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Thermal enhancement of macroscopic quantum tunneling: Derivation from noise theory
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We recompute the thermal enhancement of quantum tunneling using a noise-theory derivation.
This calculation is applied to the macroscopic quantum tunneling out of the zero-voltage state of a
current-biased Josephson junction. The rate enhancement for T much less than the crossover tern-

perature is shown to be due to the thermal current noise generated at low frequencies by the shunt
admittance across the junction. The results of this theory are found to be in perfect agreement with
earlier findings based on more formal functional integral techniques. The method is applied to cir-
cuits with dissipative elements of arbitrary frequency dependence. The method also gives the first
analytical predictions for the effect of the prefactor on the rate enhancement.

I. INTRODUCTION

Even though the phenomenon of quantum tunneling
has been known for many years, only recently has the
effect of dissipation on tunneling been calculated. ' This
has led to further work on the effect of a finite tempera-
ture to the tunneling rate, and finally to an escape-rate
prediction encompassing both the quantum tunneling and
thermal activation regimes. Experimental confirmation
of many of the predictions have been made. ' Thus a
complete understanding is emerging for the escape from
the metastable state for arbitrary temperature and dissi-
pation.

Although predictions of escape rates exist, we believe a
clear physical picture is absent that describes the origin
of the finite-temperature corrections to the quantum tun-
neling rate. The main object of this paper will be to
rederive this result using a very simple and physical
theory. The rate enhancement will be shown to be simply
due to low-frequency thermal fluctuations which origi-
nate in the dissipative elements. This approach gives in a
straightforward manner the contribution from both the
exponential and the preexponential factors. It is also
generalized quite naturally to give predictions for the
escape-rate enhancement for an arbitrary frequency-
dependent dissipative term. We hope these calculations
will illuminate the physical mechanism for the rate
enhancements, as well as eliminate some doubts to the va-
lidity of the more elaborate path integral calculations
that were originally presented.

An attractive physical system to experimentally test
the escape from a metastable state is the current-biased
Josephson junction or rf superconducting quantum in-
terference device (SQUID) system. Junction parameters
can be obtained so that a measurement of the escape rate
from the quantum to thermal limit is possible for both
the low and high limit of damping. All of the junction
parameters can be measured, thus enabling an accurate
test of the theories with no adjustable parameters. For
these reasons and for physical clarity, we will concentrate
in our derivation on the current-biased Josephson junc-

tion system. The generalization of the ideas presented
here to an arbitrary metastable system is straightforward.

For the temperature T =0 K and for temperatures
small compared to the crossover temperature To, the es-

cape from a metastable state occurs via quantum tunnel-

ing. ' For the current-biased Josephson junction, the
tunneling occurs for the macroscopic variable of the
phase difference across the junction and is thus referred
to as macroscopic quantum tunneling (MQT}.' Caldeira
and Leggett' were first to calculate the effect of dissipa-
tion on quantum tunneling at T =0. They showed that
the effective admittance Y(ca) shunting the Josephson
junction leads to an exponentially strong reduction of the
zero-temperature MQT rate I (0) when compared with
the rate I 0(0) of an ideal undamped junction (Y=0}
with the same Josephson critical current, capacitance,
and bias current. The ratio in[I (0)/I o(0)] is calculable
and can be compared with the experimentally observed
suppression of the rate. A natural extension was to cal-
culate the effect of finite temperatures on the rate. Gra-
bert, Weiss, and Hanggi showed that for a junction with
admittance Y(cv), the MQT rate at finite temperatures
around T =0, I ( T), is enhanced compared with the
T =0 rate, I (0), according to a power law
in[1 ( T) /I'(0) ]=o T, where tr is proportional to
Y(ca=0) and calculable. On a log I' versus T plot the
experimentally observed slope can be compared with the
predicted value. Indeed, experiments have confirmed
these predictions.

In this paper the origin of the reduction of the zero-
temperature rate will only be discussed briefly. We shall
mainly investigate the thermal enhancement of the rate.
We will show that the finite-temperature results around
T =0 can be easily obtained once a solution to the rate at
T =0 is known.

