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X-ray and neutron scattering from rough surfaces
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The scattering of x rays and neutrons from rough surfaces is calculated. It is split into specular
reflection and diffuse scattering terms. These are calculated in the first Born approximation, and ex-
plicit expressions are given for surfaces whose roughness can be described as self-affine over finite
length scales. Expressions are also given for scattering from liquid surfaces, where it is shown that
"specular" reflections only exist by virtue of a finite length cutoff to the mean-square height fluctua-
tions. Expressions are also given for the scattering from randomly oriented surfaces, as studied in a
typical small-angle scattering experiment. It is shown how various well-known asymptotic power
laws in S(q) are obtained from the above theory. The distorted-wave Born approximation is next
used to treat the case where the scattering is large (e.g., near the critical angle for total external
reflection), and its limits of validity are discussed. Finally, the theory is compared with experimen-
tal results on x-ray scattering from a polished Pyrex glass surface.

I. INTRODUCTION

The scattering of radiation by surfaces or interfaces
possessing roughness has been the object of study of a
large body of work. ' ' Most of this work has been con-
cerned with the scattering of light or radar waves by
rough surfaces, where the interaction between the radia-
tion and the scattering material is very strong. As is well
known, this is a very difficult problem, amounting to
finding approximations for solving the standard equations
of electromagnetic theory, while matching boundary con-
ditions over a random surface. It is known that the
reflection of x rays from surfaces yields information
about surface roughness and the same is true for the
analogous case of neutrons. In this case, we are quite
often in the weakly interacting approximation. Thus, one
may think of the Born approximation as the starting
point to discuss the scattering. The wavelength of such
radiation (I—8 A) enables one to study microscopic de-
tails of the roughness on comparable length scales. Many
experiments to date have reported on the specularly
reflected component of the scattering and this component
has usually been analyzed as the Fresnel reflectivity mul-

tiplied by a "Debye-%aller factor" from which the
mean-square surface roughness can be deduced. ' '
There has been less experimental or theoretical work to
date on the diffuse (nonspecular) component of the
scattering which is related to the height-height correla-
tion function of the rough surface. It turns out that an
estimate of the diffuse scattering is important even in es-
timating the specular reflectivity when the latter becomes
small, since the diffuse scattering becomes comparable to
or greater than the specular, at large angles and finite
resolution.

On the other hand, there has been a large body of

parallel work discussing the small-angle scattering from
systems which are homogeneous except for possessing
internal or external surfaces. This has been done within
the Born approximation and, for the case where the sur-
faces are smooth (on the scale of the inverse of the wave-
vector transfer q), yields the well-known Debye-Porod

q law for the asymptotic form of the scattering. Re-
cently, the Debye-Porod law has been extended (for
scattering from systems with randomly oriented surfaces)
to the case of scattering from fractal or self-affine sur-
faces, each yielding a characteristic asymptotic power
law in q.

The plan of the paper is as follows: In Sec. II, we shall
use the Born approximation to discuss scattering from a
single rough surface. We shall show how the scattering
splits up naturally into a specular and diffuse part. The
explicit expressions for the diffuse scattering from single
solid and liquid surfaces are derived for use in analyzing
experimental data. In Sec. III, we show how randomly
averaging over all directions yields well known and previ-
ously derived asymptotic power laws for specific kinds of
roughness. The Born approximation breaks down as we
approach the regime of total reflection, however, and
thus, in Sec. IV, we discuss the use of the distorted-wave
Born approximation (DWBA) to treat the problem. In
this method, one exploits the fact that the actual rough
surface represents a small perturbation from the smooth
surface, for which the exact solution is known from stan-
dard Fresnel theory. One may therefore use the exact
eigenfunctions for the case of the smooth surface as basis
functions for carrying out the perturbation theory. The
DWBA yields an expression for the specular reflectivity
which is very similar to a previously derived expression
for the latter, ' provided q, o does not become &&1,
where o is the root-mean-square (rms) surface roughness
and q, is the specular component of the wave-vector
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transfer. It also yields a simple modification for the
diffuse scattering given by the Born approximation,
whose most striking effect is to yield a peak in the scatter-
ing, whenever the incident or scattered rays make the
critical angle of incidence with the surface normal. The
DWBA, however, also has its limitations for calculations
of the specular reflectivity and in Sec. IV we also discuss
critically the limits of validity of this approximation.

In Sec. V we present experimental results for the x-ray
specular and diffuse reflectivity from a polished glass sur-
face and an analysis in terms of the model outlined above.
Because synchrotron radiation was employed, we are able
to measure to at least eight orders or magnitude down
from the specular total reflection, which enables one to
make a stringent test of models for both specular and
diffuse scattering.

II. SCATTERING IN THE BORN APPROXIMATION

Let us assume that the material is homogeneous on the
length scale being probed, except for the presence of a
surface. This means that atomic structure will be ig-
nored. This is a valid approximation as long as we are
dealing with small angle scattering where the condition
qa &&1 is satisfied, where q (=4m sin8/A, , 28 being the
scattering angle and A, being the wavelength of the radia-
tion) is the wave-vector transfer and a is a typical length
scale for any inhomogeneity within the solid.

The differential cross section for scattering of the radi-

ation by a system is then given in the Born approxima-
tion by

dQ
I drJI r e- (2 1)

where b is a characteristic scattering length and X is the
number density of the scattering particles. For neutron
scattering, b is the coherent scattering length of the nu-
clei and for x-ray scattering b =(e /mc ), the Thompson
scattering length of the electron. The integrals are over
the volume of the solid and

q=k, —k, , (2.2)

where k& and k2 are the incident and scattered wave vec-
tors, respectively. The volume integrals in Eq. (2.1) may
be transformed into surface integrals to yield

=N b f f (dS A)(dS' A)e
dQ {q A)2 s s

(2.3)

where A is an arbitrary unit vector in space and dS
represents the differential surface vector parallel to the
surface normal. Let us consider a rough surface as indi-
cated schematically in Fig. 1, which has associated with
it an average smooth surface. The latter will be chosen as
the (x,y) plane. Let us choose A to be the unit vector z.
Then Eq. (2.3) may be written as

do Nb f f dx dy f f d xdy'exp( iq, [z—(x, )y z( xy—')]] expI i[q„(x— x')+qy(y——y')]],
0

(2.4)

where So is the surface of the (x,y) plane and z (x,y) (as-
sumed to be single valued) is the height of the surface
above the plane at the coordinates (x,y). We now make
the central assumption that [z(x',y') —z(x,y)] is a
Gaussian random variable whose distribution depends on
the relative coordinates (X, Y) = (x' —x,y' —y).
Specifically we write

{[z(x',y') —z(x,y)] ) =g(X, Y), (2.5)

where the average is taken over all pairs of points on the
surface whose (x,y) coordinates are separated by (X, Y)
(see Fig. 1).

