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We calculate the thermal conductivity and ultrasonic attenuation in anisotropic superconductors
in which the scattering of quasiparticles by nonmagnetic impurities is the dominant process. The
concentration of impurities is assumed to be low enough that broadening of quasiparticle states may

be neglected, and hence the quasiparticle Boltzmann equation may be used. Detailed calculations
are presented for two limiting choices of the normal-state phase shift, 0N &g m/2 and 5& ——~/2. The
superconducting states considered are the axial and polar p-wave states and an axial d-wave state.

I. INTRODUCTION

A fascinating feature of experimentally measured
transport properties of heavy-fermion superconductors is
that at low temperatures they do not depend exponential-
ly on the temperatures, as one would expect for a stan-
dard BCS superconductor. This is best illustrated in the
case of UPt3, for which the thermal conductivity, EC,

varies as T in the normal state for temperatures between
the superconducting transition temperature, T„and 550
mK (Ref. 1) and the ultrasonic attenuation is a rather
weak function of T for temperatures between just above
T, and about 550 mK. Both these dependences are
what one would expect for scattering of electron quasi-
particles by nonmagnetic impurities in a normal metal at
temperatures well below the Fermi temperature. In the
other heavy-fermion superconductors, the normal-state
properties are more complicated; even at temperatures
close to the superconducting transition temperature they
do not behave like Fermi liquids in which electrons
scatter from impurities, a fact which gives strong evi-
dence for the importance of other processes, such as
electron-electron scattering. In the superconducting
state one would expect the thermal conductivity and the
ultrasonic attenuation to fall off exponentially with de-
creasing temperature if the gap had a finite value at all
points on the Fermi surface, as it does for the usual BCS
state. However, the thermal conductivity of polycrystal-
line UPt3 is observed to vary roughly as T between 35
and 100 mK in a field of 1 kG (Ref. 3) and the attenua-
tion of sound in UPt3 is observed to vary approximately
as a power law, with an exponent that depends on the
direction of propagation and polarization of the sound.
Different groups ' ' find different results for longitudinal
sound, but in no case is the decrease in the attenuation
with decreasing temperature as rapid as one would expect
for a BCS superconductor.

An important question is whether the measurement of

transport properties can provide information about the
nature of the superconducting state or states of heavy-
fermion superconductors. Initially, Bishop et al. argued
that their ultrasound measurements provided support for
the superconducting phase having a gap structure similar
to the polar p-wave state. Subsequently, Rodriguez car-
ried out more detailed calculations based on the assump-
tion that, as in a BSC superconductor, the mean free path
of a quasiparticle in the superconducting state is the same
as in the normal state. He concluded that the gap struc-
ture in UPt3 is similar to the axial ( ABM) p-wave state of
liquid He. Following this, calculations of the quasiparti-
cle mean free path by Coffey, Rice, and Veda and by
Pethick and Pines showed that the mean free path in the
axial and polar p-wave states diverges at low tempera-
tures if the scattering is treated in the Born approxima-
tion. The latter authors also showed that in this approxi-
mation, the ultrasonic attenuation does not generally
vanish as T~O, but is typically of the same order of
magnitude as in the normal state. Likewise, K/T was
shown generally to tend to a finite value as T~O. Both
these results are in sharp contrast to what is found exper-
imentally.

In Ref. 8 it was shown that if, instead of using the Born

approximation, one assumes that multiple interactions of
a quasiparticle with an impurity are important, which
corresponds to the phase shift in the normal state being
close to n. /2, the qualitative temperature dependence of
the transport coeScients in the superconducting phase is
in better agreement with experiment. The physical
reason for this is that quasiparticle states with energies

comparable to or less than the maximum value of the en-

ergy gap on the Fermi surface are strongly affected by su-
perconducting correlations. These enter as intermediate
states in the scattering process, and consequently the
quasiparticle scattering amplitude is also strongly
affected at such energies.

In the calculation by Pethick and Pines the broadening
of quasiparticle states by the impurity scattering was
neglected, which is a valid approximation for low concen-
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trations of impurities, and subsequently calculations al-
lowing for the width of quasiparticle states were per-
formed by Hirschfeld, Vollhardt, and Wolfle, by Scharn-
berg et al. ,

' and by Schmitt-Rink, Miyake, and Var-
ma. " In Refs. 9 and 10 phase shifts other than n /2 were
considered, and in Ref. 10 vertex corrections were also
included. These calculations generally confirmed the
conclusions of Ref. 8, except that the broadening of
quasiparticle states led to qualitatively different behavior
at temperatures where the quasiparticle width is compa-
rable to or greater than the thermal energy kz T, and to a
very slight rounding of the behavior at the transition
temperature T, . All the above work was for p-wave
states, but following this, Monien et al. '2 performed cal-
culations for two d-wave states and found results qualita-
tively similar to that for the p-wave states. Recently,
Monien et al. ' have improved the treatment of vertex
corrections, and they and Pethick and Pines' have point-
ed to a number of asymmetries in scattering that can
arise for phase shifts different from n/2.

This paper is the first of a series in which we calculate
transport properties of a number of different supercon-
ducting states starting from the quasiparticle Boltzmann
equation. The Boltzmann-equation approach has two
virtues compared with the Green's-function approach
used in Refs. 9-13: It is computationally much simpler,
and its physical content is more transparent. Its
shortcoming is that it cannot be used to describe situa-
tions where the width of quasiparticle states is important,
but, as is clear from the earlier calculations, the effects of
the finite width are likely to be important only at temper-
atures 5 T, /10 in practical situations.