The paper is organized as follows. In Sec. II we
present the physical ideas for our approach and give a
simplified calculation for the thermal enhancement of the
escape rate. In Sec. III we present results for Ohmic dis-
sipation, as well as a refinement of the theory to include
prefactor effects. Predictions for non-Ohmic dissipation
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are given in Sec. IV. Section V gives a concluding sum-

mary. Finally, two appendexes clarify the relation of the
present approach with earlier work.

and width
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II. THERMAL ENHANCEMENT OF MQT

As discussed elsewhere" we represent the current-
biased Josephson junction by the equivalent circuit
shown in Fig. 1. The junction critical current is I0, the
junction capacitance is C, and Y(co) denotes an admit-
tance in parallel with the junction. Y(oi) is a linear
response function that describes the external loading of
the junction by shunt resistors, bias circuity filters, and
the quasiparticle tunneling resistance. When the junction
is biased by a current I, its classical equation of motion
reads

2 2

C 5(t)+ f du y(t —u)5(u)
0o " 0o

BU(5(r))
B5(t)

I~(t), (2.1)
4o

y(t}= f dao Y(co)e'"'2' (2.2)

is the temporal response of the admittance. The potential

where 5(t) is the Josephson phase difference across the
junction, Po

——h /2e is the flux quantum, Iz(t) is the clas-
sical noise current arising from Y(co), and

From the curvature of the potential at the local
minimum, one obtains for the plasma oscillation frequen-
cy at the bottom of the well

(2.7)
0 0

The zero-temperature MQT rate PO} for the escape
from the local potential minimum may be written as

I (0)= Ae (2.8)

(5I,„(r)),=0 (2.9)

where the exponential factor 8 and the preexponential
factor A can be calculated by the zero-temperature
bounce technique' or by multidimensional WKB
methods. ' We shall not address here the calculation of
A and 8, but assuage that they are known functions of
the junction parameters and the admittance.

At finite temperatures T the environmental modes de-
scribed by Y(co) will become thermally occupied at low
frequencies. Using the fluctuation-dissipation theorem,
this leads to a thermal noise current 5I,h(t) with the
properties

Ioko I{to
U(5) = — cos(5) — 5

2m 2~
(2.3) (5I, (th)5I, (0h) ) r =f Rro[coth( —,'ph'ro) —1]

0 7T

is the tilted cosine potential which describes the effect of
the current source and the Josephson coupling between
the superconductors.

Generally MQT is observed for values of the bias
current I only very slightly below the critical current I0.
Then, the relevant part of the potential U(5) is very well
approximated by the cubic potential'

Iodo
U(y) =

277

I I 1+ 1 — y ——y, (2.4)
2 I0 I0 6

where y=5 —m. /2. This cubic potential has a barrier of
height

X Re[ Y(co)]cos(cot ), (2.10)

we may write

where p= 1/kii T and Re[ Y(co)] is the real part of the ad-
mittance. Note that the zero-point fluctuations of the
noise current are not part of the thermal excess current
5I,h(t). The effect of zero-point noise is already included
in the zero-temperature MQT rate (see also Appendix B).
In terms of the Planck occupation number n&(co) of a
mode with frequency co which is given by

e
—Pfuu

n&(co) = ~ ———,'[coth( —,'trito) —1] (2.11)

4&2 Ioko
3 2m I0

(2.5) (5I2th ) r ———f des AcunIi(oi)Re[ Y(co)] .
0

(2.12)

I g Y(u&)

FIG. 1. Equivalent circuit of a current-biased Josephson
junction.

In Eq. (2.12), 2fioin&(co)/ir gives the spectral density of
the thermal noise. In Fig. 2, we plot fmn&(co} as a func-
tion of the frequency. The magnitude of the spectral den-
sity near zero frequency increases as T and is equal to the
thermal noise result 2k&T/~. The characteristic fre-
quency in which the noise decays to zero is co- kz T/A.

