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We calculate the frequency- and wave-vector-dependent particle-hole spin susceptibilities X(q,e)
of anisotropic superconductors, such as heavy-fermion and, possibly, high-T, systems. This infor-
mation is used to analyze the outcome of proposed neutron scattering experiments on these systems.
It is found that the dependence of the cross sections on q can give detailed information about the
anisotropic modification of the excitation spectrum. In addition, the polarization dependence of the
cross section reflects directly the vector structure of the gap function, so that ultimately complete
identification of a superconducting phase is possible. We discuss the implications of our results for
the question of the relative thermodynamic stability of the various phases in the presence of external
magnetic fields. A table of static susceptibilities for some possible phases of a cubic system with
spin-orbit coupling is given. The large energy scales in high-T, systems make them ideal for these
experiments.

I. INTRODUCTION

The discovery of superconductivity in the heavy-
electron metals' has led to intensive efforts to establish
the precise nature of the superconducting state. In par-
ticular, a series of specific-heat and transport measure-
ments have shown anomalous temperature dependences
for these quantities. These have been interpreted as evi-
dence that the magnitude of the gap vanishes somewhere
on the Fermi surface.

However, there is no unanimity on the detailed inter-
pretation of these experiments. The possibilities ad-
vanced in the literature range from conventional s-state
superconductivity with strong depairing effects to zeros
of the magnitude of the gap at specific points on the Fer-
mi surface (axial case) and zeros at lines on the Fermi
surface (polar case). Progress in the clarification of these
issues is difficult for two reasons. The order parameter
does not couple directly to external probes and the ther-
modynamic and transport properties give, at best, evi-
dence of the energy dependence of the excitation spec-
trum rather than a direct measurement of the order pa-
rameter. Secondly, the properties of the normal state of
these complex materials are not known in detail. This
compounds the difficulties in deriving a consistent inter-
pretation of the experiments on the superconducting
state.

Recently superconductors have been discovered which
have high critical temperatures and other remarkable
properties. ' There are strong theoretical reasons for
believing that superconductivity in the high-T, copper
oxide systems is anisotropic, with d-wave symmetry.
Experimental evidence for or against this viewpoint is so
far inconclusive and we suggest a new approach to this
problem.

Very important for the solution of these difficulties is a
knowledge of I (q, to), the wave-vector- and frequency-
dependent susceptibility in the superconducting state.
The superconducting correlations change 7 very strongly
at frequencies corresponding to the gap energy h. These
correlations can be observed in neutron scattering experi-
ments, which can have energy resolutions approaching
0.1 meV. Such resolution is adequate for the heavy-
fermion systems (b -0. 1 meV} and much more than ade-
quate for high-T, materials (b -10 meV). On the other
hand, it will be seen below that the detection of the most
interesting effects requires only relatively coarse ( —1

A '} resolution in the wave vector. We shall also show
that neutron experiments have the potential, in principle,
to determine the order parameter completely.

Experiments' on Upt3 have so far been carried out at
energy resolutions exceeding 1 meV. At frequencies cor-
responding to this energy the spin correlations are anti-
ferromagnetic, with the two U moments in the unit cell
aligned antiparallel. More interesting, for our purposes,
is the nature of the extrapolation of these measurements
to zero frequency to. This extrapolation suggests that the
frequency linewidth as a function of momentum transfer
q does not vanish as q~0, in contradiction to Fermi-
liquid theory. Since there are many other indications
that UPt3 is a Fermi liquid, ' this strongly suggests that
the extrapolation is not valid. This is to be expected in
any case, since 1 meV is comparable to the estimated Fer-
mi energy of Upt3. The periodic Anderson model of
heavy Fermi liquids will give finite-frequency (interband)
contributions, but the low-frequency (intraband) part
must always satisfy Fermi-liquid theory. In particular,
the limit of low frequencies and long wavelengths must
have the usual renormalized particle-hole form. In this
paper we deal only with this low-frequency part of the
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spectrum; it is, in any case, the only part which is
modified by superconductivity. This is analogous to the
situation in ordinary electron-phonon superconductors, '

where modification of the low-energy phonon spectrum
in Nb3Sn has been observed by neutron scattering. Sec-
tion II is devoted to the discussion of ImX(q, co) when
spin-orbit coupling is neglected. Section III treats this
coupling.