In this paper we shall calculate the quasiparticle life-
time, the thermal conductivity, and the ultrasonic at-
tenuation for the axial and polar p-wave states and for the
d-wave state consistent with the hexagonal symmetry.
Here we shall consider the limiting cases of small phase
shifts (Born approximation) and a phase shift of m /2, cor-
responding to resonant scattering. The physical motiva-
tion for these two cases is provided by noting that in
heavy-electron materials the f-electron atoms, such as U
and Ce, are thought to be primarily responsible for the
heavy-electron behavior. When nonmagnetic impurities
are introduced into a heavy-electron material, one can
therefore envisage two distinct types: the first where the
impurity replaces an f-electron atom, and the second
when it replaces one of the other atoms. In the first case,
the impurity corresponds to the absence of a magnetic
site, and might therefore be expected to give rise to a
phase shift close to n/2, while in the second case, the
phase shift is likely small. The calculations for small
phase shifts are also useful by way of reference, since in
most calculations of transport properties of superconduc-
tors to date it has been assumed that the phase shift is
small. Novel effects that arise for intermediate values of
the phase shift will be discussed in a future paper.

The outline of the paper is as follows. Scattering
theory and the quasiparticle lifetime are considered in
Sec. II. The thermal conductivity is calculated in Sec. III
and the ultrasonic attenuation in Sec. IV. Section V is a
brief conclusion.

II. QUASIPARTICLE RELAXATION TIME

In this section we calculate the quasiparticle relaxation
rate due to elastic scattering from nonmagnetic impuri-
ties. When the density of impurities, n;, is sufficiently
low, the relaxation rate, 1/~, of a quasiparticle of
momentum p and spin cr in the superconductor is given
by

Tp+

where tp. ~ is the amplitude for a single impurity to
scatter a quasiparticle from the state po to the state p'cr',
and Ep is the quasiparticle energy. In the calculations
in this paper we shall restrict our attention to states for
which the gap matrix, 5, a 2&& 2 matrix in (pseudo)spin
space, is unitary. The quasiparticle spectrum is then in-
dependent of the spin index and is given by

E (g2+g g t)1/2 (2)

where g =UF(p —pF) is the energy of a quasiparticle in

the normal state, relative to its value at the Fermi
momentum pF. Here uz is the Fermi velocity. The
operators a~ and a which create and destroy normal-state
quasiparticles are related to the corresponding ones a
and a for superconducting-state quasiparticles by a uni-

tary transformation,

.apo pcrcr' po'+ poo' —per' ' (3)

The scattering amplitude tp p
in the expression for the

relaxation time is obtained by performing the unitary
transformation on the corresponding amplitude for
scattering of normal-state quasiparticles, and is given by

S
~~ n'n v+ p' » v'~ ~

+ P' » P'P P + P' » P'P P

where t; is the amplitude in the superconductor for
scattering a normal-state quasiparticle (j= 1 } or
quasihole (j =2) of momentum p to a quasiparticle
(i =1) or quasihole (i =2}of momentum p'. For brevity
we have suppressed spin indices.

To calculate the amplitudes t; we follow the treatment
of Ref. 8, which was based on earlier work on the mobili-

ty of ions in the superfluid phases of liquid He. ' In the
Nambu formalism the single-particle Green's function for
the superconductor in the absence of impurities has the
form of a 4X4 matrix,

E+gp b,p—
E —E —

p
—sp

The scattering amplitude, T, in the Nambu notation
satisfies the Lippmann-Schwinger equation

T=V+VGT,
where the scattering potential is V=u~3. The quantity u

is the potential due to the impurity, which we take to be
diagonal in the spin variable, since the impurity is as-
sumed to be nonmagnetic, and v.

3 is the Pauli matrix in
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Nambu space. By using in Eq. (6) the expression for the
Green s function in the absence of impurities, we have
implicitly neglected the fact that when the concentration
of impurities is finite, the intermediate states in the
scattering from one impurity may be affected by other
impurities. We shall discuss in more detail below the
conditions under which this condition holds. It is con-
venient to work with the normal-state reaction or I( ma-
trix defined by the equation

gN V+VGN gN (7)

where the prime on 6 indicates the restriction on the in-
termediate states. We shall assume that the scattering is
of short range, and that it scatters only in s states. The
normal state K matrix is then independent of initial and
final momenta and is given by

E —kN7 3
N (10)

where ktt = —tan5~/m. N(0), with 5~ being the normal-

state s-wave phase shift, and N(0)=m'pz/(2m~A ) the
density of quasiparticle states at the Fermi surface for a
single spin. We assume the Fermi surface to be a sphere
of radius p+, and the mass, m ', to be isotropic.

The superconducting states we shall consider in this
paper are the axial and polar p-wave ones and a d-wave
state that is consistent with the hexagonal symmetry of
UPt3. Group theory considerations argue against the po-
lar state, ' ' so it thus must be regarded as an illustrative
example, rather than a serious candidate for the super-
conducting state.

For singlet pairing, the gap matrix may be written as

where G,z ——6 —G,„. G,z and G,„are, respectively, the
off- and on-energy-shell contributions to the Green's
function. ' Using Eqs. (6) and (7), we obtain

T=K +K (G G, —)T .

Since we are interested only in states close to the Fermi
surface, it is convenient to eliminate those far away. Far
from the Fermi surface 6 is unaffected by superconduct-
ing correlations, and has no on-shell part for energies of
order the gap energy, which are the ones of interest.
Consequently 6 —6,& vanishes there, and the sum over
intermediate states in Eq. (g) may be restricted to states
close to the Fermi surface. If one sums over a set of
states in an energy range within REp of the Fermi sur-

face, ~here 6 ggEp QQEF the normal-state off-shell con-
tribution to Eq. (8) vanishes, and we may write simply

N+g NG

a line node along the equator.
In the case of triplet pairing, the gap matrix may be

written as

b, =toztr h(p) .

The polar state has

lL(p) =6( T)cos8d,

and the axial ( ABM) state has

(13}

(14)

h(p ) =5( T)(i+i j ) pd =5( T)sin8e '~d, (15)
A A

where i, j, and k are unit vectors in the 1, 2, and 3 direc-
tions of momentum space, and d is a fixed unit vector in
spin space.

