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Superfluid 3He in very narrow slab and cylindrical geometries is studied using the Ginzburg-

Landau approach. It is found that, in the case of very narrow slabs, the effect of the boundary is to
favor the formation of the A phase. At lower temperatures, this A phase is unstable against a de-

formed B phase. Both states are locally stable and can be supercooled or superheated. The phase

diagram for 'He in a narrow slab resembles that of He in a magnetic field. The superfluid densities

along the channel for both diffusive and specular boundary conditions are computed. Similar re-

sults are obtained for a cylindrical geometry. In addition, we present an analytic scheme for deter-

mining the order parameter in other geometries in the "very strongly confined" limit.

I. INTRODUCTION

%'hile there is great understanding of the bulk proper-
ties of He superfluids, ' comparable understanding has
not been achieved for He in confined geometries.

Confined geometries are usually used to increase the
magnitudes of critical currents in flow experiments. The
geometries commonly used (such as those made of Vycor
glass or packed powder) have a high degree of porosity
and contain a large number of small channels. These
small channels act as pinning sites of the order parame-
ter. The depairing effects of the channel surfaces also
change the order parameter from its bulk form. The de-
formation of the order parameter increases as the channel
size decreases. Such deformations imply the possibility of
producing "new" superfluids, which has gradually be-
come a strong motivation for using confined geometries.

Experimentally, increasingly many pronounced effects
are found for He in confined geometries. For example,
the phase boundary of the vortex core transition of bulk
He is altered significantly when the transition takes

place in small channels. Recently, a novel dissipation
mechanism is found in both rotating A and B phases. 3

The dissipation in the fluid increases quadratically as the
rotational frequency. This dissipation phenomenon also
seems to have an analog in heavy-fermion superconduc-
tors.

However, the irregular geometries used in many exper-
iments make theoretical studies of the superfluid proper-
ties formidable. Very recently, however, experiments
have been done in cells consisting of very narrowly
spaced (-2500 A) parallel plates. It is observed that in
such geometries, the bulk 8 phase turns into the A phase.
The purpose of this paper is to study the structure of He
superfluids in regular geometries such as slabs and cylin-
drical channels in the "strongly confined limit" (defined
later). Using the Ginzburg-Landau theory, we find that
independent of the nature of surface scattering (diffusive
or specular), the effect of the surface is to favor the for-
mation of A-like phases: pure A phase for slabs, and the

"A-polar" phase for cylinders. Although these states be-
come unstable to a deformed 8 phase at lower tempera-
tures, they are locally stable and can be supercooled. The
phase diagram of He in these geometries in the strongly
confined limit resembles that of He in a magnetic field.

By confined geometries, we refer to containers with
size D less than the dipolar length Ld;~,&,

—12 pm. On
these length scales, the dipole energy is small compared
to the bending energy of the order parameter. It serves
merely as a perturbation to fix the degeneracy of the spin
degree of freedom. In what follows, we shall consider the
case Ld;~i, D&&g&owhere go is the zero temperature
coherence length. [According to Ref. 6, go varies
significantly with pressure P. It varies from 89.4 to 404
A as P changes from 34.2 to 0 bar. ] For containers of
such dimensions, the Ginzburg-Landau description is
applicable near T, .

In addition to this "confined condition, "
Ld;p, i, &D »$0, it is useful to distinguish the following
two cases: (i) D »g( T) and (ii) D -g( T), referred to as
"mildly" and "strongly" confined limits, respectively.
The quantity g(T)=go/(I —T/T, )'~2 is the tempera-
ture-dependent coherence length. In the mildly confined
limit, (i), the order parameter is slightly deformed from
its bulk form. The effect of the confined geometry is to
pin the orbital part of the order parameter. In the
strongly confined limit, (ii), the order parameter differs
significantly from its bulk structure. Since g( T) increases
as T approaches to T„onecan always reach the strongly
confined limit by getting sufficiently close to T, . For con-
tainer size D-pm, condition (ii) implies (1—T/T, )

-(go/D), which is a very small teinperature range
about 10 mK for all pressures. However, when D is
about 2500 A, the strongly confined temperature range
becomes inuch wider, about 1 mK (see also Figs. 1 —3
below). Most of the recent experiments such as those in
Refs. 2 and 4 were done in the mildly confined limit. The
experiment in Ref. 5, however, was done in the strongly
confined limit.