For many isotropic solid surfaces we may represent
g{X,Y) by

X g(X, Y}=g(R)=AR " (0&h (1}, (2.6)

FIG. 1. Schematic of a rough surface. z is the normal to the
surface. x is along the average surface in the specular scattering
plane. 0& is the grazing angle of incidence, 82 is the grazing an-

gle of reflection, and 0, is the grazing angle of refraction. z(P}
is the height of the surface at point P. At specular 0, =0,.

where R —= (X2+ Y }'~ . This kind of roughness is associ-
ated with the self-affine surface defined by Mandelbrot
in terms of fractional Brownian motion. Computer simu-
lations of such surfaces by Voss show remarkable simi-
larity to various kinds of physical surfaces, both micro-
scopic and macroscopic. The exponent determines how
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smooth or jagged (subjectively speaking) such a surface
is. Thus, small values of h produce extremely jagged sur-
faces, while values of h approaching 1 appear to have
"smooth" hills and valleys. h thus determines the texture
of the roughness. For self-af5ne rough surfaces, the prop-
erty of self-similarity peculiar to true fractals does not
appertain, since the z direction scales differently to the
x,y directions. At large enough distances the surface
looks flat, since

I
z(R) —z(0)

I
/R ~0 as R ~~, but at

length scales &&Ro, where

R g 1/2(1 —h)0= (2.7)

the surface looks like a fractal surface, with surface frac-
tal dimension given by

D, =3—h .

but reflectivities are defined in terms of total intensity.
The angles 0, and 02 represent the angles made with the
average smooth surface by the incident and scattered
beams, respectively (see Fig. 1). Now for elastic scatter-
ing,

qx qyd d

k 0sln82
(2.14)

where ko is the magnitude of the wave vector of the in-
cident radiation. Thus, from Eqs. (2.12)—(2.14}, we get
the specular reflectivity for a smooth surface

IR I2=
q4

Using the definition of the refractive index of the medium

The reader is referred to a discussion of this point by
Alexander. Equation (2.6) represents an idealization, as
the function g(R} diverges at infinity. In practice the
mean-square roughness may saturate at a value 0 for
many reasons, finite size being one such reason. Accord-
ingly we write

n =1 bNA, —l2m, .

Eq. (2.15) can be cast in the form

2
'2

IRI = (1-,")
4sin 8&

(2.16)

(2.17)

g(R)=2(r [1—e ' f' ] (2.9)

which for R &&f has the same form as Eq. (2.6). g is an
effective cutoff length for the roughness of the form given
in Eq. (2.6). The crossover length defined in Eq. (2.7) is
now given by

( +2~ / gh )1/(1 —h1 (2.10)

A. Smooth surfaces

If the surface is completely smooth, g(R) =0, and Eq.
(2.11) yields

NbL„L q,
(2.12)

The delta functions contain the conditions for specular
reflection. The absolute value of the square of the
reflectivity, [defined as (reflected intensity}/(incident in-
tensity}], is obtained as

(2.13)

where dQ is a unit element of solid angle for the scat-
tered beam, and the factor 1/sin8, allows for the fact
that cross sections are defined in terms of incident flux,

Assuming here, that [z(x,y) —z(x', y')] is a Gaussian
random variable, we may write, for an area (L„L} of the
reference surface, from Eq. (2.4)

dcT N b qg(x, 1')/2 i—(q X+q Y)—

10 z

(2.11)

We may now obtain explicit expressions for S( },
defined as the (cross section per unit area surface}l(N b ),
for various models of g (R ).

which is consistent with the large 8 asymptotic limit of
the usual Fresnel theory. In deriving Eq. (2.17) we have
used the fact that ( n —1 }is a very small quantity (typical-
ly —10 }. Equation (2.12) is essentially equivalent to
Porod's law as we shall see in Sec. II. It has not generally
been realized that the Fresnel theory and Porod's law
(both valid for smooth surfaces) are equivalent formula-
tions of the same results for large incident angles.

B. Rough surfaces with uo cutoff

Let us now consider an isotropic rough surface. Equa-
tion (2.11) may be expressed more conveniently in terms
ofq, andq„

(R)/2

q,
' ~

(2.18)

for h =—,', S(q)= Am

( 2+( g /2)2 4)3/2
(2.20)

and

for h =1, S(q)= 4e
Aq4

(2.21)

However, at specular (i.e., when q, =0), Eq. (2.19) can al-
ways be evaluated to yield

where q, —:(q2+q2)'/2. For the case of g(R) given by Eq.
(2.6} (i.e., with no cutoff for the mean-square height devi-
ations}, there is no delta function in q„orqY, i.e., no true
specular component. All of the intensity can be regarded
as diffuse scattering. Equation (2.18) may be written as

—( 3/2) R

q,
' ~

This cannot, in general, be calculated analytically, except
for special cases:
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2trgh( A )
I q)~(s =ol 2+2xh

gz

where

(2.22) 5 I

(a)

g (g) f dye
—(&/2)f

0

Equation (2.22) shows that the asymptotic form of the
disuse scattering at the specular condition has a power-
law form in q, whose exponent is related to the surface
roughness exponent h. This will be true even if there is a
long length-scale cutoff for g (R ).

C. Rough surfaces with cutoff

Let us investigate the effect of using the cutoff form
[Eq. (2.9)] for g (R). Note that by Eq. (2.5),

~~
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g(X, Y)=2(z ) —2(z(X, Y)z(0,0)) . (2.23)

If we write (z )=a, we have, for the height-height
correlation function C(X, Y),
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FIG. 2. Calculated Sd;z(q) as calculated from the equations
given in the text. (a) S(q) vs q, (in A ') for q, =0.01 A
Solid line represents the case where h =0.5, o =7 A, (=7000
4

A; dashed line represents the case with no cutoff; open squares
represent the case where h =0.2, o'=7 A, /=7000 A. (b) &(q)
vs q, (in A '). Solid line represents case where h =0.5, o =7
A, /=7000 A; dashed line represents case where h =0.2, o =7
A, /=7000 A. For longitudinal (q, ) scans, the shape of S(q) is
unaffected by g.