Since the K matrix is independent of momenta, the T
matrix is also. With the intermediate state sums written
out explicitly, Eq. (9) has the form

T(E)=K +K g G'(p, E) T(E) . (16)

This matrix equation simplifies considerably, since the
off-diagonal matrix elements in Nambu space, propor-
tional to g [b, /(E E)], van—ish for the three states
we consider. T is thus diagonal in spin and in particle-
hole space and is given simply by

T =k~v~[1+i mN(0)kit'r@ (E)] (17)

where v.
3 is the Pauli matrix in the particle-hole part of

Nambu space, and

i dQ Eo Eg(E)= —' f ' f,'dg. . (1g)

P

takes into account the modification of intermediate states
by superconducting correlations. In the normal state

g (E) is unity, so the matrix elements of T are simply

+e "sin5&/[mN(0)]. The function g(E) has a real
contribution proportional to the density of states, and an
imaginary part which corresponds to a dispersive correc-
tion to the quasiparticle self-energy. The latter vanishes
if the magnitude of the energy is above the maximum
value of the energy gap as a function of angle on the Fer-
mi surface, but is nonzero below. Consequently, it is im-

portant only in anisotropic superconductors, since in iso-
tropic ones there are no excitations with energies less
than the maximum energy gap.

In this paper we shall confine ourselves to the limiting
cases of small phase shifts, and ones close to m. /2. For
small phase shifts, the matrix elements of T are simply

h=o zb(p),
t ) )

———t2q —t~ ———5~ /[mN (0)], (19)

h(p ) =29 ( T)cos8 sin8e'~, (12)

where 5( T} is the maximum value of the gap on the Fer-
mi surface. Here 8 and P give the direction of p in polar
coordinates. This state has point nodes at the poles, and

where the e; are Pauli spin matrices. For the BCS case,
b, (p) is independent of p, while for the d-wave state con-
sistent with hexagonal symmetry, one has

where tN is the normal-state scattering amplitude for par-
ticles, while for 5N =m. /2 they are given by

1 tN
t&i =tz2= . (20)

inN(0}g(E) g(E) '

since t~ =[in.N(0)] ' in this case. We shall discuss the
case of other phase shifts elsewhere. The amplitude for
scattering of superconducting-state quasiparticles, given
by Eq. (4), thus has the form
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t ~ =tN(u ~p —4P.~ ) for 5~&&m/2, (21) n, ( ttv
~

N(0) . (30)

and

tp.p
—— (cepup+c pup) for 5~=m/2 .Pp g E P P (22)

In this paper we are not interested in spin-dependent
properties, so we calculate the quantity

I tpp I
'=-,' X I tp, p I

'
CT, CT

(23)

which is the square of the scattering matrix element
summed over final spin states and averaged over initial
spin states. Using the usual definitions of the quantities
~&and r &, we fin g(x)= —ln

x 1+x
2 1 —x

.1Tx—i forx (1
2

(32)

The quantity g for the various superconducting states
may be determined from Eq. (18), and we find

dQ
g(E)=

4m (E —
~

g
~

)'/
1

where the square root is to be interpreted as
+i([h

~

E)'/—for E&~b, ~, where ~b [ is the
magnitude of the energy gap in the direction p on the
Fermi surface. %'e find for the axial state

gpgp Re(hphp. )'
E, ,

x x+1=—ln
2 x —1

for x &1,

(singlet pairing, 5' «m/2), (24) for the polar state

~
t„( '

gpgp. Re(b, pb, p. )

E.E' E.E'
(singlet pairing, 5&——m /2), (25}

mx . 1+(1—x )'/
g(x)= —ix ln

2 x

1=x arcsin — for x g1,x

for x &1

(33)

4'P4'p

2 '+E E.
P P

Re(hp hp )

EpEp and for the d-wave state Eq. (12)

and

(triplet pairing, 5N «~/2), (26)

~
t/t )' g g ~ Re(b, b')

2~g(E)[' E,E,. E,E,.

(triplet pairing, 5& n /2) . ——(27)

di4g(x)= — +
(

4 2+x 2/4) 1/2

.x alp, for x &1
(

2 4 x 2/4)1/2

x dp for x ~1,
0 (

4 i42 +x 2 /4 )
1 /2

(34)

In terms of
~

tp.p ~, the relaxation rate, Eq. (1), is given
by

n g (tp ~
5(E„E). —

P

(28)

and

Ns(Ep)
(5N =1r/2),

~g(E )~2 N(0)

(29}

where r~ is the normal-state relaxation time, given by

When the sum in Eq. (28) is performed, the g g ~ terms in
(24}—{27) vanish since contributions for p' above and
below the Fermi surface cancel. The 5 h~ terms also
vanish on summation for all the states we consider in this
paper —they vanish for any p-wave state because of the
odd parity of the gap, and for the d-wave state (12) they
vanish on integrating over ((I, since b, {P+m }=—b, ((j}).
The expression for the relaxation rate is thus simply

1 Ns{E, )
(5~ && m. /2)

1rp 7Q

where p, =([1—(1—x )'/ ]/2)'/ and p2 ——([1+(1
+x )' ]/2}' and x =E/b, b, being the maximum
value of the gap. The density of states is given for all
state and all energies by Ns(E) /N (0)
=Reg (E/6).