The Ginzburg-Landau functional' of He as a function
of the order parameter A„;is fF= f (Ftt +FG ),
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FIG. l. The phase diagram of 'He in slab geometry for
D =2000 A and diffusive boundary condition. The dashed line

is the super-to-normal fiuid phase boundary of the bulk 3He
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FIG. 3. Same as Fig. 2 except for specular boundary condi-

tion.
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r=3.
For the present discussions, it is useful to use a scaled or-
der parameter a„,= A„;/hei and a scaled gradient
d=pT)V, where As=[a/2(3P, J+P345)]' is the equi-
librium B-phase order parameter in the bulk. Here, we
used the notation p, z =p, +p2 and p3—45 p3+p4+ ps etc.
Defining f=F/(a(T)ling), the free energy can now be
written in a dimensionless form If= f (fji +fz ),

l~J g = —Q Qpg+ 2y)Q JQ~) Q -Q~)+ ~y2Qp)Qp)Q~) Q~)

1~+—y3Q Q Q;Q;+ —y4Q )Q )Q;Q

+ ~y5Qp~Q ~J.Q Qp

fz ——(y —1)dja&j.d;a&, +dj.a„;dja„', ,.

(3)

(4)

where gz Pz/(3P&2+P345 ). ——
The equilibrium states are determined by the station-

ary condition

T (mK)

FIG. 2. The phase boundary between the A and 8-planar
phase as a function of plate spacing D. Diffusive boundary con-
dition. The four boundaries from left to right correspond to
D =2000, 3000, and 5000 A, and 00.
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and the boundary condition at the surface. Depending
on whether the surface scattering is diffusive or specular,
the boundary condition is a„;=0 (diffusive scattering) or

a„;n,. =0, a„;m,&0 (specular scattering), where n and m

are directions normal and parallel to the surface, respec-
tively.

II. SLAB GEOMETRY

1.5

20 BAR

0 BAR
20 BAR

0 BAR

We shall first summarize our results. Let z be the

direction normal to the plates with separation D. We

have found that in the strongly confined limit, for both

specular and diffusive surface scattering, there are only

two stable states, of the forms

(6)A „;(z}= u (z)z„(x+iy);,

A, (z) =h (z )z„z;+g(z)(x„x,+y„y;}, ()
referred to as pure A and B-planar phase, respectively.

(i) Diffusive scattering. The A phase is lower in energy

than the B-planar phase when the dimensionless spacing

D/g(T) is less than a critical value which increases
monotonically with pressure (for example, when p=4
bars, this critical value is 6.5). The phase boundary
separating these two phases is shown in Fig. 1 for
D=2000 A. The variation of this phase boundary as D
changes is shown in Fig. 2. The phase boundaries be-
tween the A phase and the normal fluid for different D
are all very close to original bulk phase boundary and are
not shown here. These boundaries are represented by
D/g(T)=5r, or T(P)=T, (P)[l (ego(P)/D—J.

(ii) Specular scattering. Again, the A phase is lower in

energy than the B-planar phase when the ratio D/g( T) is
less than a critical value which increases monotonically
with pressure. This critical value is larger than that in
the diffusive case at the same pressure. For P=0 bars,
this critical value is 7.5. The phase boundary separating
these two phases for different D is shown in Fig. 3. The
boundary separating the A phase and the normal fluid is
identical to the original bulk phase boundary for all D.

It is clear from Figs. 1 —3 that the phase boundary be-
tween the A and B phases are quite far away from T, at
higher pressures. At those pressures, the Ginzburg-
Landau theory will not be accurate. Nevertheless, the
Ginzburg-Landau phase diagrams still give a qualitative
picture for the regions where the A phase is stable.

The above conclusions are obtained both numerically
and analytically We have found numerically no other
stable states than these two. The details of our numerical
procedure is presented in Appendix A. In Appendix B,
we prove that these two states are indeed locally stable
(the local stability can also be checked numerically).

~e have also calculated the superfluid density p3'3'

along the channel for both specular and diffusive sur-
faces. The results are summarized in Fig. 4. The calcula-
tion of superfluid densities in confined geometries turns
out to be quite subtle, as pointed out to us by Thuneberg.
The point is that in confined geometries, the order pa-
rameter may be very sensitive to external Qows. A small
flow u can cause a first-order change (-u ) in the order
parameter, which may contribute substantially to p, . We

FIG. 4. Superfluid density pP/p,
"'" " along the channel at 0

and 20 bars, where p', "'" "=[5]z/(3P]3+P345}](2]]]/~}.
d =D/g( T} is the dimensionless spacing between two parallel

plates. The straight and curved lines corresponds to specular
and diffusive boundary conditions, respectively.

shall describe this calculation and effects of external
superflows in Appendix C.