For temperatures T well below ficoI, /kryo only current
modes with frequencies co &&coz will be thermally occu-
pied. These low-frequency modes lead to a quasistation-
ary change of the bias current through the junction. ' In
Fig. 3, we draw the change in the potential well as the
bias current is changed by a small amount 5I. Hence, at
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Here we made use of the fact that 5I,h obeys Gaussian
statistics, since the circuitry loading the junction is linear.
From (2.14} we obtain for the thermal enhancement fac-
tor

l.03 2

lny(T) =in[i (T)/I'(0)] =— (5Ith ) T .=2 aI (2.15)

3

0
0 2

4)

Note that the temperature dependence arises entirely
from the thermal fluctuation term (5I,h)T. Thus the
rate enhancement is proportional to the total current
noise (5I,h ) flowing through the junction. Equation
(2.15) combines with (2.12) to yield

'2

lny(T)= — f drokron (ro)Re[ Y(co)] (2.16)
1 r)B

r)I o P
FIG. 2. Plot of Aeon& vs Ace for two values of temperature.

Since the ratio k&T!Ace determines the functional dependence
of the plot, we have chosen for convenience the same arbitrary
units for both k&Tand Ace.

low temperatures the system has to penetrate a potential
barrier that is modulated slowly by the noise from the
shunt admittance. In the remainder of this paper, we as-
sume that the system follows quasistatically and remains
in the ground state during the modulation of I. Then a
small change 5I in the bias current changes the zero-
temperature tunneling rate into

which in view of (2.11) may also be written as
'2

lny( T}= k~ T I dxI o

Y(co =0)= 1

Ro
(2.18)

XRe[Y(k+Tx/fi)] .

(2.17)
When the low-frequency admittance has an Ohmic

component

I (0)=I (0)exp — 5I8
(2.13) we find that the enhancement factor around zero temper-

atures follows the power law

&I( T)= ( &I sl „(0)) T

= I z(0)exp — (5It~h ) r
aa

'
2 r)I

(2. 14)

where we have taken into account only the change of the
dominant exponential factor of the rate. The current
dependence of the preexponential factor gives a correc-
tion which will be considered in the following section.

Using (2.13) we see that the thermal noise current 5I,&

leads on the average to the finite-temperature decay rate

2

(2.19)

Here we made use of

xe8x
1 —e " 6

(2.20)

Hence, we recover the T law for the thermal enhance-
ment of the low-temperature MQT rate. Our calculation
shows that the enhancement arises from the thermally ex-
cited fluctuations of the reseruoir and not from thermal
excitations between states in the metastable well. The
thermal excitation of the states in the well' is exponen-
tially small at temperatures considered in this paper, and
thus provides a negligible rate enhancement. As will be
shown in Appendix A the formula (2.19) agrees with the
result of the finite-temperature bounce calculation.

III. OHMIC DAMPING

g ~ 0 01~~ ~

'
1+51

0 ~ ~ ~ ~ ~ ~ ~

FIG. 3. Potential U{P) vs P for bias currents I and I+5I

Y(r0) = I /R (3.1)

and the dissipation caused by it may be characterized by
the dimensionless parameter

a= 1 /2Q = 1

2RC~
(3.2)

In this section we discuss more specifically the case of a
Josephson junction shunted by an Ohmic resistance R.
The admittance then is frequency independent, i.e.,
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where Q=oi RC is the quality factor of the junction.
The zero-temperature MQT rate I (0) was analyzed by
Caldeira and Leggett' who found

tial factor A. Extending the expansion (2.13}to the next
order, one obtains instead of (2.14}the improved result

AUB= s(a)
16')p

(3.3)
I't(T)=l t(0}exp( —,'K(5I,h ) z. ),

where

(3.5)

and
' 1/2

277 %COD

(3.4)

where s(a) and g(a) are dimensionless functions of the
damping parameter a which can be calculated analytical-
ly for small and large a, and numerically for intermediate
damping. We want to complete the analysis of the
thermal enhanceinent of MQT presented in the preceding
section by including the contribution of the preexponen-

I

2
BB Bind 8 B 8 in'
dI BI

(3.6)

BK=
%Ceo

(3.7)

where

With the help of (2.15), (2.7}, and (3.2} the coefficient K
may be evaluated to yield

8 lns(a)~= —,'s(a) . 5—
8 lna

P

1 8 lns(a) 8 lns(a) 8 1nX(a) InX(a) 8 lns(a)
B 8 lna 8 lna 8 lna 8 lna Q(ina)

(3.8)

For the frequency-independent admittance (3.1), we have
from (2.12) and (2.20)

(3.9)

The thermal enhancement factor lny(T) as defined in
(2.15) may thus be written as

'2
k~T

lny( T) = aBn— (3.10)
3 'RNp

Again, we have recovered the T law for the logarithm of
the low-temperature rate. Compared with our earlier re-
sult, we have obtained a more specific expression for the
slope.