FIG. 3. Calculated intensity vs q„using Eq. (2.33) with
A =0. (a) q, =0.3 A ', (= 1 X10 A, B=0.2 (solid line),
B=0.5 (bold line), B=5.0 (dashed line). Note the variation in
peak-to-tail ratio. (b) q, =0.3 A ', B= 1.0, (= 1 X 10' A (solid

line), (=5 X 10 A (dashed line), (=2X 10 A (bold line). Note
the variation in the central peak width. (c) log-log plot showing
the different values for the limiting slope where B =8,
g=1X10 A, q, =0.2 A ' t)=0. 16 (solid line), q, =0.4 A
g=0.64 (dashed line) (scaled )&15), q, =0.5 A ' g=1.0 (bold
line) (scaled )& 100).
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and using the form chosen in Eq. (2.9}we obtain

C(X y) 2e —(R/() "

Thus, from Eqs. (2.11) and (2.23)

(2.25)

plane). (Let us call this the y direction. ) Then, what is
observed corresponds to

(X 0)/2 —i XI(q„,q, )~fS(q)dq„= fdxe ' '
e

2

—2a2 C(X Y) —i( X+ Y)
(2.30)

(2.26)

Let us write

q C(X, Y)F(q„R)—=e' ' —1. (2.27)

By Eq. (2.25), F~O as R~~. Then, Eq. (2.26} splits
into a specular and diffuse part. S(q) =S, „(q)+Sd;z(q),
where

4n —q'~'
S, „(q)= e ' 5(q„)5(q)2

(2.28a)

and

Sq;e(q)= 2e ' f dRRF(q„R)JO(q„R),2 0
(2.28b)

where

F(q„R)=exp(q,o e '"~~'
) —1. (2.29)

The diffuse component must be evaluated numerically in
general. However, the specular part is seen to simply
multiply the expression for ~R

~

given in Eq. (2.15) by
exp( —q, o }. Figure 2 shows Sd;e(q) for various kinds of
scans in (q„q„)space, for different values of h, for the
case where no cutoff is used and for a case where a cutoff
value of 7000 A is used. It is seen that for large q, the
asymptotic behavior is independent of cutoff. For small

q, values, the Born approximation is invalid. In many

experiments, the scattering is done with the instrumental
resolution very wide in the transverse out-of-plane direc-
tion (in the plane of the surface, out of the scattering

I

2n' —q "/22 " I(1—g/2)
q' q2 v &(rl/2)

(2.32)

"here g=Bq, /2. Again, there is no true specular com-
ponent due to the divergence ofg(R) as R~oo. For ac-
tual experiments on liquids, finite size effects occur in two
ways. One is that g(R) does not diverge but cuts

off

a a
finite value due to the cutoff of very ion~ wavelength sur-
face modes (by gravity or finite depth }. The other is
that the integral in Eq. (2.32) does not extend over all R,
but is cut offby the coherence of the scattering. The dis-
cussion is completely analogous to that given by Dutta
and Sinha ' where it is shown that the dominant effect is
often the second one previously mentioned. The actual
finite size in an x-ray scattering experiment will often be
the coherence length g of the photon beam on the sample
for the scattering geometry in question (typically mic-
rons, projected along the surface, of the sample under
high resolution conditions). Thus, following Dutta and
Sinha, ' we write

D. Liquid surfaces

In the case of liquid surfaces, ' ' or purely two-
dimensional systems, it is well known that, ignoring finite
size effects, the capillary wave fiuctuations cause g(R)
to be given by a logarithmic form

g(R)=A+Bin(R) (R in A). (2.31)

Substituting in Eq. (2.18},we have

A/2 —B /2

q, 0

A/2
S(q)= e * f dRR' "Jo(q„R)e

q, 0

A/2
e ' P 1 g/2)n"' g v@—[(1—g/2);1; q„g2/4n], —

2
(2.33)

where g is defined in Eq. (2.32) and 4 is the Kummer function. Note that q itself is a function of q, .
For q„&1/g,S(q) has the form

2
q,

' (2.34)

For q„»1/g,S(q) reduces to the form given in Eq. (2.32). Figure 3 shows calculations of S(q) from the surface of a
liquid for various values of the parameters B, q„and g.

For the case where the scattering is limited by the gravitational cutoff of the capillary waves, g(R} is given by the
form

g(R) =o (1 Ko(~R)), — (2.35)

where ~ is an inverse cutoff length and Ep is a Bessel function which goes to zero for large values of the argument and



2302 SINHA, SIROTA, GAROFF, AND STANLEY 38

behaves logarithmically [as in Eq. (2.31)] for small values of the argument. In this case there is a truly specular com-
ponent given by Eq. (2.28a) and a diffuse component given by

2 2/2 & /'2&X [&Z]

q, 0
(2.36)

In the limit that q, cr ~0 this reduces to

VTCT

Sd((r(q) =
2 2

q, +v
(2.37)

ly smooth} on a length scale (1/q, i.e., an average
smooth surface can be defined on such length scales. We
may then obtain S(q), by averaging the results in the
preceding section over all directions of q,

and for q, &&a, for all q, S(q}= f fS(q)sinXdXd(((), (3.1)

2m
„ „

2' " I (1—2)/2)

qz qr
with g=q, cr /2

(2.38)

where X and P are the polar angles of the vector q rela-
tive to the local axes as defined in Fig. 1.