That we have only found the two states [Eqs. (6) and

(7)J in the case of zero external flow appears to be at vari-
ance with a recent study of Thuneberg on the depairing
effect of a semi-infinite planar surface. Thuneberg found
a stable surface state which is very much A-like, but not
exactly a pure- A structure. Since the non- A components
of his state is only appreciable near the surface, it seems
that their existence is favored by the surface and should
therefore by present in the slab geometry. We have not,
however, found a stable state of such character. Nor
have we understood the reason for the absence of the slab
analog of such structure.

The states of the lowest energy within the families (6)
and (7) are specified by real amplitudes u]3, h]3, and go,
which satisfy the stationary conditions within each fami-

ly,

U + U —2(245U =0

yh "+h —g»(h +2g )h —(345h =0,
g"+g 42(h'+—2g'}g 44e'=—o

for pure A, B-planar, and B-planar, respectively, where

j245 = (2+ f4+ g5. Solutions uo, go, and ho are shown in

Fig. 5. It is straightforward to show that these lowest-
energy states are also stationary points in the entire order
parameter space, i.e., they are solutions of Eq. (S).

In the case of the B-planar family, Eq. (7), go is always
greater than ho for both diffusive and specular boundary
condition. In particular, for thick slabs, and with
diffusive boundary condition, ho has a shoulder near the
surface larger in magnitude than that of the bulk order
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parameter (see Fig. 5). For thin slabs, both go and ho ap-
proach the sine function (see discussions below).

The phase boundaries between A and B-planar shown
in Figs. 1, and 2, and 3 are obtained by equating free en-
ergies associated with (6}and (7),

a„;= g a „'"sin(zn 5r/d ) .
n=1

(14)

The free energy of Eq. (3) plus Eq. (4) can be expressed in
terms of the various "components" a '"' and is of the form

f„(vo,g(T)/D) =fs i,„„(ho,go, g(T)/D },
where [with d =D /—g( T) ]

f„(v)=f dz( —2v +2(245v +2v' ),
fs i,„„(h,g)= f dz[ —(h +g )+—,'gi2(h +2g )

0

(12)

f= g I
—

—,
' [1 y—(nor/d ) ] i

a„'",'
[

n=1

——,'[1 (nr—r/d ) ](
~

a'"'
i +

~

a'"'
~

)

+F"'( '"'}]+G (15)
+ ~(345(h +g )

+yh'~2g'] . (13}

).2- Vp

The pressure dependence of the free energy enters
through the P coefficients and go. The P coefficients we
used are the ones calculated by Bedell and Pfitzner. The
zero-temperature coherence length go the Bardeen-
Cooper-Schrieff'er (BCS}value, which is tabulated in Ref.
6.

We end this section by pointing out another way to un-
derstand the structure of the order parameter in the
"very" strongly confined limit. The method is generaliz-
able to other geometries. It also shows how the A to nor-
mal fluid phase boundary is determined. To illustrate the
method, let us consider the case of diffusive boundary
condition. For slab geometry, one can expand the order
parameter as

where F' '(a'"') is the fourth-order term in bulk free en-
ergy with order parameter a'"', and G is the coupling be-
tween diff'erent components a'"' and a' ', n+m. The
effect of the boundary is to give different components a
different second-order coefficients.

If the second-order coefficient of a component is posi-
tive, this component will be absent in equilibrium unless
it is coupled to other components (which have negative
second-order coefficients} through G. As the system ap-
proaches the very confined limit [i.e., d =D/g(T) keeps
decreasing], it reaches a point when all the second-order
coefficients except those associated with a„"'and a„"'are
positive. In this case, it is sufficient to keep only these
two components in Eq. (15) and to consider all other
components as perturbations. The problem of minimiz-
ing Eq. (4) in the very strongly confined limit reduces to
the simple problem of minimizing a bulk free energy for
the class of order parameters with only two components,
a„"„'and a„'",and the superfluid can be viewed as two di-
mensional. With the ps tabulated in Table I, it is
straightforward to show that the pure A phase is indeed
the state of lowest energy near T, . It is easy to see from
Eq. (15) that the phase boundary between the A phase
and the normal fluid is given by D/g(T)=d=5r, or
T=T,(P)I1 [5rgo(P)/D] —I. Following the same pro-
cedure, it is also easy to show that for specular surfaces,
the A-to-normal phase boundary for all D is identical to
that of the bulk superfluid (i.e., D = ao ).