For weak damping the functions s(a) and X(a) are
given by'

in@(T)=10ma(B ——', )(k&Tlfiroz) +O(a ) . (3.16)

The prefactor correction is consistent with previous nu-
merical calculations. The term of second order in a can
also be extracted from the above results.

For strong damping the functions s(a) and X(a) read'

I

The leading order term of z, ~=30, gives when inserted
into (3.10) exactly the result derived previously by path
integral methods for the exponential factor of the rate.
The corrections of order B ', which include the effect of
the change of the prefactor with temperature, have not
been derived analytically before. Since under typical ex-
perimental conditions B is between 10 and 15, these
corrections modify the T slope by about 10%%uo. Inserting
(3.13) into (3.10) we find for the enhancement factor in
leading order in a

s(a}= 1+ g(3)a+O(a )
36 45

(3.11) s(a)=6na 1+ +O(a )
1

4a
(3.17)

where g(3)= 1.202. . . is a Riemann number, and '

g(a) =12&6vr[1+Ca+0(a )], (3.12)

and" '

dX(a }= 16m.&6a 1+ lna+ +O(a lna)
a a

where C =2.86. . . . When this is inserted into (3.7), the
coefficient ~ is found to be (3.18)

a=~o+a, a+O(a ),
where

(3.13) where d = l. 107. . . . This combines with (3.8) to yield

le=16@a+ [1—(41na+2d ——", )B ']+O(a lna) .
~o ——30—48B '+ O(B ) (3.14}

(3.19)
and

810
ai —— g(3}—

773

1512
g(3)—12C B '+O(B ') .

(3.15}

Note that the leading-order term proportional to a has
no correction of order B '. This is due to the fact that
the preexponential factor A becomes temperature in-
dependent for large a. ' Inserting (3.19) into (3.10) we
obtain as the dominant term of the thermal enhancement
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factor in the strong damping limit

16lny(T)= a B(kaT/fico ) [I+0(a Ina)]
3

(3.20}

1coCs

where

1
Y(~)=—+

1+ico/Q, co, —(co/a), )
(4.4)

in agreement with the result by Larkin and Ovchinni-
kov. ' The next-order correction can also be extracted
from the above formulas.

Apart from the previously known results, our method
has given the contribution of the preexponential factor to
the finite-temperature MQT rate in a rather straightfor-
ward manner. We mention that the results for lny( T) ob-
tained here are only valid for temperatures well below the
crossover temperature To, where the thermally excited
current fluctuations are slow compared with the dynam-
ics of the phase 5. At higher temperatures there are
corrections to lny(T) of order (T/To) arising from fast
current fluctuations to which the phase cannot adjust adi-
abatically. In Appendix A we show that the calculation
of the rate enhancement using this method is in agree-
rnent with the result of the bounce method for arbitrary
frequency-dependent damping and damping strength.

IV. NON-OHMIC DAMPING

For most experimental systems, the actual dissipative
circuit is more complicated than the Ohmic model. Un-
der these cases, Eq. (2.16) is used to find the rate enhance-
ment. We illustrate the predictions under these more
general circuits for the following two cases of non-Ohmic
dissipation.

For simplicity, we wi11 calculate the rate enhancements
disregarding the prefactor corrections and considering
the underdamped limit, that is where Q(co) =Ceo& /
Re[ Y(co)] is always much larger than one for all frequen-
cies below a few times co . The exponent B of the zero-
temperature MQT rate for vanishing damping is [cf. (3.3)
and (3.11)]

co, =(L,C, )

is the resonance frequency of the RLC circuit and

Q, = I/R, C, co,

(4.5)

(4.6)

its quality factor.
We consider the effect of this circuit when co, &geo&

and Q, »1. Inserting the real part of (4.4) into (4.3) we
obtain the result

k~ T 15Ba),
lny(T)= + 3 nii(co, ) .