The static uniform susceptibility is also of interest since
it may influence stability in the presence of strong exter-
nal fields, H„&H &H,z. One will then have spatially in-
homogeneous configurations of the order parameter.
Since the London limit, penetration depth much larger
than coherence length, is usual in the systems of interest,
there will be large regions where field penetration and su-
perconductivity coexist. There will then be a contribu-
tion to the energy of the form ——,

' g; J H, X/H/. This
term must be considered in addition to the usual ones
which determine the structure of the inhomogeneous
states. Its effect is treated in Sec. IV. A table of uniform
susceptibilities for some important cubic phases is also
presented there. Section V is given over to an evaluation
of the assumptions made in our calculations, possible im-
provements of these, and finally some conclusions.

We concentrate throughout on the examples of UBe, 3,
a cubic system, and He. These have the advantage that
the underlying system is relatively isotropic, so that spon-
taneous breaking of rotational symmetry is easier to
disentangle from effects due only to anisotropic crystal

structure. In particular, He has full rotational symmetry
and is therefore, very convenient for theoretical analysis.
Neutron scattering in the superfluid phase is unfortunate-
ly very difficult experimentally. Finally, we assume that
all samples consist only of a single domain, if they are an-
isotropic triplet superconducting systems. This can prob-
ably be achieved experimentally by cooling the sample in
an external magnetic field.

II. NEUTRON SCATTERING CROSS SECTIONS

We wish to calculate the spin susceptibility in a triplet
superconducting state, where the gap parameter is al-
lowed to be a function of angle k on the Fermi surface
and is a 2)&2 matrix. Our interest will be in the particle-
hole susceptibility, neglecting impurity effects and spin-
orbit coupling. The latter is discussed in the following
section. The usual Gor'kov decoupling is employed,
which leads to the following expression for 7 in terms of

C,)(k, q)
X;i(q, iso)= g . , co)0.

Here pz is the Bohr magneton, and

E+ (k, q)—:(ei,z~zz
—p) + —,

' Tr[b, (k+q/2)h(k+q/2)],

where c. is the band energy and p is the Fermi energy,
C;J(k, q), the coherence factor, is given by

—,'51[(E++g+)(E —g )+Re(d+ d )]—Re(d,"+d )
CJ(k, q) = (2)

with gz ——e+ —p, for the case of triplet superconductivity.
We have introduced d(k), defined by the equation

h(k)=icr d(k)a

d is a convenient quantity to work with since it trans-
forms as a vector under the operations of the rotation
group, whether this group is continuous as in the case of
He, or discrete, as in the case of a crystal point group.

The 0's are the usual Pauli matrices. For a derivation of
(1) and (2) see, e.g., Ref. 15. These equations are valid,
strictly speaking, only for the so-called unitary case:
d Xd' =0. This is the case which will be most important,
and even for the nonunitary states it can be shown that
there are no corrections to first order in d Xd' to (1).'

A magnetic property accessible to neutron scattering is
the function ImX+(q, co+i5), which is proportional to the
spin-flip scattering cross section, when the incoming
beam is polarized in the z direction. This quantity is
given by Eq. (1) with C,, replaced by

C+(k, q)=[(E++g+)(E —g )

+Re(d, +d,* )]/4E+ E

and (ice E+ E) ' r—eplaced by —n5(co E+ E). — — —

Also easily calculable from (1) is Im Tr, X,, (q, co+i5),
which in an isotropic system would be proportional to
the neutron scattering cross section for unpolarized in-
cident beam and outgoing polarization not observed, with
the nonmagnetic scattering subtracted and ignoring
kinematical factors. This quantity is also of interest in
connection with the spin-fluctuation energy. To obtain
it, we inust replace C;1 in (1) by Cr, where Cr is deter-
mined from

Cr = [ ', (E+ +(+ )(E ——g )+—,
' Re(d+ d' )]/E+ E

(4)

For general directions of the momentum transfer q, the
sum in Eq. (1) is difficult to carry out by hand and numer-
ical computation is required. This is done for a range of
frequencies less than a cutoff of about five times the root-
mean-square gap frequency by sampling the region of
momentum space near the Fermi surface which includes
all possible transitions having frequency less than the
cutoff. The points are classified according to their fre-
quency with a bin width of about 0.2 times the root mean
square gap. The coherence factor is then evaluated for
each. In this way the entire function can be constructed
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for frequencies below the cutoff. Above the cutoff, the
susceptibility goes over quickly to its normal state value.

the maximum value of the gap, is chosen as
0.0525cF, where c~ is the Fermi energy. This ratio corre-
sponds very roughly to T, /EF in UBe». For the band
structure we use a linear dispersion s =vF