For other geometries, the analogous procedure is to ex-
pand the order parameter in terms of a set of orthogonal
functions. defined by the geometry and boundary condi-

TABLE I. Table of the g coefficients. g, =P, /( 3P|&+P345}.

P (bar)

FIG. 5. Spatial dependences of the order parameters of the A

phase (vo) and the deformed 8 phase (go, ho) in slab geometries
for dimensionless spacing d =D/((T}=20 and pressure P=4
bars. All order parameters are normalized such that the magni-
tude of the order parameter of the bulk 8 phase is unity.

4

8

12

16

20

24

28

—0.214
—0.231
—0.249
—0.259
—0.268
—0.278
—0.286

0.418
0.439

0.463

0.476

0.488

0.500

0.511

0.466

0.477

0.490
0.501

0.441

0.447

0.455

0.461

0.416 0.410
0.434 0.422

0.454 0.434

2
5

—0.438
—0.481
—0.529
—0.556
—0.583
—0.611
—0.638



2366 YING-HONG LI AND TIN-LUN HO 38

tion. Referring the (matrix) coefficients of the different
orthogonal functions as different superfluid components,
it is easy to see that the Ginzburg-Landau free energy in
the very confined limit can always be reduced to the bulk
free energy of a one- or two-components superfluids.

40 t

SOLI D

III. CYLINDRICAL CHANNELS

A&, (r, p) =z&[D3(r)z+i D, (r)r+iDzp]f r

A„;(r,g)=D3z„z;+Di(r)r„r;+Dz(r)$„$;.

(16)

(17)

These states are shown in Fig. 6. The phase boundaries
between these two states for diffusive and specular
boundary conditions are shown in Figs. 7 and 8, respec-

The case of cylindrical channel has been studied by
Fishmann and Privorotskii, ' and by Muzikar. " These
authors noted that for sufficiently small channels, the
most favorable state is the one with a polar core. We
have calculated the phase diagram of a class of axisym-
metric states (defined below) which we believe to be the
ones of lowest energy. When going from the strongly
confined to the mildly confined limit, the system makes a
transition from an A polar state to a B-like state.

Again, we first summarize our results. Let z be the
symmetry axis of a cylindrical channel of radius R. The
class of states we consider are of the form

A&, (r, g)=D„&e„'+e';', where (e"',e' ',e' ')=(r, P,z), and

D„;depends only on r. In the very confined regime, we
have found two stable states, referred to as A-polar and
deformed B, respectively:

T (IK)
FIG. 7. The phase diagram of 'He in a cylinder of radius

R =3000 A for diffusive boundary condition.

tively. The phase boundary separating the A-polar phase
and the normal fluid for diffusive surface scattering is
given by

T(P)= T,(P)[1 [go(P)/R —] (1+@ l4)l(1 4lrr )—I .

(18)

For specular scattering, this phase boundary is identical
to that of the bulk, i.e., T(P)= T, (P). The corresponding
superfluid densities along the channel are shown in Fig. 9.
The local stability of (16) has been proved in Ref. 10. The

t I

SOLID

—0.4

FIG. 6. Spatial dependence of the order parameters of the
A-polar phase (D;"'s) and the deformed B phase (D; 's) in cylin-
drical geometries with the same dimensionless radius
r =R /g(T)= 10 and pressure P=4 bars. The normalization of
the order parameters is identical to that in Fig. 5.

~ (mK)

FIG. 8. The phase diagram of He in a cylinder of radius
0

R =3000 A for specular boundary condition.
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local stability of (17) can be shown similarly and will not
be presented here. These local stabilities can also be test-
ed easily by numerical methods.