R Cco A'co L,Cco3
(4.7)

Here, the first term is just the dominant piece of our ear-
lier result (3.16) arising from the Ohmic component,
while the second term comes from the low-frequency res-
onance. This latter term is proportional to the thermal
occupation probability n&(co, ) of this inode. For
T « irido, /ka there is no contribution to the rate
enhancement from this term; for T» fico, /ka the
enhancement scales as T. Further low-frequency reso-
nant circuits in parallel with the above circuit would give
corresponding contributions.

We see that for an arbitrary frequency-dependent
damping term, the temperature dependence of the rate
enhancement will obey a T law arising from Y(0} only
for very small temperatures. The enhancement will be
modified as soon as ka T/fi becomes of the order of the

36 hU
5

which gives

(4.1)

V 'H C,

aB
dI

=30 B
%Co)

[This is just the dominant term of (3.7) for a«1 and
B »1.] When this is substituted into (2.16) one finds
that the thermal enhancement factor for lightly damped
systems can be written as

lny(T)= f dcoficon&(co)Re[Y(co)) .
30 B
~ fiCco

(4.3)

We first study the effect on the temperature depen-
dence of the rate from a low-frequency resonance. Such a
resonance might arise from parasitic loading from the
current bias circuit. Specifically, we consider the system
depicted in Fig. 4(a). Here, an RLC circuit with resis-
tance R„ inductance L, and capacitance C, is placed in
parallel with an Ohmic shunt resistance R. The circuit
can be reduced to that shown in Fig. l with an admit-
tance,

Rt

FIG. 4. Junction circuit models for two cases of non-Ohmic
dissipation. (a) Admittance loading consisting of a resistor in
parallel with RI.C resonant circuit. (b) Admittance arising from
a transmission line of characteristic impedance R„length I, and
terminated by resistor R, .
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where

1 1+ac
R, 1 —ae

R, —R,
R, +R,

(4 8)

(4.9)

is the reflection factor of the line, and

frequency scale characterizing the frequency dependence
of Y(tv).

As a second non-Ohmic model we consider a junction
shunted by an ideal transmission line. This line has im-
pedance R, and line velocity U, and is terminated after
the length I by a resistance R, [see Fig. 4(b)]. This mod-
el' is described by the admittance

value a = —,
' which corresponds to R, =R, /2. Let us con-

sider the case when TL-fi/ks~ f—i—v/2ksl is well below
the crossover temperature To. A change from the low- to
high-temperature values of the function f (a,x) occurs
around the temperature TL. The enhancement factor
1ny(T) will follow a T law with slope determined by the
terminating resistance R, in the region T&&TL. A T
law is found but with slope determined by R, for
TL && T && To. This result makes physical sense because
at temperatures T && TL, the wavelength of the thermal
radiation is much longer than the transmission line, and
thus only the dissipation of the terminating resistor is felt
by the junction. At higher temperatures, the typical
wavelength of the radiation is shorter than the line, and
then only the thermal noise of the transmission line is
seen.

r=21/v (4.10)

the time after which a reflected signal returns to the junc-
tion. The experimental realization of this model is
presently under investigation at Saclay.

Inserting (4.8} into (4.3) one finds after some algebra
that the thermal enhancement factor may be written as

'2
k~T k~T~

Iny( T) = f a, , (4.11)
c p p

where we have introduced the auxiliary function

an(k2 x2n2)f (a,x)=1+ (k+xn )

For small x this function takes the form

f()21ra(1+a)2O(4)R

R, 5

while for large x one has

(4.12}

(4.13)

f (a,x)=1+ g +O(e ") . (4.14)
6 " a" 1

7T i 11 X

In Fig. 5 we have plotted f (a,x) versus x for the

2. 0

—1.6
X
l5

].4

1.2

1.0 '

0
I

1

X

FIG. 5. Plot of f (a,x) vs x', where x =ks Tr/A. This func-
tion is used in Eq. (4.11) to predict the thermal enhancement of
the rate for the transmission line circuit.