~

k ~, which has
a spherical Fermi surface. This would correspond
reasonably well with the I"-centered piece of the Fermi
surface in Upt3, for example. Of course, real comparison
of theory and experiment ~ould require experimental
identification of the different pieces of the surface and
would be more complicated than the simple pilot calcula-
tions presented here. Because of this neglect of the real
band structure, and because the main interest is in how
the superconductivity modifies the susceptibility, we
prefer to plot in most instances ImX (q, ro)/ImX (q, cv),
the ratio of the superconducting and normal susceptibili-
ties. ImX (q, cv) is computed from the above dispersion
law. In the low-energy regime, however, it does not differ
materially from the usual Lindhard form. We caution
the reader that in this model the intensity at low energy
falls off rather quickly at high q in the normal phase. So
if this model is close to the correct one, the effects that
we calculate will be more difficult to observe as q in-
creases. In addition antiferromagnetic correlations aris-
ing from interactions may be present in the intraband
part of X.

At q =0, the integrals defining X may be performed
analytically. For orientation, we plot Im TrX(O, co} in Fig.
1 for the polar [d-x(k„+ik» }]phases. This diagram is
simply meant to show the nonanalytic behavior at 2b,
where 2h is twice the maximum value of the gap. At
finite q the logarithmic divergence of the susceptibility of
the ABM phase is cut oK The behavior at small frequen-
cies, linear for the polar phase and quadratic for the
ABM, is just due to the line of zeros at the equator and
the point zeros at the poles in the two respective cases.
Both the position of the maximum and the low-frequency
behavior will in general change at finite q in both cases.

We will investigate only these two phases below as ex-
amples of triplet superconductors. It should be noted,

however, that neither phase is possible in a cubic crystal
with strong spin-orbit coupling. ' They are both
stable solutions for an isotropic system like He, but T„
and hence, the gap is so small in He that neutron scatter-
ing investigations of its superAuid correlations are at
present, out of the question. Since our aim here is mainly
to illustrate how physical information may be extracted
from neutron results, we feel justified in using the sim-

plest, rather than the most likely, candidates for heavy-
fermion superconducting phases. The number of the
latter is in any case rather large (see Table I). An exam-
ple of a d-wave phase, the three-dimensional analogue of
proposed phases for high-T, systems, is also treated.

In Fig. 2, the numerically calculated results in the po-
lar phase for Im TrX(q, ro) (dashed curves) and
ImX+(q, ro) (solid curves) are shown for q in the [110]
direction. Several features of the curves are noteworthy.
The first is that the position of the maximum is q depen-
dent. To understand the reason for this, think first of the
normal state. As q increases, the low-energy transitions
are confined increasingly to the equatorial plane, since q
must span the Fermi surface. However, as q squeezes
down into this plane, the gap is decreasing until finally it
goes to zero, and the maximum moves to small frequen-
cy. An attempt is made to illustrate this reasoning in the
inset to Fig. 2. The circle is a cross section of the Fermi
surface. The oval around it represents the magnitude of
the gap as a function of the position on this surface. The
equator, also shown, is the line on which the gap van-
ishes. The lowest-energy transitions for the different q's
are shown as arrows.

Secondly, note the difference between spin-Rip scatter-
ing in the z direction and the scattering averaged over
spin directions. The former has an enhanced coherence
factor, as may be seen from formulas (3) and (4) given
above. (Note that d+ ——d for this case since q is perpen-
dicular to z. ) While the motion of the maximum of X
reflects the k dependence of d (d a function only of k, ),

q=0

3
R cx'

2.0-

3
rn cr (.0X

p'

O

2b, m 36m
Energy

W)dth

Energy
36m

FIG. 1 ~ The imaginary part of the averaged susceptibility
Trg"(O, co) at zero momentum transfer. These functions reflect
the density of states in the two phases shown. In particular, the
ABM phase has a singularity at twice the value of the gap at the
equator of the Fermi surface.

FIG. 2. The imaginary part of the polar phase z-polarized
spin-Rip susceptibility P~(q, co) (solid curves), and the averaged
spin-Hip susceptibility Tr+"(q, co) (dashed curves). These are
shown as functions of cu for selected values of q, when q is in the
[110]direction. 5 =0.0525eF, where eF is the Fermi energy.
8=1. The inset shows some possible transitions having low en-

ergy for two values of q. The circle represents a cross section of
the Fermi surface and the oval is a schematic picture of the gap
magnitude on this surface.
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TABLE I. This table lists the diagonal components P Pyy and P and the maximum eigenvalue 7 of the static uniform spin
susceptibility tension for some triplet superconducting phases. For each of these, the off-diagonal components are all equal. In par-
ticular all off-diagonal elements are zero for the polar and ABM phases and for phases 1—9. For phases 10, 11, 12, and 13, the o6'-

diagonal elements are 6, (2m. /9&3) —
2
= —0.097, —', —m/4= —0.119, and ln(&3/2+&5/2)/3&15=0. 89, respectively. Also

e1 ——1/&2+i /&6, c2 ———1/&2+i /&6, and c3 ———2i /&3. pz is the Pauli susceptibility of the normal phase.