In Fig. 1 we plot the quasiparticle relaxation time as a
function of E/b, . For 5~ &&1r/2, the relaxation time
diverges as E~0 because the density of states tends to
zero as E~0. The leading contributions to rs/r~ at low
energies are (2/n)b, /E for the p. olar state, b, /E for the
axial state, and (4/rt)5/E for the d-wave state. Close to
5, the relaxation time tends to 2'�/mfor the polar s. tate,
and tends to zero as 1/

~
ln(

~

1 —x
~

) )
for the axial and

d-wave states. In the case of a phase shift ~/2, in the axi-
al state r&/r& tends to m /4 as E~O and diverges as
—,'ln(l/~ 1 —x

~
) for E~h, while for the polar state,

r&/r& behaves as

x —+—ln x2 2

2 m

for small x, and is m/2 at E =h. For the d-wave state,
Ts/'re behave as
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where n is the equilibrium distribution function, T is the
temperature, and vp ——BEp/Bp is the quasiparticle veloci-
ty. In writing this equation we have neglected the term
involving the specific entropy, which is small compared
with the term we have retained.

The collision integral is given by

0.5

00
0.0 0.5 1.0

E/6
1.5 2.0

n

coll
n, g ~t

~

5(E E ~ )—(n n—).~

p

(37)

FIG. 1. Plots of the quasiparticle relaxation times in the axi-
al, polar, and d-wave states as a function of energy for the cases
of small phase shifts (5N &&m/2) and of resonant scattering
(5N ——m /2).

%'e now write

0
Bnp

P P dz P'
p

(38)

X 7T 2—+—ln x
2 2 7T

at low energies, and diverges as ——,'ln(1/~ 1 —x
~

) for
E~5.

A remarkable feature of the relaxation time is its insen-
sitivity to energy for a phase shift of n /2. In calculations
which include effects of impurity scattering on intermedi-
ate states in the scattering process, this effect is even
more pronounced, because v& at E =0 remains finite for
all states, and the logarithmic singularities at E =b are
smoothed out. "

III. THERMAL CONDUCTION

T

Bnp Bn
+V np VpZp Vpnp Vgpat coll

(35)

where np is the quasiparticle distribution and (Bnp/Bt)„»
is the collision integral. In the hydrodynamic limit one
may replace the distribution function on the left-hand
side of the equation by its local equilibrium value, and
after the standard Chapman-Enskog analysis, the equa-
tion reduces to

In this section we calculate the thermal conductivity
starting from the quasiparticle Boltzmann equation. The
Boltzmann-equation approach to kinetic phenomena in
superconductors has been placed on a firm microscopic
footing by Betbeder-Matibet and Nozieres, ' and it is val-
id provided frequencies are small compared with the gap
frequency, length scales are large compared with the
temperature-dependent coherence length, and the width
of quasiparticle states due to pair-breaking processes is
small compared with both the quasiparticle energies of
interest and A. The Boltzmann equation has the form,

where 4 is a measure of the deviation of the distribution
function from its local equilibrium value, n"". Note that
the local equilibrium distribution is the Fermi function
evaluated for the local values of the temperature, chemi-
cal potential, and quasiparticle energy. The latter quanti-
ty is not generally equal to its value in global equilibrium.
The transport equation may thus be written in the form

g ~ t,', ~'5(E, Z, , )e,,—=r,Z, v,P P P P P P 7

(39)

VT
p p p p (40)

and the heat current is

jz —QE v (n n)—
p, o'

an',
P PgE P

E v
vp P T Bn

p

az "
p, 0' p

(41)

From this we find the thermal conductivity tensor K,",
given by (jz), = K; V T, to be— .

where we have adopted the simplified notation
rp r, (Ep ), for ——the relaxation time, Eq. (28).

The driving term is odd in gp, since up (gp/E )uF, ——
when one neglects effects of order 5/EF, where
EF =pF/2m*, uF is the Fermi velocity, and it has odd
parity. Since the collision integral preserves parity and
symmetry under the replacement of g by —g, 4 must
be odd in g and have odd parity. As a result, the terms
proportional to 1 and to hpbp. in Eqs. (24)—(27) vanish on
summation because 4 is an odd function of g, and the
g gp terms vanish because of the odd parity. Thus 4 is
given simply by
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E2 Bn',
K,J=. —g (v~);(vu)J. BE

p, a p

(42)

1.2

1.0

(43)

f . If onewhere the p, are the direction cosines of p.
neglects effects of order 5/EF, the quasiparticle veloci y
is

BE,/B I

=
I g, I /E. ..=

p

h —
I g I

/E and therefore the thermal conduc-where v=
~ &p I

tivity takes the form

Th uperconducting states we are considering are uni-es
axial, and as a consequence transport properties are

. Th th rmal conductivity tensor is diagona i

we choose axes along and perpendicular to the anisotropy
axis. The components of the thermal conductivity tensor
are then given simply by

(E&uz) Bn

T BE '&'
p, o' p

0.8

0
0.6

U

0.4

0.2

0.0
0.0 0.5 1.0 2.0

FIG. 2. Plot of the dimensionaless factor I for thermal con-

duction along and parallel to the symmetry axis as a function of
T/5 for the axial state for the cases of small p ashase shifts and

for resonant scattering.

K;; =4N(0) I E r(E)(V ~tu~ ),T o BE
(44)

where we use the notation

( ) fdQ (45)

T T
K;; =K~(T, ) F

c
(46)

where

E/(E
I

b,
I

)' i—s the density of quasiparticle states
per unit energy in the direction p, normalized to its nor-
mal state value. The integral in Eq. (45} is to be taken
only over angles for which

I
b,

I
& E . Since for a given

superconducting state rs!rN and the (u p;)
tions only of E!b, the result (44) may be written in the
form

(48)

erature tends to a constant, as T~0, in agreement with
the conclusions of Pethick and Pines, and in the particu-
lar case of transport along the symmetry axis for the axial
state, E/T tends to precisely its normal state value. n
directions perpendicular to the nodal directions the corn-
ponents of the thermal conductivity are smaller by a fac-
tor -(T!6). For 5N n/2 the —l—argest components of
K/T vanish as T~O. One general feature of the results
is that at low temperatures K/T for 5~ =n./2 for a given
superconducting state and a given direction is smaller
than for 5& «n /2 while closer to T, (T/h~ ~ ), K/T
for 5& ——m/2 is greater than for 5& «m/2.