V. CONCLUSIONS

We have examined the low-temperature thermal
enhancement of macroscopic quantum tunneling in
Josephson systems. It was shown that the leading finite-
temperature corrections to the tunneling rate arise from
the low-frequency thermal noise of the dissipation. To
calculate the increase of the rate explicitly, we have as-
sumed that the noise currents lead to an adiabatically
slow variation of the potential barrier. This is correct for
temperatures well below the crossover temperature To
where the frequency of thermally excited current fluctua-
tions is small compared with the plasma frequency. As
shown by Pollak tunneling can then be considered as a
sudden transition in a quasistatic potential. At higher
temperatures the thermal excitation of the states in the
well' also lead to a further enhancement of the rate. Be-
cause of this our approach is limited to temperatures well
below To.

We remark that the enhancement of the rate by
thermal noise could, in principle, be determined indepen-
dent from an adiabatic approximation if the enhancement
of the zero-temperature rate by a sinusoidal microwave
current were known as a function of frequency. '

We have demonstrated that the predictions of this cal-
culation are in complete agreement with the results of the
finite-temperature bounce approach. ' This is as it
should be. In the bounce approach one first performs a
thermal average over the environment and then calcu-
lates the rate. In our approach, we first calculate the rate
as a function of the environmental coordinates and then
perform the thermal average. This should not make a
difference except that the physical origin of the environ-
mental effects is seen more explicitly in the calculation
presented here. The bounce method does not involve an
adiabatic approximation and can be applied for higher
temperatures including the crossover to thermally ac-
tivated decay.

The rate calculated by the bounce method is a canoni-
cal rate. The underlying assumption is that the system
decays out of a state of canonical quasiequilibrium in the
metastable well. For very weakly damped systems at
higher temperatures the observed rate may deviate from
the canonical rate due to an underpopulation of the excit-
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ed states in the well. Such depletion effects are well

known from the classical theory of escape. Above the
crossover temperature, depletion effects are found to be
only important for systems with Q factors large com-
pared with b, U/k&T. Below the crossover temperature,
the depletion effects are expected to rapidly vanish. This
is confirmed by our calculation which gives complete
agreement with the results of the bounce approach for ar-
bitrary frequency-dependent damping and damping
strength. Hence, this calculation solidifies the earlier re-
sults.

Apart from the physical insights provided, our ap-
proach is also mathematically quite straightforward. As
we have shown, the low-temperature thermal enhance-
ment of MQT is just proportional to the total noise
current (5I,h ) r fiowing through the junction, a quantity
which is often readily determined. The theory presented
here has the advantage that refinements, such as prefac-
tor effects and predictions for arbitrary dissipation, are
easily worked out. We have given some corresponding
new analytical results. While we have presented the cal-
culation specifically for the current biased Josephson
junction, the analysis may directly be transferred to other
systems with linear dissipation.
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APPENDIX A: EQUIVALENCE TO
THE BOUNCE APPROACH FOR ARBITRARY

DAMPING

In this appendix we show that the results on the
thermal enhancement of MQT obtained here are in agree-
ment with earlier findings based on functional integral
techniques. This is shown for arbitrary frequency-
dependent damping and damping strength. For a discus-
sion of these latter methods we refer to Ref. 3. In the
bounce approach the exponent B of the zero-temperature
MQT rate is written as

18=—SB ~ (A 1)

where 5& is the action
2

S(5)=f dr —C (5(r)) +U(5(r)) —Uo
2 277

+-,' f d7 f dr'k(r r') 5(r) 5(r')— (A2)

evaluated along the "bounce trajectory" 5+(t) This tra-.
jectory is a saddle point of the action and describes the
most probable escape path. U0 is the value of the poten-
tial at the bottom of the metastable minimum and k(r) is
an influence kernel which is related to the admittance by

2

00 ~ dcijk(r)= co Y( —iso)cos(cor) .2' 0
(A3)

We want to determine the change of the exponent arising
from a change of the bias current. Using the form (2.3) of
of the potential and the fact that 5+(t) is a saddlepoint of
the action we find

~So 4o +-f dr[5, (7)—5o],BI 2m
(A4)

where 5o is the value of the phase at the potential
minimum. Note that in most of the work referred to in
Ref. 3 units are chosen such that Uo and 5o vanish.