Name and/or
number

Polar

ABM

1,BW

9
10

11

12

13

zk,
x(k„+E'ky )

xk» +yky +zk,

2zkz —xk» —sky

xk» —yky

e ' xk»+e "' yky+zk,

xky —yk„

xky+yk„

x(ky —ik, )+ (y —i z)k„

x(ky+ik, )—(y+ iz)k»

x(ky kz )+if(kg k» )+z(k» ky )

x(ky+ kz )+y(kz+ k» )+z(k»+ ky )

x(c2kz —c3ky )+y(c3k„—c1k, )+z(c1ky —e2k» )

x(c2kz+c3ky )+y(c3k» +c1k, )+z(c1ky+c2k

2
3

7 2~ =0.764
9(3)'

1

2

2
3

1

2

1

2

2 ——=0.427
2

0.427

0.764

—=0.786
7T

4
0.786

1

2
3

4m 1

9(3)1/2 3
=0.473

1

0.786

0.786

0.764

0.786

0.786

1

0.764

0.786

0.855

the polarization dependence reflects the vector structure
of d (d in the z direction}. This is a general feature of our
results and demonstrates that neutron scattering is a
unique tool for probing the uector nature of the order pa-
rameter. No other experiment seems capable of offering
this sort of detailed information. Also important is the
fact that the interesting structure is apparent on the very
coarse scale of momentum q -KF, or wavelengths of the
order of angstroms. Good energy resolution is required
for heavy-fermion systems, however, of the order of 2h
which in UBe» is probably about 0.5 meV.

Figure 3 shows the same state but with q now in the z
direction. The contrast with the [110] direction is very
marked. Here the maximum is completely washed out in
the 7+ curves. In both polarized and averaged curves we
see a gap developing as we increase q. This may be un-
derstood by an argutnent like that given for the [110]
direction. As q increases, low energy transitions are
confined to the tube connecting the north and south
poles. However, this sort of process faces the maximum
energy to break a pair, 2h, as q ~2KF. Such a transi-
tion is shown in the inset to Fig. 3, along with one of
smaller q. Thus, the gap which was absent at q =0, (Fig.
1), develops as q increases only if it does so in a direction
in which the magnitude of the d is increasing.

Another striking feature of Fig. 3 is the difference be-
tween z polarized and averaged cross sections. To under-
stand this, consider Eq. (3) for C+ and set q=(0, 0, 2KF).
The transitions of lowest energy have g+ =g and

d+ =d because these transitions connect (0,0, —Kz)
and (O, O, KF). We then have (E+ —g )=d+ and
C+ =0, because the two terms in the numerator cancel.

3
Z 0'
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q =(O,O, I)

width

q=0 5KF q=KF q= l 5KF q=2KF

FIG. 3. Polarized (solid curves) and averaged (dashed curves)
imaginary susceptibilities P" for the polar phase when q is in
the [001] direction. The inset shows possible transitions for two
values of q. No transitions of finite q can connect points where
the d vanishes.

In general a spin-flip transition between points where
k, (final) = —k, (initial} is forbidden. Such a strong polar-
ization suppression is therefore a sign that (a) the polar-
ization is parallel, or nearly parallel, to the direction of d
and (b) that there is a change of sign of the parallel com-
ponent of d involved in the transition.

In this polar phase, for a general direction, we expect
to see a crossover from the behavior of Fig. 2 to that of
Fig. 3 as q, increases. The gap is 2b, (q, /2KF), but the
edge will not be so sharp if q also has components in the
x-y plane. The crossover to suppressed polarized cross
section occurs first at larger k, if k„say, is appreciably
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large, since only then will most low-energy transitions in-
volve scattering across the equatorial plane.