For a fixed magnitude of q,

which is equivalent to Eq. (2.32} since the cutoff is ir-
relevant at large q„.

x dqy
sinX dX dP=

cos+

Thus, for a smooth surface, Eq. (2.12) yields

(3.2)

III. SMALL-ANGLE SCATTERING
FROM RANDOMLY ORIENTED ROUGH SURFACES

Small-angle scattering from surfaces is often carried
out in the case where the surfaces in the sample being
studied are randomly oriented with respect to the wave
vector q, as in a powder. The Born approximation is usu-
ally assumed to be valid. In what follows, we assume, as
we did in Sec. II, that q is large enough so that (a) the
scattering is weak and the Born approximation is valid
and that (b} the surfaces are locally plat (but not necessari-

I

g(q)= (3.3)

which is Porod's law. [We note that from the expres-
sion Eq. (2.3) for do /1 0, that the scattering is the same
whether the incident beam impinges on the surface from
inside or outside the medium. Thus, the range of integra-
tion in Eq. (3.1) for X is O~n instead of 0 +n /2—]For.a
surface roughness characterized by a g(R) function [Eq.
(2.5)] given by either Eq. (2.6) or (2.9), we have by Eq.
(2.18),

g(q)= f dX f dR Re ~"-'2's( )r J (qR 'nX)
q o cos P

f f dRR "' J [qR(1 —y )' ].
q —1 y 0

(3.4)

We may change variable in the argument of the Bessel function and explicitly use Eq. (2.6) to obtain in the case where

we neglect a cutoff for the roughness,

S(q)=,f ' "y f "R dR'e ~"' '""'"'"J[R (1—y')'"]
q' — y' 0

(3.5)

We now substitute for the variable y, the variable y'=q ' "y to obtain

1 —h dg( )
+ y dR R e

—(y') (R') "l2J [R [1 ( )2/ 2 —2h]1/2)

q —p y 0
e 0

—y q (3.6)

Now we recognize that in this integral, the main contribution will arise from small values of y'. Accordingly, as q be-
comes asymptotically large, the integral will tend to

I

g(q),
„

f+"dy f "dR' e ()')()t) ~2J (R'}.q"" -- '
~ y" (3.7)
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S(q)= A, /q +Az/q +", (3.8)

On the other hand, for smaller values of q, Eq. (3.5)

shows that S(q)-q . This is consistent with the fact
that a self-affine surface always looks smooth on length
scales »Ro, where Ro is defined in Eq. (2.7). Thus, we

may write Eq. (3.4) as

and neutrons, obey everywhere the stationary wave equa-
tion

V f+kof V—Q=O, (4.1)

where g is the wave function (for neutrons} or the
electron-field parallel to the surface for x rays, ko is the
magnitude of the wave vector in free space and

where
V=ko(1 —n ), (4.2)

A i /A2 ——c(RO}' (3.9)

where c is a number of order unity.
Equation (3.8) was derived by Wong2 for self-affine

random surfaces using a completely different method. It
is interesting to note that the orientational averaging
yields a q

i " asymptotic form for S(q) whereas a single
surface yields as asymptotic form q

' "' for diffuse
scattering with q normal to the surface.

A well-known special case arises when the surface is
rough in a very special way corresponding to a self-
similar fractal surface. We shall not discuss this case
here as jt has been discussed elsewhere. ' ' Bale and
Schmidt2 were the first to show that for this case, the

D —6
asymptotic form of S(q)-q ', D, being the fractal di-
mension of the surface. Both this form and S(q) given in

Eq. (3.4) yield an asymptotic power law in q with an ex-
ponent less than 4, the value for smooth surfaces. Thus,
in practice it is difficult to distinguish self-affine from tru-
ly self-similar fractal surfaces. From Eq. (3.4) it may be
seen that the limiting power laws are in fact consistent if
we note the relation [Eq. (2.8}]between h and D, . This
has been already pointed out by Wong.

An interesting question arises as to whether we can dis-
tinguish between a rough surface or interface and a grad-
ed interface, where there is a smooth and continuous de-
crease of scattering density normal to the interface (as at
an interface where there is interdiffusion between the two
media}. The latter will yield an asymptotic S(q} of the
form q ~ f (q) ~, where f(q) is an effective form factor
for the scattering density [p(z)] variations normal to the
surface '

where n is the refractive index given in Eq. (2.16). The
case of TM polarized x rays is not discussed, since it is
known that for grazing incidence it gives the same results
as for TE polarization, because the refractive index differs
from unity by only 1 part in —10 .

Let the plane z =0 define the average smooth surface
So such that

x yz xy =0. (4.3)

%e write

V= V)+ V2

where

(4.4)

V) ——
ko(1 —n }, —a &z &0

(4.5)

where z(x,y) is the height of the actual surface at (x,y).
Vz is regarded as the perturbation on V& due to the
roughness (see Fig. 4). We consider the surface to have

(Since the matrix elements of V have to be bounded, we
formally consider a slab —a &z &0, rather than a semi-
infinite medium, but if it is made thick enough, the
difference can be made negligible. )

k02(1 —n ) for 0 & z & z(x,y) if z(x,y) & 0

Vi — —ko(1 n) f—or z(x,y) &z &0 if z(x,y) &0

0 elsewhere,

(4.6)

f( ) y
dp(z);q, d

—00 z
(3.10)

This will in general cause the scattering at large q to fall
faster than q . On the other hand, lateral roughness of
a sharp interface will cause the asymptotic form of the
scattering to fall slower than q

k'
2

L
ka

k',

IV. DISTORTED-WAVE BORN APPROXIMATION

We now attempt to go beyond the Born approxima-
tion, which will clearly break down when the reflectivity
becomes nearly unity (near the critical angle for total
external reflection), by using perturbation theory on the
exact solution of the wave equation for a smooth surface.
The distorted-wave born approximation (DWBA) has
been previously used by Vineyard and others in dis-
cussions of diffraction from surface structures. X rays po-
larized parallel to the average surface (TE polarization)

k',

FIG. 4. Schematic of a rough surface. The horizontal line is
the average surface (z =0). The shaded regions ate the regions
of perturbation to a smooth surface. The incident wave vectors
kl and —k2, the rejected wave vectors k& and —k2, and the
transmitted wave vectors kl and —k2 are illustrated.
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an extent L„,L„along the x,y directions with periodic
boundary conditions. We assume that the volume is
infinite in the z direction.