It should be noted that unlike the slab geometry, the
phase diagrams (Figs. 6 and 7) for small cylinders with
diffusive and specular surface scattering are very
different. In the case of diffusive surface scattering, the
A-polar state is stabilized only within a narrow range
near T, below the polycritical point. In the specular
case, this range is much wider. The reason is simply that
for both specular and diffusive surfaces, the dominant
part of the order parameter in cylinders with small radii
is the polar component z„z;(which is also the surviving

component when T is very close to T, ). In the specular
case, this polar component is fairly constant throughout
the channel even for small radii. On the other hand, in
the diffusive case, this polar state will be strongly
suppressed. The systems no longer can take advantage of
the condensation energy coming from this last remaining
state.

Our conclusions are derived as follows. In terms of
D„;,the bulk free energy fs is given by (1) with the a' s

replaced by D's. The gradient energy fG, however, be-

comes

1.5

20 BAR

0 BAR

20 BAR
0 BAR

FIG. 9. Superfiuid density p", /p,
"'"" along a cylindrical

channel at 0 and 20 bars. The almost flat curves are for specular
boundary condition; and the other two are for diffusive bound-
ary condition. r:R/g(T) —is the dimensionless radius of the
cylinder.

f =X(
I ~,D„,I'+ I

d,D,y I

'+
I ~,D„,I')+(

I ~g I

'+
I dyDy. +D I'+

I d+„Dy, D,—y I'—
+ I dip, +D„D«I

'+—
I dpD„D,p I

'—
+

~ '+ ~ D«+D-
~

-'+
~
'+«+D ~+D~ ~

'

+
/ d+g~+D, „/ )/r

+(y —1)
/
B„D„„+(BQ„„D«+D„„—)/r

/
+(1'—1)

f B„D&„+(BQ«+D„~+D~„)/r
/

'

+(y —1)
~
&„D,„+(d/,y+D,„)lr

~

' . (19)

Considering the class of states such that D„,:D„,(r), it is stra—ightforward to use the numerical method discussed in
Appendix A to find stationary states. The phase boundaries are calculated in exactly the same way as in the slab
geometry. To determine the A-polar to normal fluid phase boundary, we follow the same procedure as in the case of
slab geometry. For diffusive scattering, we can expand the axisymmetric D s in a Fourier series

D„;= g [d'"'cos(nmr/2p)+c'"'sin(nmr /2p)]„;,
n=1

where p=R /g( T). It is easy to see that near T„the component with smallest second-order coeScient is d" '. The cor-
responding second-order term reads

d2

f [—cos (m.r/2p)+(m/2p) sin (mr/2p)]r dr d„=
0

ZZ 4

m2
+1 (2p/m)'+ +1

which vanishes when (2p/m. ) =[(m2/4)+1]/[(m /4 —1], or equivalently, Eq. (18). Similar procedure for the case of
specular scattering shows that the A-polar-to-normal phase boundary is identical to that of the bulk.
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APPENDIX A: THE NUMERICAL SOLUTION
OF THE STATIONARY EQUATION (5)]

In solving Eq. (5), we have used relaxation method' '
and the mesh changing method. In the relaxation
method, one introduces a lattice in the region of interest,
and then iterates the matrix equation

a„;(n+1;r)=a„;(n;r)—c
Sa„',

until it converges. Here, n is an integer labeling the gen-
eration of iteration, r is a lattice site, and c (the range we
used is 0.8 to 0.001} is a positive constant to be adjusted

I

to optimize the convergence rate. Equation (20) is essen-
tially a time-dependent Landau-Ginzburg equation with
time discretized in constant steps. It has been shown in
Ref. 13 that the free energy monotonically decreases as n

increases. The order parameter always relaxes to a local
minimum if a suSciently small c is used in the iteration. '

A mesh changing method can be further used to ac-
celerate the converging process: First, one solves Eq.
(A 1) on a mesh with few points, where the convergence
can be achieved quickly. One then introduces additional
points to create a denser mesh, and restarts the iteration
using the solution obtained from the previous step as new
trial function.