We now turn to the ABM phase. The cross sections
for q in the [110]direction are shown in Fig. 4. Again we
see the development of a gap as q increases, just as in Fig.
3, and for similar reasons. Two transitions belonging to
q =2K+ and q =E„are shown in the inset. The gap in
the spectrum is again a linear function of q, for the same
reason as before. The position of the maximum, howev-
er, sticks at 2h . This is a remnant of the strong q =0
singularity, and is due to the fact that the equatorial
plane always contains some transitions. In this diagram,
we see clearly a crossover from enhancement to suppres-
sion of the averaged cross section. Since this contains the
spin-flip cross section for the x direction (i.e., parallel to
d) it will be suppressed when k„and k» change sign in
the transition. For small q this is not the case for most
transitions since they occur near the k„=—k plane.
For q =2K+, on the other hand, the low-energy transi-
tions span the points k»( —1/&2, —I/&2, 0) and
E»(1/&2, 1/&2, 0), and x spin flips are suppressed by
the coherence factor. Hence, the crossover.

Figure 5, with q in the [001] direction, also shows a q
dependent gap. This now decreases as q increases since
the possible transitions move from the neighborhood of
the equator where the gap is maximum, to the poles
where it is minimum. This is illustrated in the inset. The
peak position is also a function of q since all low-energy
transitions connect points with equal values of the order
parameter. The peak position is given by
2b [1—q/2K&) ]' . In this case there is no change in
sign of d in the transition and the x spin flip is always
enhanced, and the averaged cross section is always larger
than the z polarized one.

We can conclude that the ABM and polar phases differ
qualitatively from the experimental point of view. The
ABM state has a gap for pair breaking at all finite q. For
the polar phase this is true only if q is parallel to d.

Our final example is a singlet anisotropic state. If the
gap falls into an even representation of the crystal point
group such states are possible, and some of them are

3
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q=l. 5KF q= KF q=
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FIG. 5. Polarized (solid curves) and averaged (dashed curves)
imaginary susceptibilities 7" for the ABM phase, for q in the
[001] direction. Some possible transitions are illustrated in the
inset. In this ease the energy involved decreases as q increases.

given by Volovik and Gor'kov. ' Such states have been
proposed for heavy-fermion systems by several authors, '

since they are stabilized by anitiferromagnetic correla-
tions. For all singlet states the order parameter is a sin-
gle function of k, the direction on the Fermi surface.
BCS theory need only be modified to take into account
the orbital anisotropy of the Cooper pair wave function.
The pairs are rotationally invariant in spin space. One
can immediately conclude that there is no polarization
dependence of the cross section. Also at T =0, the uni-
form, static susceptibility vanishes under the assumptions
made here. It then follows from the Kramers-Kronig re-
lation: ReX(0, 0)=(2/n )f o" [ImX(0, co)/co]dc@ and

ImX(0, co)) 0 for co) 0 that the absorptive part of the
susceptibility vanishes for all frequencies at q =0. It is
clear that there are very strong qualitative differences be-
tween singlet and triplet phases.

Density-of-states effects are still detectable in singlet
phases. We give the results to be expected from an
analysis of different q directions in the phase character-
ized by 5-k„k». Figure 6 shows X for q in the [110]

6
3

Z Q"

X

3

X

IO

3
Z g

3 0.5

I

(
I I

q =0.5KF q = K& q = l.5K' q=2 KF

3&m
Energy

FIG. 4. Polarized (solid curves) and averaged (dashed curves)

imaginary susceptibilities P" for the ABM phase, for q in the

[110] direction. The inset shows lowest-energy transitions for
two values of q. The energy involved in these is an increasing
function of q. Again 6 =0.0525@.F.

2h, m 56m
Energy

FIG. 6. Imaginary part of the susceptibility 7" for a singlet
state with gap function proportional to

krak~,

where k„and ky

are components of the momentum on the Fermi surface. Here q
is in the [110]direction. A cross section of the Fermi surface is
shown in the inset, with lines of zeros of the order parameter in-

dicated. A q =2KF transition is illustrated. It connects points
where the gap is maximized. 5 =0.0525cF.
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direction. For small q we see the coherence factor
suppression, which persists out to rather high frequen-
cies. At q =KF, this is no longer important. At
q =1.5KF, a gap has begun to develop, owing to the fact
that the largest wave vector which can connect two
points where the order parameter is zero is actually

q =~2KF, which joins ( —K~, O, O) and (O, K+,0). At
q =2KF the gap is fully developed, the lowest-energy
transition being shown in the inset, which is a view along
the z axis with lines of zeros being indicated.