Consider a plane wave of wave vector k& incident on

the surface from z & 0. The Fresnel theory yields the ex-
act eigenstate for the smooth surface ( Vz ——0) as

&21 T
I
I&=&@ I

v 14' &+&@ I
v 14 & (4.12)

where )))}, is the pure incoming plane wave (again normal-
ized to unit incident flux)

specular reflection. } The DWBA can be written as an ap-
proximation for the T matrix for scattering between
states k, and k2,

ii))(r) =
I

C[e ' +R(k, )e ' ], z &0
(4.7)

P)(r) = Ce (4.13)

CT(k))e ', z &0,

sinO, —n sinO,
R(k, }=

sin8, +n sin8,

2 sinO&
T(k, ) =

sinO, +n sinO,

(4.8a}

(4.8b)

where k& is the wave vector of the specularly reflected
beam and k', that of the beam transmitted into the medi-

um (see Fig. 4). C is a normalization constant chosen so
that the beam has unit incident jeux. R and T are the
Fresnel reflection and transmission coeScients, respec-
tively:

We assume some absorption in the medium (i.e., a small
imaginary component to n) such that the first matrix ele-
ment is finite when integrated over the semi-infinite medi-
um. In such a case, it is easily shown that

( )t)2
I

V) I
((}) & =

I
C

I
'2ik 0sin8, R ( k, )L„L„

X5k) kz 5k) kz (4.14)

[where 5k k implies a Kronecker delta in keeping with

the periodic boundary conditions along (x,y} which keep
k», k,~, etc. as discrete quantized quantities for the mo-
ment].

The cross section is given in terms of ( 2
I

T
I

1 ) by

where 8, is the grazing angle of incidence, 8, is the corre-
sponding grazing angle of refraction. Note that in gen-
eral n and sinO, can be complex. Snell's law states that

«1&2 I
T Il& I

'
16~z

I
c

I

'
Thus, if Vz

——0, by Eq. (4.14)

(4.15)

cos8, =cos8)/n . (4.9} k()sin 8) I
R(k) )

I
(L„L) 5k k 5k

The critical angle of incidence for total external reflection
is given by 8, =cos '(n), thus, from Eq. (2.16)

8, =bNA, lm . (4.10)

We also define another eigenstate for the smooth surface,
which is a time reuersed state for a beam incident on the
surface with wave vector —k2

(4.16)

5k k ~(2n IL„)5(kz„—k,„),etc. , (4.17)

so that Eq. (4.16) may be written

As L„,L ~ 00, we may switch to the delta-function rep-
resentation

Pz(r) = .

I

C[e ' +R'(kz)e ' ], zp0
(4.11)

=(L„L)kosin 8, 1R(k))1 5(q„)5(q ), (4.18}

CT'(k))e ', z &0,

where k2 is the incident wave vector which is specularly
reflected as kz, and kz is the wave vector in the medium
which comes towards the surface and combines with
wave kz to produce the time reversed wave kz. (We do
not necessarily assume here that k& and k2 are related by

I

where q is defined in Eq. (2.2}. As in Sec. II, we see that
this is simply the Fresnel specular reflection, expressed as
a cross section, as may be seen by writing the reflectivity
using Eqs. (2.13) and (2.14).

We now turn to an evaluation of the matrix element
( gz I Vz I g, ) in Eq. (4.12). Using Eqs. (4.7) and (4.11) we
obtain,

&@zI VzIli)&= IC I
ko(1 " )[F (q)+R(kz)F (q))+R(k))F ( q) z+(Rzk)R(k ) )F(q3)+T(k )Tz(k )F)(qi)]

(4.19)

where

F&(a.)=II dx dy J ' dze
0

i
d d

—i z(z,y) —„)
S0z(x,P) & 0

z

(4.20a)
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F (K)= f f dx dy(e * ' —1)e
Sp z(x,y) &0

z

(4.20b)

In Eq. (4.19) the wave vectors are defined as follows:

q=k2 —k, ,

q, =k,'-k, =q-k, +k,',
q, =k,—k', =q —k', +k, ,

q3
——k2 —k& ——q —k&+ k) —k2+ k2,

q~ =kz-kI

(4.21)

q, is the wave-vector transfer in the medium. For specu-
lar reflection with 8i & H„q,is essentially purely imagi-

nary. It is zero at 8=8, and increases with a small imag-

inary component (corresponding to attenuation) beyond

8, . For 8»H„qand q, are essentially equal. Note that

by the de6nitions of these vectors

C(x,y) q1(x,y) 02(x,y) ~3(x,y) Qt (x,y)

( =0 at specular), (4.22}

q2,
———q„(=0at specular}, q3

e
—z 2/2~2

w(z)=
(r(2n )'

(4.25)

We note that in general, w (z}need not be symmetric in z.
If one is only interested in weak specular scattering from
a rough surface, or the case of a smooth but graded inter-
face, w (z) can be written in terms of the average density:

I

is a fluctuating quantity,

& I
~+B I'&=

I
~+&B& I'+[&BB'&—

I
&B& I'] .

(4.23)

The first term on the right yields the specular reflection,
and the second term yields the diffuse scattering. We
need to evaluate the quantities &F (K)& and &F (K}& to
obtain the specular term. We define w(z) to be the height
distribution of the surface, with the average surface
(z =0) chosen such that

ZWZ = ZWZ (4.24)
0 —ce

For a Gaussian random surface

Equations (4.14) and (4.19} have to be summed and
substituted in Eq. (4.15} and finally a configurational
average over the random rough surface has to be carried
out. In evaluating this average, we use the result that if B

I

w(z)= dp(z) 1

dz pbuu

Using Eq. (4.20) we can now write

(4.26)

(F (z))= JI dedy f dzw(z)(e ' —l)e * z = L,LzS, e5, e[))' (z)—z],
Kz SP 0 z

&F (K) & = L,Ly5„05„0[II((K)——,'],
"z

where

(z)= I dz w(z)e
'"**

zzd ))' (z)= f dz w(z)e
0 —00

For the case when z (x,y) is a Gaussian random variable with standard deviation o, we can write

—aa/2
&F (K) & = — (L„L)5„Q$„0{—'[e ' —1] iK, cr9'(K cr —)I,

Z

2

&F (K)&=
' (L„L}5„+„OI) [e * —1]+iK,oP(K,a)J, '

z

where

(4.27)

(4.28)

„k-i
2~ 1/2 ~ (2k 1)(l

The K.ronecker deltas yield the specular condition as before, we note that at specular, by the definitions of Eq. (4.21},

q, =q2 ——0 and q3
———q, so that

&F+(K) & = &F+( —K) &' .