Following Ref. 2 we may introduce a "bounce length"
~& through

f dr[5'(r) 5o)=r—s b5, (AS)

where b5 is the change of phase (2.6) during tunneling.
Then, combining (Al) and (A4) we have

dB 1 (('o
(~5)2p

dI g2 2n

'2

27 hU
2 $2~2 C

(A6)

APPENDIX B: ZERO-TEMPERATURE RATE
SUPPRESSION AND THERMAL ENHANCEMENT

In this appendix we determine the influence of a low-
frequency resonant circuit on both the zero-temperature
suppression and the thermal enhancement of MQT. It
will be sufficient to consider one single resonant circuit
since the generalization to several modes or a continuum
of modes is straightforward. The admittance describing
an RLC circuit in parallel with the junction reads (cf. Sec.
IV)

Y(co)=
1+ico/Q, ro, —(co/co, )

(Bl)

where co, and Q, are defined in (4.5) and (4.6). We are in-
terested in a circuit with a narrow resonance, that is

Q, »1.
The external circuit affects the tunneling rate by

where we have made use of (2.5) and (2.7) to derive the
second line. Equation (A6) establishes the relation be-
tween (BB/81) arising within our method and the bounce
length i~ introduced in earlier work. Equation (A6} may
now be inserted into (2.16}. Performing the frequency in-
tegral for low temperatures and specific forms of Y(co)
one easily recovers the earlier results obtained by means
of the bounce method. For instance, for an admittance
with an Ohmic component [cf. (2.18)] one finds

'2

in'(T) = 9~ ] Qg kB TTg
(A7)

4 RoCco %co

which can easily be shown to be the same as the enhance-
ment factor derived in Ref. 2.
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hU'=hU 1+ 3

Ls Ccop
(B3)

1
co =N 1+

2I, Ceo'
(B4)

to first order in the effective coupling strength

1/L, Cco =C,co, /Ceo~ .

Since the tunneling exponent 8=7.25U/trinity, we find
that the change in the tunneling exponent due to the po-
tential renormalization is 1+5/2L, Cco~.

The calculation of the effect of the quantum noise from
the external resonant circuit on the tunneling proceeds as

changing the response of the junction to quantum fluc-
tuations, and by providing an additional source of quan-
tum noise from the external circuit. First, we consider
how the response of the junction to the external resonant
circuit changes the tunneling rate. In the junction, the
quantum fluctuations that produce the tunneling occur at
frequencies around the plasma frequency. At these fre-
quencies, which are well above co„ the response of the
external resonant circuit is that of an inductor L, in

parallel with the junction. The equations of motion of
the junction and this inductor can be given by a renor-
malization of the junction potential

'2

U'= U+ (5—fio) (B2)
S

We note that the new term in U' is exactly the "counter-
term" that was introduced in the Caldeira and Leggett'
theory. By using Eqs. (2.5)—(2.7), one can show that hU
and cop are changed by

in Sec. IV. However, we now have to include the zero-
point noise term. This replaces n& in Eq. (4.3) with

n&+ —,'. Combining the resulting above and the second
term of Eq. (4.7), we find the change in the tunneling rate
from the external circuit to be

in[I"( T)/I (0)]=— B 5 ~s——15 [n p(co, }+—,
' ]

L, Cco

(B5)

To check this derivation, we recalculate this result at
T =0 using conventional tunneling theory. The change
in the tunneling rate for an arbitrary admittance that
loads the junction is given in perturbation theory by'

Cups 0 slnh2(~m/mp
(B6)

For the admittance given in (Bl) and for Q, »1, one can
evaluate this integral in an expansion of co, /cu . One
then finds the result of Eq. (B5}for T =0. Conventional
tunneling theory can also be shown to reproduce the
finite-temperature corrections in (B5) in the perturbative
limit.

Because to, /ai~ &&1, the contribution of the second
term in Eq. (B5) is much smaller in magnitude than the
first term. Thus, as expected, one always sees a net
depression in the tunneling rate by coupling the junction
to a resonant circuit; the change in the tunneling due to
the quantum noise is smaller than the change due to the
potential renormalization. Equation (B5) also predicts
that the increase in the tunneling rate at finite tempera-
tures is given by the thermal noise arising from the reso-
nant circuit. This justifies the subtraction of the zero-
point noise in Eq. (2.10).

'Present address: National Bureau of Standards, 325 Broadway,
Boulder, CO 80303.
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