Figure 7 shows the results for q in the [001] direction.
Again the increase of ImX with increasing q is clear.
Here, however, there is no gap for any value of q, since
transitions lying entirely in the k„=0or k~ =0 planes are
always possible. For the high-temperature superconduc-
tors, a d wave state has been proposed by some au-
thors. " The gap is given by b, =ho(cosk„a —cosk a),
where a is the lattice constant in a two-dimensional
square lattice. For wave vectors lying in this plane, we
will see a gap open up in X(q) only if q lies along the crys-
tal axes. If q is along a diagonal, the gap vanishes.

We conclude that neutron scattering is capable of
probing all of the aspects of the very rich symmetry-
breaking characteristic of triplet superconductors. In ad-
dition it is capable of distinguishing the qualitative
differences between triplet and singlet phases.

III. SPIN-ORBIT COUPLING
AND SMALL-ANGLE SCATTERING

The effects of spin-orbit coupling are far reaching. The
eigenstates are no longer eigenfunctions of the spin com-
ponents and coupling of the neutron to the orbital motion
of the electron must be taken into account. The sum-
mand in Eq. (1) will include a factor

1 (k —q/2 a
~
L;+2S;

~

k+q/2 P)
pg

(k+q/2 P
~

L +2S
~

k —q/2 a) . (5}

Here a and P are pseudospin labels obtained by turning
on the spin-orbit coupling adiabatically and L, , S; are the
appropriate components of the orbital and spin angular
momentum. Hence, the average in Eq. (1) is weighted by

I.O

3
Z Ct
X

3 0.5
cn cr
X

2b, rn
Energy

FIG. 7. Imaginary part of the susceptibility P" for the singlet
state with q in the [001]direction.

this factor as well as the coherence factor. Unfortunately
not too much is known about these matrix elements.
There have been calculations of the diagonal terms in a
simplified model, which tell us that the effective mo-
ments are strong functions of direction on the Fermi sur-
face. This is likely to be true also in real materials.

This effect will show up in the normal state as direc-
tional dependence of the scattering cross section even for
an isotropic Fermi surface. In the superconducting state
it is possible that there are correlations between regions
of high effective moment and large gap on the Fermi sur-
face. This would enhance the movement of weight to
higher frequencies in the superconducting state, making
anisotropies easier to observe. Unfortunately, it also
makes them more diScult to interpret. In the absence of
a complete strong-coupling theory and band calculations
of the relevant matrix elements it would not be possible
to deduce much detailed information about the gap func-
tion from such an enhancement.

One case in which the spin-orbit effect can be partially
eliminated is for scattering at small q, ~ q ~

&&KF. This
kind of experiment has the additional advantage that
phonon scattering cross sections are very small so that
magnetic scattering is more easily separated from nuclear
scattering. Also the coherence factors of Eqs. (3} and (4}
simplify: for the polar phase, C~ =CT =6 /2E and for
the ASM phase, C+ CT/——2=8 /4E Ther.e are no
dramatic interference effects possible, as the entire Fermi
surface contributes to the lower-energy spectrum. Also,
and just as importantly, the matrix elements (5) are aver-
aged over.

The chief results as q is increased from zero are tabu-
lated in Table II. The changes in threshold energies are
not modified from the results of the previous section.
The power-law dependences are not affected at finite q,
e.g., the cross section still rises linearly in co from the
threshold value for the polar phase and as u for the
ABM phase. If q &&KF the threshold frequencies are of
course small. The change in position of the q =0 singu-
larity for each case may also be verified by comparing the
results in the table to the q =0.5KF curves in Figs. 2-5.
In general, if q is parallel to the gap surface where the
gap is at a maximum, as in the insets to Figs. 2 and 5,
then the singularity remains at co=25 . If q is perpen-
dicular to the surface, then the singularity moves up in
frequency, is quickly weakened, and in fact is off scale in
Figs. 3 and 4. Note that in this connection the peaks in
Figs. 3 and 4 represent the development at large q of a
threshold frequency, not to be confused with the long-
wavelength peak of Fig. 1. The anisotropy of the move-
ment of the singularity is probably the feature most ex-
perimentally accessible at low q, since it occurs at a finite
frequency and can therefore, be distinguished from elastic
events.

All of the qualitative features mentioned in this section
are independent of the existence of spin-orbit coupling,
since they are essentially density-of-states effects. The
only possible exception would be extraordinary behavior
of the matrix elements (5) such as the vanishing of the
effective moment where the gap is maximum, etc. This is
rather unlikely.
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TABLE II. Behavior of frequency dependent cross sections at small q, q &&KF. The two most prom-
inent features in the cross sections, the threshold frequencies and singularity frequencies, may change
position as q is increased. These changes are anisotropic.