Substituting in Eq. (4.15), we finally obtain

(4.29)
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der (k„k2)
spec

(L,L )
5k k 5k k 2kosin&iR (ki )

1x ' Zx ly' 2y

2 2/2 ( t)2 2g2
(1—e ' )[1—R (k, )]+,(1—e * )T (k, )

i2oR(k, )
+ia I V(q, t7 )[1+R (ki)]—V((q,') o )T (ki)j

(4.30)

where we have defined

q, =4ko(1 —n ) . (4.31)

(q, corresponds to q, at the critical angle 0, at specular reflection. ) If we recognize that at specular q, =2kosin8, and
use the delta-function representation, Eq. (4.30) can be slightly simplified to yield

(k„k2)=(L„L)5(q„)5(q )kosin 8i
~
R(k~ )

~

(4.32)

which is to be compared with Eq. (4.18) for the sinooth surface. The specular reflectivity for the rough surface is now
given by

2
o /2 T2 —( ')' 2r2

R(k, )=R(ki) — (1—e ' )[1—R (k,)]+,(1—e
4 2q,' '

2q, q,
'

i2oR(ki) io+ i + [P(q, o )[1+R (ki)]—9'((q,') o )T (k, )]
(2m )'~ q,

(4.33)

Note that R(k, ) depends only on the optical constants
and on o. Expanding the Gaussians in Eq. (4.33) for
small values of q, and q, and using identities relating 8,
T, q„and q,', we obtain a result consistent with

1~2

)
R(ki)

)
=

(
R(ki)

(

2e ' * (q, &q, ) (4.34)

to order q„assuming that q, o. is not large. This has been
obtained previously by Nevot and Croce using a different
method. ' Figure 5 compares calculations using the Born
approximation [Eq. (2.28a)], the DWBA [Eq. (4.33)] and
the "qq, "expansion [Eq. (4.34)], for cr = 8 A.

We can see that for q, o &1, the DWBA [Eq. (4.33)]
and Eq. (4.34) agree well as they should, but the Born ap-
proximation [Eq. (2.28a)] is clearly wrong, as it diverges
instead of saturating at total reflection. On the other
hand, for q, o »1, Eq. (4.34) and the Born approxima-
tion agree very well, while the DWBA [Eq. (4.33)] yields
too large a value for the specular reflectivity. This is be-
cause the Fresnel eigenstates, which form the basis states
for the perturbation theory, are in this regime very far
from being a good approximation to the eigenstates of the
system. In this case, however, the Born approximation is
satisfactory, and being far away from the critical angle,
Eq. (4.34) is equivalent. Thus, if would appear that Eq.
(4.34) is a good crossover forin, which matches both the
DWBA and the Born approximation in their respective
regimes of validity.

Secondly, a rough surface should yield for q, &q,
~

R
~

&1 due to scattering losses, as is seen experimen-
tally, whereas the DWBA does not correctly show this.

t

+
+

~~
~~

I
K -8

Cl

Ql0
-12

0.0 0.25

&z(A ')
0.5

FIG. 5. The computed reflectivity of Pyrex at A, =1.46 A
0

with o =8 A, using the Born approximation (crosses), the
DWBA (open squares), and the form given by Eq. (4.34) (solid
line).

I

This is because the scattering is at the unitarity limit and
one should employ the second-order Born approximation
in this regime: Basically a manifestation of the fact that
the optical theorem is not satisfied by the first order Born
approximation. On the other hand, for q, t7 & 1, in this
limit one may go systematically beyond the first-order
Born approximation using methods given (primarily for
treating the case of visible light reflecting from rough sur-
faces) by Brown et al. and Toigo et al. In most of
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these treatments, however, the exponential involving

s,z (x,y} in the matrix elements of Eq. (4.20) is expanded
in terms of ~,z(x,y), leading to expressions involving the
Fourier transform of the height-height correlation func-
tion directly, whereas (as we later show} this is only accu-
rate near the critical angle. Thus, these treatments would
not be accurate for large q, . Since the reflectivity for
large q, is weak, the form given here, which uses the
Born approximation, but does not expand the exponential
would be expected to be more accurate in that regime.
We may summarize the situation in the following way:
For q, o & 1, Eq. (4.34), which represents a good interpo-
lation between the D%BA and the Born approximation
forms given here, is a good approximation to the specular
re6ectivity. For q, & q, when q, cr & 1, an accurate calcu-
lation of the reflectivity involves higher-order Born ap-
proximations as discussed in Refs. 39 and 40 and the

I

form given here [Eq. (4.33) or (4.44)] is less accurate.
One sometimes considers graded, but smooth inter-

faces, where the density is only a function of z. In such
cases, there is no diS'use scattering and one may obtain a
result of the desired degree of accuracy by employing the
"matrix method ' " where the interface is divided into
many uniform thin slabs, which can each be treated ex-
actly. One may reduce a rough surface to a graded inter-
face. However, diffuse scattering information is lost. In
the weak scattering limit, the specular is unaffected by
such an approximation, but in the unitarity scattering
limit, while an exact solution is provided for the graded
interface, it is not valid for a rough surface. '

We expand the case of a general w(z} for small q, o
[W{q,) = W'(q, }],the imaginary terms which effect the
scattering only to second order can be neglected and
thus,

00 —ie,~, ~ w(z) 2 zdz w(z)e * =—,
' — dz q, z

0 0 2
(4.35)

R =R 1 —(1 q, /—q2)'~ q, f dz z —(1—q, /q, ) ' (q,') f dz z

=R 1 —q q,
' z z—00

(4.36)

I
R

I

2= R f dz w(z)e

We only derived the above expression for small q values, however for large q„where q, ~q„this is the result in the
Born approximation3' zo'3 and thus, is the generalization of Eq. (4.34), which is valid in both limits.

Using averages of the following form:

&F&(x)F (ir)&= f f dx dy f f dx'dy'&(e ' ' —1)(e * '" —1)&expI i[z„(x—x—')+sz(y —y')]I,
0

(4.37)
& F (n, )F (n2) & =0,

the difFuse scattering can be calculated from the second term in Eq. {4.23},resulting in a complicated expression which
may be considerably simplified by making the following approximation: We assume that even for z &0, but inside the
actual surface, we may approximate g, (r) and $2(r) by their expressions for z &0 [Eqs. (4.7) and (4.11)]. Since the wave
function and its derivative have to be continuous at z =0, such an approximation is reasonable for q, cr «1, which is
the only regime where we need to go beyond the Born approximation to calculate the diffuse scattering. Thus,

& P2 I Vz I gi & =
I
C

I T(ki)T(k2)ko(1 —n )F(q, ),
where

(4.38)

F(q, )=,f f dx dy(e ' ' —1)e
q So

If we carry out the configurational average, we obtain

I & 6 I
1'z

I @i & I
'=

I
C

I

'
I
T{ki)

I

'
I
T{k2)1'

I
ko{1—n')

I '[&F(q, )F'(q ) & —&F(q, ) &&F'(q, ) &] .

