —6/n' "s

(25)

This is a feature common to multilayered superconduc-
tors with decoupled thin S layers, so that no vortices nu-

cleate in parallel field.

V. COMPARISON WITH EXPERIMENT

The square-root dependence of H, zt on (T, T) and-
the temperature-independent ratio H, zt/H, zi have been
observedz in V/Fe superlattices for ds ——297 AP (atomic
planes) and d~=9.8 AP with T, =3.24 K. Taking the
bulk value T,s ——5.4 K and atomic plane distance of 3.02
A/~2=2. 14 A for vanadium bcc(110} structure, ' we

find that the theoretical curves H, zt(T) and H, zi(T) for
a=3 17 and .gs

——103 A are in good agreement with the
experimental ones (see Fig. 6}.

In Fe/V/Fe sandwiches, the 2D behavior in the tem-

Perature dePendence of H, zt( T) has been observed for ds
varying from 153 AP to 314 AP. A good agreement of
both T, (d, } and H, z~((T, ds) theoretical curves with the

experimental data is obtained for T,s ——5.4 K and for e
varying with ds from 6 to 8.5 and gs from 68 A to 86 A

(see Fig. 7). The increase of gs with ds is consistent with

the residual resistivity data, ' indicating the increase of
the mean free path I with ds, the values of gs being con-
sistent with H, z data for bulk V.

The 2D behavior of H, zt(T), and an extremely rapid
variation of T, with d„were also observed in two short-

0

period Mo/Ni superlattices with ds ——dst &10 A. How-

ever, in this case the quantitative agreement between
theory and experiment would require unrealistic large
values of (s.

In conclusion, thin S films in proximity of M metals do
behave quite differently from isolated thin S films as seen
from ds dependences of T, and H, z(T}, and from the fact
that the vortices start to nucleate ' at thicknesses consid-
erably larger than 1.84$(T) Also. , the decoupled behav-
ior of S/M superlattices is in sharp contrast with that of
finely layered S/N superlattices where near T, the super-
conductor inherently averages over many layers.
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