To predict the thermal conductivity as a function of T
we need an expression for the magnitude of the gap as a
function of temperature. For the axial state the form we
have used is the one proposed by Wolfle and Koch'

' I/2
Tc hC Tc

5( T)=b,(0)tanh n.
T 18 f ~dEE

2 p T2
(u 'p, ', ), (47)

BE N

and

KN(T )= N(0)uFrNT,
27r2

N c
1.0

is the thermal conductivity in the normal state. In the
normal state K/T is independent of temperature, and
therefore the content of Eq. (46}is that K!T in the super-
conductor is F times its value in the normal state. The
integrals (6 p;) may be calculated analytically for the
axial and polar states, and we give the results in the Ap-
pendix. For the d-wave state the integrals may be ex-
pressed in terms of elliptic functions, but in practice we
found it more convenient to evaluate them numerica y.
In Figs. 2—4 we plot F for the three states we consider,
for thermal conduction along the symmetry axis and per-
pendicu ar to i .1 it. For the case of small phase shifts, one
component of thermal conductivity divided by the tem-

0.8

0.6

0.4

0.2

0.0
0.0 0.5 1.0

T/6
1.5

FIG. 3. Same as Fig. 2 but for the polar state.

2.0
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FIG. 4. Same as Fig. 2 but for the d-wave state. FIG. 6. Same as Fig. 5 but for the polar state.

' 1/2
T 2 QQ T —T

6( T)=b,(0)tanh m.

I

where

(49)

Q2
(50)

is the mean square value of the gap relative to the max-
imum value. With the standard expression for the con-

where b, (0) is the maximum gap at T =0, and b,C/C is
the jump in the specific heat at T = T, . This expression
allows certain strong coupling corrections to be taken
into account by employing the measured value of the
specific-heat jump, rather than a purely theoretical one.
The generalization of this expression to other supercon-
ducting states is

densation energy in terms of the gap, Eq. (49) gives a
specific-heat jump equal to the actual one, b,CIC. For
the axial state, f is equal to —'„and therefore Eq. (49)
reduces to (48), while for the polar state f = —,', and for
the d-wave state, f = —,', . The values of b(0) we adopted
are those given by solving the weak-coupling gap equa-
tion, 5(0)=2.02T, (axial), 6(0)=2.45T, (polar), and
6(0)=2.10T, (d wave). We have carried out calculations
for b CIC =0.86, the "idealized" value extracted by Sul-
pice et a/. from their data. The results are plotted in
Figs. 5 —7. The choice of hC/C has little effect on the re-
sults, since it changes 6 most in the vicinity of T„where
the thermal conductivity is relatively insensitive to the
magnitude of h.

Calculations of the thermal conductivity in which the
width of quasiparticle states is taken into account have
been performed in Refs. 9-12. Our results are in excel-
lent agreement with these, except at temperatures below
about T, /10 for the values of the depairing parameter
1/r~b = 10 used in the calculations.
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FIG. 5. Thermal conductivity along and perpendicular to the
symmetry axis divided by the temperature as a function of tem-
perature for the axial state, and for 5N &&m/2 and 5& ——m/2.
The expression used for the gap as a function of temperature is
described in the text.
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IV. ULTRASONIC ATTENUATION

Bn', BE, Bn
(5l)

where u; =Bu;/Bx is the strain tensor, u being the dis-
placement vector. The quantity BE&/Bu; is a deforma-
tion potential which describes how the quasiparticle ener-

gy in the superconductor changes due to application of a
strain field. For systems with inversion symmetry, and in
the hydrodynamic limit, possible electric field terms, that
might contribute to the sound attenuation, vanish.
Consequently, we do not consider them. The energy is
given by Eq. (2), and therefore we may write

When a sound wave passes through a metal, quasiparti-
cle energies are modified by the strain associated with the
wave. The resulting deviation of the quasiparticle distri-
bution from its local equilibrium value gives rise to a
nonequilibrium stress, which leads to dissipation. The
basic physics of the process has been discussed at length
by Pippard ' ' and by Kadanoff and Pippard, and we
shall follow their approach. A discussion of the micro-
scopic basis of the approach has been given recently by
Khan and Allen. All experiments on ultrasonic at-
tenuation in heavy-fermion superconductors that have
been performed to date appear to have been in the hydro-
dynamic regime, since the attenuation varies as ~, where
m is the angular frequency of the sound. Consequently,
we may adopt the simplified approach used by Kadanoff
and Pippard, and consider the response of the metal to
a homogeneous strain. For long wavelength sound
waves, the normal and superfluid velocities are essentially
equal, and therefore one does not have to allow in the ki-
netic equation for the shift of the quasiparticle energy
due to superfluid velocity, which would give rise to
viscous effects usually described in terms of the sound
viscosity g3.

z Other second viscosities are much
smaller than g3 by factor of order (T/EF) or (T/EF),
and therefore we have also neglected terms that lead to
them. The Boltzmann equation for this situation is

Bnp /Bt =(Bnp/Bt)„s. Since the local equilibrium dis-
tribution function is simply the Fermi function, the time
dependence of n p, has two sources —the variation of the
quasiparticle energy and the variation of the temperature.
The latter effect is of order T/EF compared with the
former, and we shall neglect it. Therefore, the
Boltzmann equation becomes

physics of this process is closely related to that of gap re-
laxation in ordinary superconductors, and inelastic pro-
cesses play an important role. We shall consider these
processes elsewhere, and shall not dwell on them further
here. The deformation potential in the superconductor
is, therefore, simply BE /Bu; =(g /E )D; . The linear-
ized transport equation analogous to Eq. (39) in the case
of thermal conduction is thus

(53)

kp &V4) kp d
p E (l) PE ij ij ii

P P

(54)