This may be evaluated to yield for the difFuse cross section

(4.39)

(4.40}

ko(1 n'}
I

'—
=(L„L&) I T(ki)

I I
T(k2) I S(q, },

d'ff 16
(4.41)
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where

dXdY e —1 e
So

(4.42)

S(q, ) = f f dX d Y C(X, Y)e (4.43}

13

12c

Q

10
N
C
Q

9c

0.0 0.5
e, (deg)

FIG. 6. Calculation of diffuse scattering in the distorted-
wave Born approximation for rocking curve where 0& and 02 are
varied such that 20 is fixed at 1'. The asymmetry is due to the
area of the illuminated surface decreasing as 01 is increased.
The q~ direction has been integrated over. Parameters are 0.=7
A, h =0.2, (=7000 A, and the optical constants for Pyrex are
given in Sec. V.

Comparison with Eq. (2.26) shows that Eq. (4.41) is iden-
tical with the expression for the scattering in the Born
approximation except for (a) the factors

~
T(k~)

~ ~
T(kz) ~, (b) the use of q,

' instead of q„and (c}
the term ( —1} inside the integrand of Eq. (4.42). This
latter term simply subtracts off a specular part of the
scattering which was not explicitly separated in Eq.
(2.26). Thus, the diffuse scattering in the DWBA is easily
evaluated using T(k) from the Fresnel theory. For large

q„~T
~

=1 and q,'=q, so Eq. (4.41) reduces to the Born
approximation as it should. An interesting effect, howev-
er arises when k& or k2 makes an angle close to 8, with
the surface; since

~
T(k, )

~

or
~

T(kz)
~

then has a max-
imum. The result is that a transverse scan (along q„say)
will have peaks in the diffuse scattering (known as
"Yoneda scattering, " "anotnalous reflections, " or
"angel's wings") whenever 8, or Hz is equal to 8, . This is
illustrated by a calculation shown in Fig. 6, which is the
same calculation for Fig. 2, but now in the DWBA. The
physical origin is the fact that when L9& or 02 ——8„the
electric field at the surface reaches a maximum of twice
the incident field, resulting in greater diffuse scattering.
The symmetry of Eq. (4.41) with respect to k, and k2 is a
manifestation of microscopic reversibility and the re-
ciprocity principle.

An interesting consequence of Eq. (4.42) is that when

q,
' is very small, we may expand the exponential in Eq.

(4.42) to obtain

I

i.e., for a transverse scan (where q, o'«1), the diffuse
scattering directly yields the Fourier transform of the
height-height correlation function of the surface T.his is
not true in general, as has sometimes been assumed.

V. COMPARISON WITH EXPERIMENT

while for the diffuse scattering,

I AQ do.
diff 0

diff

(5.2)

where A is the area of the beam.
We now present x-ray data taken on a rough piece of

polished glass and show how the scattering can be ana-
lyzed in terms of the above formalism. The Pyrex glass,
obtained from Melles Griot, is 50 mm)&50 mm and 10
mm thick, and was polished to be optically flat to A, l10
(A, =5460 A). Since figure error can make such an experi-
ment diScult, it is important to find a surface which is
macroscopically flat. We measured no observable figure
error, down to 0.0025'. While the character of the sur-
face of this polished glass is not especially interesting in
and of itself, as its roughness is not expected to follow
any fundamental or simple form, we present the data to
show how such measurements can be used to study the
character of roughness. It is also of interest since this
and similar substrates are currently being used for deposi-
tion and wetting experiments on amorphous surfaces.

The experiment was carried out at the National Syn-
chrotron Light Source (NSLS), Exxon beam-line XlOA,
which is on a bending magnet and has a focussing mirror
(at 11 m) midway between the source and the sample (22
m). The beam was defined in the vertical direction using
a double crystal Si(111) monochromator which selected
A, =1.46 A. For Pyrex (1—n =6.3)&10 +i8 5&&10 ).
which gives a critical angle of 0, =0.20'. The vertical
width of the beam was 0.1 mm. which in principle al-
lowed us to measure down to 0, =0.12 with the entire
beam hitting the sample. Below that angle, only a por-
tion of the beam intersects the sample. This can be
corrected for, by measuring the amount transmitted with
the detector in the direct beam at 20=0' and rocking the
sample. Such corrections are tricky and the data can be
complicated if the edge of the sample is not perfectly
smooth. Our analysis is concerned primarily with the

For an experiment done with an incident beam of fixed
width and intensity Io, and where the detector subtends a
solid angle AQ at the sample, the intensity I scattered
into the detector is given as follows: For specular, where
the detector automatically integrates over the 5(q„)5(q~)
factors in the cross section, as discussed in Sec. II,

(5.1)
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weak scattering regime and so the details of the scatter-
ing associated with the critical angle are not concentrated
on here. The incident beam was defined in the out-of-
plane (horizontal) direction by slits, and was 0.2 mm wide
at the sample with an incident divergence of -0.06 .

Two analyzer configurations were used: We used a
triple-bounce Si(111) analyzer crystal in the dispersive
geometry (which becomes nondispersive on reflection),
which gave a profile in the main beam with FWHM of
0.0025' to put an upper limit on the figure error of the
surface and also to confirm existence of separate specular
("delta function") and diffuse peaks at that resolution.
For most of the measurements, no analyzer crystal was
used. Instead, we used a pair of slits 0.8 mm wide, 960
mm from the sample, giving us a main beam profile with
FWHM of 0.05'. The out-of-plane slits after the sample
were effectively left open, so the diffuse scattering was in-
tegrated over one direction parallel to the surface. We
found that the lower resolution setup was advantageous
for two reasons. Firstly, because we were interested in

measuring diffuse scattering, the scattered intensity was
proportional to the resolution width. Secondly, we found
that both the mosaic of the sample and the angular reso-
lution were better than the reproducible stepsize of the
spectrometer. Thus, lower resolution insured being able
to obtain the full peak intensity of the specular com-
ponent.