APPENDIX B: PROOF OF LOCAL STABILITIES
OF EQUATIONS (6) and (7)

Let ao be a solution of the stationary condition Eq. (5).
This is locally stable if the energy change Q caused by
any small deviation e from ao is positive. The energy
change is of the form

5F 5F
Q =

2 6&&evj +C.C. + Ei &EvjSa 5a .i Vi ~p Sa p'5a j gp
R

=(2(i+03) I
Trao~

I
+2(2TraoTre e+(33Tre aoe ao+(34Traoe e+(43Traoee

+Re[(,Traoao Tree +(2(Treao) +g3Traoee +(4Treaveao+gsTra02eTe] . (B1)

Let us first consider the pure A stationary state ao(z) =vs(z)z(x+iy) As me. ntioned in the text, this is also the state of
minimum energy within the pure A family, Eq. (6). This means that Eq. (Bl) is positive if e is of the pure p form,

e„;=E(z)z (x+iy), This .allows one to identify a positive definite operator L,

«& =—&~
~

L
t

~& =f [( —,'+&2-45-v0)1&
I

'+
I

&'
I
']d»0 (B2)

For general deviations e„;,it is straightforward to show that

Q=(L &, +(2L &, +(y —1)e„+(L+2()3vo&, +(L &, +(2L —2(43vo &,
Z S x

+&L+(g3—F43)vo&, +&L&, +(2L —2g43vo&, +(y —1)e„'+(L+(g3—g5)vv&,
x PZ y+

(B3)

where e„+=a„„hie„Forthe .g s tabulated in Table II, it is easy to verify that each term in Eq. (B3) is positive. The
pure A state is therefore locally stable.

Next we consider the B-planar stationary state av(z)=hvzz+go(xx+yy). To show its local stability, it is useful to
decompose e in (22) into real and imaginary part, e=r+is Using the fa. ct that ao is real and symmetric, Q can be
rewritten as

Q=Q„+Q,= f dzI Tr(rr (+g, Tr2a —OTaro(rr )+2(32[Tr(rao)]

+(343[Tr(aoaorr )+Tr(raorao)+Tr(aoaor r)]+yr„,+r„„+r„r)

+ f dz I
—Tr(ss )+(gi —(3)TraoaoTr(ss )+2(i[(Tr(sap)] +( —f3+(45)Tr(aoaoss )

+( f4+(53)Tr(saosao}+( —ps+(34)Tr(aoaos s}+ys„,+s„„+s„I

It is straightforward to show that Q„is of the form

Q, =Ir„„,r, r J+Ir„,r „]+Ir„„rJ+Ir „r,J,

(B4)

(B5)

where each bracket means terms containing only variables appear inside the bracket. Identical structure holds for Q, .
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In particular,

[r r&& r I
=f [ 1 +gl2(hO+2gO )(r +re +r )+2/ l2[( r +r&r )gO+r ho]

+3$345[gO(r„„+r„)+rho]+Yr +r +r (B6)

Since both (ho, gO) are associated with the state of lowest energy, they are nodeless functions. Thus, without loss of gen-
erality, we can use the functions p&, pz, and p3 defined as r„„=gop„r=gop2, r =hop3 in place of the r's. Using the
stationary condition Eqs. (9) and (10), Eq. (B6) can be rewritten as

[rx. rye r~ l
= f [20345hOp3+ YhohO p3+Y(hOp3)

2 3 op, +y op3+2 34 o Pi+pe +go Pi +pc (B7)

where A,5—:—(,5&0, A,5—:( —4g, —(5+(45)&0, A, ,
—= ( —4g, —2(5) &0, A, ', :—( —2g, —f5+(45) &0, and

1 =(g3 $4+$5) & 0. The above inequalities can be seen from Table II. At this point, one notes that gO & ho (see text).
If we replace A, 5goh 0 and A, ',goh 0 by the smaller terms A,sh 0 and A, ',go, we have

[s.,' } & fdz[p3(~3+~3}h0+pl(~l+~1 )g 0+2.h($0pl p3+Y(hoh0 p3)+Y(hOp3) +gogO pl+(gopl} ] . (B9)

which is positive because (345 is positive. Following the same procedure, with the definition (r„=gop,, r„„=—gop2),
(r„,=hop5, r:—gopl), (r„,=—hOp5, r,~

—=p2), and using Table II, it is straightforward to show that [r„~,r „I,[r„„r,
„ I,

and [r„„r,j are positive. Repeating the same procedure to the s terms, one can show that [s„„p~~,s„)and [s„,s „)
are positive. The perturbations that are harder to show to be stable are [s„„sJ and [s„„s,], which have identical
structure. In the case of [s„„sI, we have [after defining (s„,=hop5, s =gopl) and using Eqs. (9) and (10)],

[s„„sI =f dz[p5(A'sgoh 0+pl(A lgo+A'lgoh 0 )+2Th ogoplp5+Yh oh 0 p', +Y(hop, ) '+gogo p', + (gop, ) '], (B8)

The last four terms are simply Y(hop5) +(gop', ), which
is positive. The first four terms turn out to be a positive
quadratic form, as it is easy to verify that
( A 3+ i( 3 }(A,, +A I }& r for all pressures, using Table II.
The local stability of this B-planar state is therefore es-
tablished.