&2q =(1,1,0)
Polar

q=(0,0, 1)
ABM

&2q =(1,1,0) q=(0, 0, 1)

Singularity frequency
Threshold frequency

2h
0

(4+2 +U2q2)1/2

q/KF
(4g2 +UF2q2)1/2

q/K~
2L

0

Small-angle scattering in the d-wave state is of little in-
terest. The q =0 cross section vanishes for all frequen-
cies, as already noted. Spin-orbit coupling cannot change
this. As long as the Cooper-pair orbital wave function
has even parity, the coupling to a static magnetic field
must vanish to first order.

IV. STATIC SUSCEPTIBILITY

The results for the tensor X;~ =ReX;J(0,0) are given in
Table I for the polar, ABM and Balian-Werthamer (BW)
phases along with some of the possible triplet phases of a
cubic crystal with strong spin-orbit coupling, as given in
Refs. 12—15. These are obtained from the appropriate
limit of Eq. (1), which neglects spin-orbit matrix ele-
ments. The integrals may all be performed analytically
since the density-of-states part of the integrand depends
essentially on

~

d ~, which is a quadratic function of the
components of k, where k is the integration variable.
This can always be diagonalized by an orthogonal trans-
formation. Note that all phases satisfy the identity
Trg= 3+p where X& is the Pauli susceptibility. This cor-
responds to the fact that —', of the components of the trip-
let have a net projection on an axis, once orientations of
the axis have been averaged over. X always vanishes for
d-wave superconductivity.

In 3He in zero field, the ABM phase is stable only at
high pressures and temperatures, relative to the BW
phase. At high fields, the transition temperature between
the two decreases, indicating that the ABM phase is
becoming more favored energetically. In He the phases
have a continuous rotational degeneracy. In particular,
they are free, if not near a boundary, to rotate the orien-
tation of the order parameter into a direction such that
the external magnetic energy —

—,
' g;J X;JH;H is mini-

mized. Therefore, one finds an energy ——,'7 H, where
is the maximum eigenvalue of the susceptibility ten-

sor. The orientation is along the principal axis belonging
to this eigenvalue. The fact that X (ABM))X (BW)
immediately explains the behavior in the field.

In the cubic case with spin-orbit coupling we have the
twelve phases listed identified by the serial numbers as-
signed to them by Blount. Physically, the situation in
an external field is very different from He since we are
now dealing with a charged superfluid. For H & H„and
T=O, we have a mixed state where the vortices have

4
small core radii (g-50—100 A) but large electromagnetic
radii (A, -500 A). Thus, the usual Ginzberg-Landau
equations describing this state must be supplemented by
the external magnetic-field term. In addition, the fourth
order and gradient terms for cubic symmetry and a vec-

tor order parameter are much more complicated than one
usually has. ' The problem is thus, quite difficult in gen-
eral, combining the complexity of the Abrikosov vortex
lattice with that of textures in He. W'e do not attempt to
solve it here, being content to point out that for
H &2H, i, flux penetration is essentially complete, and
only a small fraction passes through normal regions. In
the crystalline case the order parameter is locked to the
crystal axes, and stability is therefore determined by the
full tensor expression and may depend on the direction of
the field.

Finally, we observe that some of the states break time-
reversal symmetry, namely 5, 8, 9, 12, and 13. These can,
in principle, have an energy which is first order in H.
The actual moment tends to cancel on averaging over the
Fermi surface. These phases are good candidates for the
low-temperature phase of U& „Th„Be»,x & 0.02. Muon
experiments indicate a small moment for this phase.

V. CONCLUSION

Our basic aim in this paper was to calculate the intra-
band particle-hole susceptibility in the superconducting
state of heavy-fermion systems. This means that we have
neglected collective effects in this quantity entirely. We
certainly expect that spin-wave modes, arising from the
phase degree of freedom in the various components of the
order parameter, will occur just as in He. In He, these
modes have an energy vFq at small q. Spin-orbit coupling
will create a gap at q =0 for these excitations in the cubic
system, however, which will probably be of the same or-
der as the superconducting gap, and will complicate the
particle-hole spectrum we have given.

Spin-orbit coupling is known to have a strong effect on
even the static susceptibility in BCS superconductors, as
measured by the Knight shift in small samples. This
occurs when the spin-orbit scattering rate 1/r, , is so
large that superconducting correlations cannot be estab-
lished in such a short time: b,r, , /h &&1. In a system
such as UBe&3, where the original eigenfunctions are
presumably not spin eigenfunctions, collisions will erase
spin memory, and ~, is simply ~, the relaxation time.