To measure the scattering along q„scans were per-
formed under the specular condition 8& ——02 and also un-
der the condition where 8, =8&he where c is a small con-
stant (usually 0.03') but large enough so that none of the
delta-function specular scattering was encountered. This
yielded a measure of the diffuse scattering intensity near
q„=0as a function of q, . The specular to diffuse ratio
was 135 at 28= 1', 30 at 28=2', and 3.5 at 28=4'. Rock-
ing scans were done at constant values of 28=8t+8z
which are essentially equivalent to q„scans at constant

q, . Dark counts were subtracted from the data and the
background, both measured with no sample, and the base
line of transverse scans was found to be negligible.

I I I

CO

4
NcI

-6
o

Cl0

2.5
2e (deg}

-0.2
e -Offset (deg}

0.2

I
j

I I I I —3

2 3 4 5
2e (deg)

I

-0.2 0 0.2
e -Offset (deg)

FIG. 7. Measured x-ray intensity vs angle for polished Pyrex surface. Data is represented by squares and fits by solid lines. Sta-
tistical errors are approximately the size of the squares. Intensities are on arbitrary logarithmic scales. Fits yielded the parameters
cr=7.6 A, )=7000 A, and h =0.2. (a) Specular reflection with diffuse subtracted out. (b) Diffuse scattering near specular
8&

——82+0.03 . (28 is a log scale. ) {c),(d) Transverse {rocking) scans; diffuse and specular are convolved with resolution. Intensity vs
8 offset (8& —82) at (c) 28=2' and (d) 28=4. The systematic discrepancies between the fits and the data show that the roughness of
this polished glass is not exactly given by the simple expression used.
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The specular, diffuse-near-specular (8, =Oz+ c ) and
transverse scans shown in Fig. 7, were fit self-consistently
and convoluted with the resolution function, using the
forms in Eqs. (4.34), (4.41), and (2.9), for a Gaussian sur-
face whose roughness is power law with a cutoff. To get
a correct measure of the diffuse scattering appearing in
the specular scan it is necessary to extrapolate the diffuse
near specular measured at finite q„to q„=0using the
transverse lineshapes. (The high-resolution scans showed
that it was not singular. ) In practice, this did not
significantly affect the results for the rms roughness
determined to be 0.=7.6%0.2 A. The diffuse-near-
specular scan was most sensitive to the exponent
h =0.2+0.02 and the transverse scans were sensitive to
the cutoff (=7000+1000 A. The overall falloff of the
specular appeared to be nearly Gaussian over )7 orders
of magnitude, but began to diverge at larger angles, im-

plying that w(z) is not exactly Gaussian. The diffuse lon-
gitudinal scan fits surprisingly well. The data for the
transverse scans does not fit extremely well. However,
this is not unexpected since that scan would be sensitive
to the precise form of the roughness, and we do not ex-
pect such a piece of polished glass to have a very simple
spectral density of roughness.

p(r )=pp(r ) + 5(r r; ), — (6.1)

where po(r) is the density of a uniform solid possessing
the rough surface and r,. are the atomic positions of an
inftnite crystal lattice. Scattering in the Born approxima-
tion then yields that the diffuse scattering due to surface
roughness at wave-vector transfer Q is given by

scattering. Of greater interest may be future experiments
on surfaces or interfaces produced by sputtering, eva-
poration or other growth processes where simple physical
predictions can be tested. We note in passing that high-
resolution difFuse scattering experiments on surfaces of
extreme flatness oler the possibility of examining rough-
ness characteristics to length scales of the order of mi-
crons.

By averaging over random orientations, we have dis-
cussed the connection of these results to those already
well known in the theory of small-angle scattering from
materials with large internal surfaces, including the well
known asymptotic power-law forms for S(q). It is also
easy to show that, at least in the Born approximation, the
method can be used to discuss scattering at and near
truncation rods from crystalline surfaces. This is be-
cause the density of a crystalline solid can be written as

VI. CONCLUSION
S lsd(Q)= QSdar(Q G) (6.2)

We have discussed the scattering of x rays and neu-
trons from rough surfaces in both the Born approxima-
tion and the distorted-wave Born approximation. The
expression for the specular reflectivity given by the latter
agrees well with the expression given by Nevot and
Croce ' provided q, cr (1, whereas the Born approxima-
tion is valid for q, o &&1. Below the critical angle for to-
tal external reflection, none of the approximations can ac-
count for reflectivities below unity, caused by losses due
to diffuse scattering. We have also derived an expression
for the specular reflectivity for an arbitrary graded inter-
face in the distorted-wave Born approximation.

The importance of the diffuse scattering has also been
emphasized and expressions for the latter were given in
both the Born and distorted-wave Born approximations.
Explicit expressions have been given for the case where
the surface can be represented as a self-affine random
Gaussian surface, since it is known that such surfaces
can represent real physical solid surfaces rather well. We
also evaluated the case of liquid surfaces where the sur-
face mean-square height fluctuations diverge logarithmic-
ally. We introduced finite length cutoffs in the case of
both self-affine and liquid surfaces, and showed that such
cutoffs lead to the reemergence of the specular
reflections. It is hoped that the expressions given here
may be useful in analyzing the results from real solid and
liquid surfaces and obtaining information regarding the
height-height correlation functions of such surfaces. For
the present, we have illustrated the applicability of the
formalism by studying the diffuse scattering and specular
reflection from an optically polished Pyrex glass surface
and modelling the scattering in terms of a self-aSne sur-
face with a finite cutoff. This amounts simply to a
mathematical description of the surface inferred from the

where G is a reciprocal lattice vector and Sddt(q) is the
result obtained above [Eq. (2.28b)]. We have assumed
that the structure factor of the infinite crystal is a series
of delta functions at the reciprocal lattice vectors and
neglected thermal Debye-Wailer effects. Thus, the
scattering derived in this paper for small q will be repli-
cated at all Q=G+q, and will be apparent at Q values
where the scattering from the bulk is small. The "specu-
lar ridge" (q„=q„=0}is now reflected in rods emanating
from all G vectors in reciprocal space normal to the
physical crystal surface (the so-called "truncation rods").
This is consistent with the results derived by slightly
different methods. Of course, if the roughness is highly
correlated with the atomic arrangements (e g , in the f.or. m
of steps4~) then Eq. (6.1) is invalid and the scattering must
be discussed separately from the case discussed here.
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