The second term on the left-hand side of this equation
corresponds to vertex corrections in the micro"copic cal-
culations. '0'z' Multiplying this equation by g /E and

averaging over angles, we find

&&@&(I—&&'&/& I &)=—,&tt'& J &d;, ';J . (55)

The deformation potential is a function of momentum,
and it has not yet been estimated in detail for heavy-
electron materials. We shall assume that it has the same
dependence on the direction of the momentutn as it does
in an isotropic Fermi liquid, D, =d,"A,;J", where d; is a
quantity that is independent of direction on the Fermi
surface, and A, ,"=iu, p, —

—,'5,". We have neglected contri-
butions to D, proport"ional to 5,", which give rise to the
second, or bulk viscosity. In a normal Fermi liquid with
quasiparticle-quasiparticle scattering the main relaxation
mechanism, the second viscosity (which comes from the
5;J term) is of order (T/Ep) times the shear viscosity
(which comes from the A,; term}. ' In heavy-electron
compounds, when both quasiparticle-quasiparticle and
quasiparticle-impurity scattering occur, the physics is
different, since scattering from impurities has little effect
on the bulk viscosity, but a large one on the shear viscosi-
ty. However, one would still expect the viscosity due to
terms in the deformation potential proportional to 5," to
be small compared with that due to the i(,;i term.

The driving term in Eq. (53} is odd in g, and therefore

ep must be Consequently, the only term in the sum in

(52) that does not vanish on performing the sum is the
one proportional to g g ~ in Eqs. (24)—(27). Equation (53)
may thus be expressed in the form

BE g Bg /6
/

B/b
+ (52)

The relaxation time ~ is a function only of E, and there-
fore it has been taken outside the average in Eq. (55).
One finds

The quantity Bgp/Bu, " gives the strain dependence of
normal-state quasiparticle energy and is the usual defor-
mation potential D,- which occurs in the standard works
on ultrasonic attenuation.

The second term in Eq. (52) is due to the modulation of
the gap by the strain. Since D,. - is typically of order EF,
the second term is of order (b, /EF)B in', /Bu, .j compared
with the first one. It is this term that leads to the
"Landau-Khalatnikov damping" discussed in the context
of heavy fermion systems by Miyake and Varma. The

(u'A, , &

P PE ij ( ) ( 2) ij ij (56)

Next we evaluate the stress resulting from the nonequi-
librium part of the quasiparticle distribution. The stress
produced by a superconducting quasiparticle is minus the
derivative of the quasiparticle energy with respect to the
corresponding strain, and it is therefore equal to the neg-
ative of the deformation potential in the superconductor.



2320 B.ARFI AND C. J. PETHICK 38

Thus the nonequilibrium contribution to the stress is

an',
5n;=. —g D; 4p .

p p p

On substituting Eq. (56) for 4 in Eq. (57), one finds

~~ij lij, kl ~kl

(57)

(58)

2dzz
'9zz, xx =

d
('9xy, xy '9xx, xx )

zx
(63)

In view of the fact that no calculations of the d;; exist for
heavy-electron compounds, we shall calculate the viscosi-
ties relative to their normal state values. These are given
by

where the viscosity tensor q; kI is given by

rj(j k( d(jd——k(4N(0) J dE — rx(E)

x (x;j&k(v'&

( A,jv ') ( Ak(v '&

H(——T/6),
Iij, kl

where

an'—r.(E)
H(T/b )= f dE

0 aE

x & AjAk(v ')

(x,jv '& & Ak(v '&

(1&—&v'&

(64)

9xx,yy 9xx,xx 9xy, xy (61)

The other nonvanishing viscosities are related to them by
the symmetry conditions
Since the deformation potential couples only to the A,;j,
one of the five viscosities may be expressed in terms of
the others, since k;; =0. As our four basic viscosity com-
ponents we shall take q „, q „„„q„,„„and
which determine the attenuation of longitudinal and
transverse wave propagating along the symmetry axis of
the crystal, and in the basal plane. From the condition
A, , =0 and Eq. (59), one sees that

lzx, xx Qyy, xx 9zz, xx+ +d d d

with the help of Eq. (61), the symmetry relations, and the
fact the d» ——d, this may be rewritten as

In Eq. (59), the factor 4 takes into account the two spin
populations and the two branches of the spectrum in the
superconductor.

The viscous contribution to the attenuation of a sound
wave with wave vector q and polarization vector e is
given by

2

A(q&6)= 'gij k(fi)JEkgl
P&s

where c, is the sound velocity of the mode and p is the
mass density.

In applying our results in UPt3 we shall assume that
the symmetry axis of the superconducting state is parallel
to the hexagonal axis of the crystal, a result consistent
with the measured anisotropies of the attenuation of
transverse sound and of H, z.

' In such a case the super-
conducting state in the hexagonal crystal still has hexago-
nal symmetry, while if the axis of the superconducting
state were not aligned along the c axis, it would not.
There are a total of five independent viscosities for a sys-
tem with hexagonal symmetry, 0 which we may take to

Qzz, zz ~ 9xx,xx 9yy, yy ~ 9xy, xy ~ Qxz, xz ~ a Qzz, xx 9zz, yy'
From the hexagonal symmetry it follows that

Here n,j k, is the viscosity in the normal state, and

dQ
~ij ~kl ~ij ~kl

(65)

(66)

If the normal state viscosity corresponded to that for an
isotropic solid, one would have

N
lij, kl 15 l~ij ~k! (67)

where g is the usual viscosity. Generally in anisotropic
solids, the viscosity coeScients will be proportional to
d;jdk(, and therefore measurement of the viscosity
coeScients in the normal state enables one to determine
the relative magnitudes of the deformation potential
coeScients, d; ..