0
With a mean-free path of 1000 A, we obtain an estimate
of ~ as 10 ' sec, and find h~/h —1. This highlights the
importance of using very pure samples for any neutron
work designed to see the preceding calculated effects. In
addition, anisotropic superconductors are more prone to
gaplessness than conventional ones. Any such effect
would also tend to wash out superconducting structure in
the susceptibility. In the case of high-temperature super-
conductors, the neglect of spin-orbit coupling is well
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justified, since atoms of lower atomic number are the only
ones involved in the conduction bands.

Our results have been limited to the zero-temperature
case. At finite temperatures two main effects will modify
the results, aside from thermal smearing. One is simply
that the size of the order parameter decreases. The struc-
tures which we identified as dependent on this quantity,
such as gaps in certain directions for the scattering cross
sections, will scale with the order parameter as it
changes. The other is that scattering of thermally excited
quasiparticles is now allowed in addition to the breaking
of Cooper pairs. This effect will fill in gaps in the spectra,
rather than just change their size. For clear identification
of superconducting phases, low temperatures are re-
quired. This is particularly true for those cases which
have zeros of the order parameter on the Fermi surface
(which includes the three examples we treated). For
these, the density of excited quasiparticles is proportional
to a power of T for low T, rather than showing the ac-
tivated behavior typical of a gap which is everywhere
nonzero.

A natural direction in which to extend our work is to-
wards the calculation of spin fluctuation free energies. It
is now generally accepted that spin fluctuations play a de-
cisive role in determining the relative stability of the
superfluid phases of He. ' Since the susceptibilities of
heavy-fermion materials are strongly enhanced, we ex-
pect this mechanism also to be important for these sys-
tems. This contribution to the free energy is a functional
only of X(q, to) so we have in principle the means of deter-
mining it. However, uncertainty at the present time
about the nature of the fluctuation spectrum in the nor-
mal state makes this program difficult. The authors of
Ref. 1S considered paramagnon fluctuations which were
large only near q=0. In evaluating 7 in the supercon-
ducting state, they were then able to neglect the distinc-
tion between d+ and d while performing the sums over
k. One can then make progress analytically and derive
criteria for the stability of states by determining the pa-
rameters of a Landau expansion of the free energy. In
the heavy-fermion case, on the other hand, there is exper-
imental evidence' which indicates that the normal state
fluctuations are not well localized near q=O. Theoreti-

cally, there are reasons to expect that antiferromagnetic
fluctuations may be important in heavy-fermion systems.
This stems from the fact that most pictures of these sys-
tems postulate a narrow band of highly correlated f elec-
trons which is almost half filled. It is therefore very
close to the half-filled, large-U Hubbard model, which is
known to be antiferromagnetic. In addition the Curie-
Weiss susceptibility at high temperatures is that charac-
teristic of an antiferromagnet, i.e., it has a negative inter-
cept on the T axis of a graph of X ' versus T.

For these different possibilities for normal state fluc-
tuations, in particular when it is not possible to neglect
the difference between d+ and d, the numerical labor
involved in calculating spin fluctuation energies will be
onerous, and it is left for the future.

%e conclude that neutron scattering will be a uniquely
efficacious tool for the identification of unconventional
superconducting phases. The study of the anisotropy of
scattering intensities as a function of scattering angle
gives detailed information about the magnitude of the
gap as a function of position of the Fermi surface. If po-
larization analysis is added to the experiment, even the
vector structure of the order parameter as a function of
position can in principle be determined. The magnetic
properties of heavy-fermion systems may also be impor-
tant for the question of the relative stability of the vari-
ous superconducting phases. In a strong magnetic field,
the static susceptibility could play a role. In particular, it
would be interesting to investigate the phase diagram of
U, „Th„Be&3 as a function of field in greater detail. A
start on this has been made. But more particularly, one
would like to see this done also as a function of the direc-
tion of the field with respect to the crystal axes in single-
crystal samples. This would help to understand which
phases are actually realized in this alloy system. In the
high-T, systems, the large gap renders the proposed ex-
periments much easier to realize. The structure of the or-
der parameter in both spin and momentum space can be
probed in the most detail by neutron scattering. Recent
results on single-phase nonsuperconducting La2CuO„
raise the hope that the clarification of the nature of high-
T, superconductivity by this method may lie in the near
future.
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