The instabilities of (6) and (7) for specular boundary
condition can be similarly established.

Let us first recall the usual scheme of calculating the
superfluid density. First one determines the order param-
eter in the presence of a superflow u by minimizing the
total free energy fF=fFa+ fFG within the class of or-
der parameters of the form e' "' "A;. The expressionsPl '

0of Fa and FG are given in Eqs. (1}and (2). Let A „;(u)be

TABLE II. Table of the P coefficients given in Ref. 9.

0
4

12
16
20
24
28

—1.000
—1.011
—1.023
—1.034
—1.041
—1.048
—1.056
—1.062

2.000
1.974
1.946
1.920
1.912
1.906
1.900
1.898

2.000
1.962
1.922
1.884
1.872
1.864
1.860
1 ~ 862

2.000
1.934
1.868
1.802
1.772
1.746
1.728
1.714

—2.000
—2.066
—2.130
—2.196
—2.236
—2.278
—2.321
—2.370

APPENDIX C: THE EFFECTS
OF EXTERNAL SUPKRFLOWS AND THK CALCULATION

OF SUPERFLUID DENSITIES

the equilibrium order parameter for the flow u. The
superfluid density in the limit of vanishing superflow is
defined as

d'f„„,(u)
( )"=ps

J

where

dg;(u)

@=0 J P, =O
(Cl)

fF (ei2mu r/sA 0

+ F (ei2mu r~&A0
) /volumeG Pl

A 0;(u) =[A 0;(u)+u R. +O(u 2)]ei2.mur~s

The superflusd density wi11 then be

(C3)

is the equilibrium free energy density, and
g;(u)= fp;[e' "' "A„;(u)]/volume is the equilibrium

current density,

FG
p, [A„,]=i(2m/l)I)A» +c.c. (C2)

PJ

For bulk superfluids, where A„",'"= A„;(u=O),it is easy
to show that the effect of a small flow u is to cause a
second-order change (-u ) in the order parameter,
A„;(u)=[A„""+O(u)]e' "' ". In very confined
geometries, however, the zero flow order parameter
A „,.(u=O) can have strong spatial variations. A nonvan-
ishing external flow can couple linearly to these spatial
variations and cause first-order changes in the order pa-
rameter. The general form of this change (R} can be
represented as
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(C4)

a„;=v(x+iy), ,

a„;=d„(u,x+iv2y+wz}i,

(C5}

(C6)

where v, v„and vz differ from their zero flow solutions vp

by quantities of the order of u for small flows. However,
the function w (z} is first order in u. These results can be
derived from the Ginzburg-Landau equation, which is

where T represents terms depending on the product
T(RV A )

~ „0.The first term is the conventional ex-

pression for superffuid density of bulk superfluids. The
second term is caused by the nonvanishing gradients of
the zero flow A, which are generic in confined
geometries. Although the second term becomes
insignificant for large containers, it can be quite substan-
tial for small geometries.

For slab geometries, the A phase order parameter in
the presence of a superflow v, =uy turn out to be, for
specular and diffusive cases, respectively,

Eq. (5}with a„;replaced by a„;e' "~~", and reads

0=X—(y —1)(ik8~a„j.5,~ +ik d; a„k—a„5,).
—(8 a„,+2ikB a„;—k a„;), (C7)

where X represents Eq. (5) and k =2mu/R. When k is
sufficiently small, perturbation theory implies a driving
term (for i =z) ikB,a„~in Eq. (C7), which is nonzero
(zero) in the diffusive (specular) case. This driving term is
the reason for the presence (absence) of the w term in (C6}
and (C5).

We have solved Eq. (C7) numerically as a function of u
and found that the equilibrium states are of the form (C5)
and (C6). The superfluid density shown in Fig. 4 is ob-
tained by numerically computing the derivative in Eq.
(Cl). For cylindrical pores, we find that superflows along
the channel only generate 0 (u ) changes in the order pa-
rameter.
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