We turn now to the numerical calculations. In the Ap-
pendix we give expression for the various integrals re-
quired in the calculations. First we show in Figs. 8-10,
the viscosities relative to their normal state values for the
same states and for the same phase shifts as we used in
the calculation of the thermal conductivity in the previ-
ous section. A significant feature is that vertex correc-
tions reflected in the second term in Eq. (65) are impor-
tant for longitudinal disturbances (i =j, k =I), but van-
ish for transverse ones, since (A,; v ) vanishes for i&j.
At small 5, vertex corrections play little role, since they
vanish in the normal state, but for T «6 they can be
significant. For example, for the axial state one finds that
vertex corrections increase the viscosities g„and g „„„
by a factor of 1.5 for T/5~0. The corresponding fac-
tors for the polar state are 2 for g „and —,", for g„„
We, now turn to the temperature dependence, and first
discuss properties for T« h. In the axial state,
q~zz ——2g~ and q „=g /4 for 6N &&m/2. The
latter result holds also for 5(v =n. /2, and as we shall show
in a later paper, for any other phase shift. At low tem-
peratures the qualitative behaviors of the reduced viscosi-
ties, H( T/6 ), are easily understood in terms of the node
structure of the gap and the energy dependence of the re-
laxation time. For example, in the axial state at low tem-
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FIG. 8. Components of the viscosity tensor relative to their
normal state values for the axial state for the cases of small

phase shifts and for resonant scattering. The curves on the
figures labeled by ij refer to the viscosity g;J;,.

FIG. 10. Same as Fig. 8 but for the d-wave state.
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FIG. 9. Same as Fig. 8 but for the polar state.

perature, thermally excited quasiparticles have momenta
predominantly along the direction of the hexagonal axis,
where the nodes of the gap lie, and consequently the larg-
est components of the viscosity are g
and g„„„.The two latter components are not shown ex-

plicitly, but they are related to the ones we show by the
symmetry relations discussed earlier. All other corn-
ponents are smaller by a factor at least of order (T/b, ),
since for thermally excited quasiparticles A,„=—', and

= ——,', while all others A,
;~

are of order T/b.
From Eq. (65) one then sees that H„„„„=H /4,
H =H~„/2, and H„„z H»». The r——esults for
5&——m /2 are always smaller than those for 5N « n/2, by.
a factor of order

~ g ( T)
~

. Similar comments apply to
the polar and d-wave states, except that the largest com-
ponents of the viscosity are rI„~, ri»„„, g„„
and gzyzy The corresponding ratios of the reduced
viscosities are given for arbitrary phase shifts by

gg &g )$ gg, gg & zy, zy 4 zz, zz zz, zz zz, zz s

H»~~ ——
,",H~„. For 5~—&&n./2, H„=—,

' for T/b, ~O.
The low-temperature limits of these components of the
viscosity are exactly the same for the d-wave state as for
the polar state. This is a consequence of the fact that the
low-temperature properties of both states are dominated
by quasiparticles close to the equatorial nodal line on the
Fermi surface.

To predict the temperature dependence of the ultrason-
ic attenuation, we use the expression for the temperature
dependence of the gap already used to predict the tem-
perature dependence of the thermal conductivity. In
Figs. 11 and 12, we show the ultrasonic attenuation
coeScients in the superconducting state normalized to
their values at T, as functions of T/T, for the axial p-
wave state for very small phase shifts 5N «m. /2 and for
5& ——m. /2. In Figs. 13 and 14, the same quantities are
plotted for the polar p-wave state, and in Figs. 1S and 16
for the d-wave state. For 5N =m. /2, in the ease of the axi-
al state, one sees that a „/a&~ l for T~0.75T, . This
feature can be understood as being due to the fact that in
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to their normal state values at T, for the axial state for the case
of a very small phase shift (5& && m/2).

FIG. 13. Same as Fig. 11 but for the polar state.

the axial state the relaxation time at energies of the order
of the maximum gap or less is significantly greater than
in the normal state. For small values of 6, this increase
in the relaxation time more than compensates for the
reduction in the quasiparticle velocity in the expression
for a, and consequently a„„exceeds its norma1-state
value. The other components of the viscosity that we
show all fg11 as T decreases below T, . This is due to the
fact that, while the largest contributions to a„„come
from quasiparticles moving in directions close to the po-
lar axis, which are least affected by the gap in the quasi-
particle spectrum, the maximum contribution to the oth-
er components come from quasiparticles moving at an
angle to the polar axis, and these are more strongly
affected by the gap. For other superconducting states,
the relaxation time is never much larger than the
normal-state value, and as a result the components of the
attenuation decrease with increasing h. The results in
the case of the polar and d-wave states are very similar to

those obtained allowing for finite width of the quasiparti-
cle states.

We now comment briefly on the experimental results.
Shivaram et al. measured the attenuation of transverse
sound in Upt3 with the propagation vector q along the b
axis in the basal plane of the hexagonal structure. They
found that when the polarization vector e is along the a
axis the attenuation varies roughly linearly with tempera-
ture between T=35 and 400 mK, and when e is along the
c axis the temperature dependence of the attenuation is
approximately quadratic. Taking the z direction as the c
axis, we see that our results, in the case of both polar and
d-wave states, for a„„and a„,„, agree qualitatively
with the experimental ones for most of the temperature
region between 0 and T, . For the longitudinal sound at-
tenuation the experimental results obtained by different
groups ' do not agree, and consequently one cannot
make a sensible comparison between theoretical and ex-
perimental results. In the case of longitudinal sound, or-
der parameter fluctuations may play an important role.
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FIG. 12. Same as Fig. 11 but for resonant scattering
(5„=~y2). FIG. 14. Same as Fig. 12 but for the polar state.
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V. CONCLUSION

1.0

Our calculations show clearly the very different behav-
iors for the relaxation time and transport coefficients ex-
pected for the small phase shifts in the normal state, and
for resonant scattering. The results confirm in detail the
earlier conclusions of Ref. 8.

In our work the scattering amplitude was calculated
neglecting the width of intermediate states in the scatter-
ing process. Comparison of our calculations with field-
theoretic ones shows that this is a good approximation
for T/T, & 0. 1 for a pair-breaking parameter
A'/[~~5( T =0)]5 10 ~, the range of values for which de-

tailed calculations have been performed.
We have presented detailed calculations of the anisot-

ropy of the thermal conductivity, and for comparison
with these results it would be valuable to have measure-
ments of the anisotropy for one particular specimen, at
least for specimens taken from a single ingot.

The experimentally observed behaviors of the thermal
conductivity and the ultrasonic attenuation cannot be un-

derstood on the basis of the calculations for small

normal-state phase shifts. However, for 5z-m. /2, the
theoretical results exhibit a fall-off with decreasing tem-
perature, as is found experimentally. The measured ul-
trasonic attenuation of transverse waves in Upt3 (Ref. 2)
is in qualitative agreement with the calculations for states
with a nodal line around the equator of the Fermi sur-
face, a result previously pointed out by Schmitt-Rink
et al. "

In this paper we shall not make detailed comparisons
between theory and experiment, but shall defer the dis-
cussion until we consider the calculations for general
phase shifts. These calculations reveal a number of unex-
pected features of scattering processes for intermediate
phase shifts which we shall discuss in a future paper.

One general point is that the theoretical results for the
transport coefficients for the polar and d-wave states are
qualitatively very similar, except that for the d-wave state
the characteristic temperature that enters is twice the
maximum gap, while for the polar state it is just the max-
imum gap.

In the calculations we have assumed the Fermi surface
to be spherical. Also in the calculations of the ultrasonic
attenuation, we have assumed the simplest possible form
for the deformation potential. The formal transport
theory is not crucially dependent on these assumptions,
and calculations for more realistic Fermi surfaces and de-
formation potentials may be carried out straightforward-
ly, at the expense only of more numerical work.

In the calculation of the ultrasonic attenuation we did
not estimate the contribution due to order-parameter re-
laxation and possible collective modes of the gap. '

Detailed calculations of this need to be carried out, allow-
ing for the different roles elastic and inelastic scattering
processes play in relaxation the order parameter.
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APPENDIX

Here we give results for the angular integrals required
in the calculation of the transport coefficients. These are
(1), g(E), (u ), (u p;), (A;JV ), and (A;~u ). The
integrals involving p; and A,; may be expressed in terms
of the basic integrals

02
I„=(u p") (n=0, 1, or2), (A1)

0.0
0.0 0.2 0.4 0.6 0.8 1.0

where p is shorthand notation for p2. The integrals in
the thermal conductivity are

FIG. 16. Same as Fig. 12 but for the d-wave state. and

( u p„)= ( u p„)= ,' (I I ), ——(A2)
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(u 'p,') =I, . (A3) TABLE I. Coefficients 6;,. and c;,.

For the components of the viscosity that we evaluate, we
need only the integrals (u A, ; ) and (u A, ,J. ), which may
be expressed as

(A4}

and

ZZ

XZ

xy

b(0)

1

3
1

6

6(2)

1

2

(0)

1

9
11
72

C(2)

2
3
5
12

1

2
1

4

(4)

3
8

1

2
1

8

(A5)

when the coefficients b; and c;. are shown Table I.
The integrals (1), g ~

[Eq. (2S)], and I2„have the
following forms.
Axial state: 2

(A13)

/g(x) /'=
r

1+x
—,'x ln

2 1 —x

2

x&1

(A6)

( 2) TTX

4
3

( 2 2) TTX

16

(A14)

(A15)

~

g(x)
~

2=
—,'x ln x)1 (A7}

5

( 2 4) TTX

32
(A16)

(1)=—ln
1+x
1 —x

(u 2) =—,'+ (x2 —1)ln
4x

(u 2p2) = —,'+ —,'(x' —1)— (x' —1)»
16x 1 —x

(AS)

(A9}

Forx &1:
'2

~ g (x)
~

= x arcsin—1

x

1(1)=x arcsin —,
x

(u 2) =—'(1 ——')'/ +—arcsin —,

(A17)

(Al g)

(A19)

(V2p4) = —,'+ —,', (x —1)(—,'—x )

(A 10) 2
'p') =-,' — +1

1/2
x x . 1

1 —— + arcsin —,
2 8 x

(x —1) ln
1

32x 1 —x

Polar state.
For x &1:

'2 r

Trx 1+(1—x )'
+ xln

2

(Al 1)
4 2

( 2 4) X X 1

16 24 6

x' . 1
arcsin —.

16 x

' 1/2
1

(A20)

(A21)

(A12}
d-waue state.

For x &1:

and

2

'+
1'2 ( — +x

0 P2 (
4 2+x 2/4)1/2

2

dp
2/4)1/2 ~ (

2 4 2/4)1/2

'2

(A22)

(A23)

I2. =(u p )=—f + f dpp "(p p+x2/4)'/2, — (A24)

where
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and

p
1

[ 1 ( 1 x 2)1/2]1/2
2

[ 1 ~ ( 1 x 2)1/2]1/21
2

and

(o 2 2n) J d 2n( 4 2+ 2/4)1/2

(A27)

Forx ) 1:
2

1 dp,

0 (p4 @2+ 2/4)1/2

0 (
4 @2+x2/4)1/2

'2

(A25)

(A26)

Analytic results can be obtained in a number of limiting
cases. For x ~ ac, g (x) tends to unity, and I2„ tends to
1/(2n +1). For x =1, I0=(2&2—1)/6=0. 304,
I2 ——(1+&2)/15 =0.160, and I4 (6+——1/2)/70=0. 105.

Irng vanishes for x &1, and for x =1—e where e is
infinitesimal, Img = —sr/2 = —1.110. For x «1, the
leading terms are the same as for the polar state, but with
the expressions evaluated for an argument y =2x. Thus
( 1 ) =m'/4, I0 —srx /8, I2 nx /——128, and I4 ——m.x /1024
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