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Details are presented of a new many-body theory for deep inelastic neutron scattering (DINS) ex-
periments to measure momentum distributions in quantum fluids and solids. The high-momentum
and energy-transfer scattering law in helium is shown to be a convolution of the impulse approxima-
tion with a final-state broadening function which depends on the scattering phase shifts and the ra-
dial distribution function. The predicted broadening satisfies approximate Y scaling, is neither
Lorentzian nor Gaussian, and obeys the f, ®*, and »* sum rules. The derivation uses a combination
of Liouville perturbation theory, projection superoperators, and semiclassical methods which I term
“hard-core perturbation theory.” A review is presented of the predictions of prior theories for
DINS experiments in relation to the present work. A subsequent paper will present massive numer-
ical predictions and a discussion of DINS experiments on superfluid *He.

I. INTRODUCTION

This paper is the first of two to present details of a re-
cent theory' for deep inelastic neutron scattering (DINS)
experiments in quantum solids and fluids. The present
paper focuses on the many-body formalism including ex-
tensive comparisons with prior work. A subsequent pa-
per? is aimed at experimentalists and presents detailed
numerical predictions for DINS experiments on
superfluid “He. Variations of this theory are also appli-
cable to DINS experiments on many other systems where
momentum distributions are of current interest. These
include normal 3He, solid “He and *He, *He-’He mix-
tures, solid H,, hydrogen in metals, H, intercalated in
graphite, hydrogen bonds, etc. The theory may also be
adapted to nuclear physics problems such as quasielastic
inclusive electron-nucleus scattering. Since completing
this work, there has been spectacular experimental
confirmation of this theory for superfluid *He, to be pub-
lished elsewhere.?

DINS experiments involve neutron scattering at
momentum and energy transfers which are very high
compared with collective behavior. The goal is to mea-
sure the single-particle momentum distribution, n,. This
would critically test our fundamental concepts of quan-
tum many-body systems such as the existence of a Bose
condensate in superfluid “He, a Fermi-surface discon-
tinuity in normal 3He fluid, and the absence of these
singularities in the solid phase. It would test a variety of
many-body calculations by techniques such as correlated
basis functions,* Green’s-function Monte Carlo,” and
path-integral Monte Carlo.® Momentum distributions
are also important in nuclear’ and particle® physics,
where they are studied by analogous deep inelastic exper-
iments.

The theoretical understanding of the scattering law,
S(Q,), at high Q and o is critical to the extraction of n;,
from the experiment. Hohenberg and Platzman® suggest-
ed in 1966 that the impulse approximation (IA) could be
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applied to calculate S(Q,w) for neutron scattering at
sufficiently high-momentum transfers. The IA assumes
that the potential energy due to neighboring particles can
be ignored at sufficiently high kinetic energies. It pre-
dicts a simple relation between S(Q,w) and n,. The
center of the scattering would be at ©=0?/2M, and the
peak width would be proportional to Q times the width of
the momentum distribution. More generally, the IA pre-
dicts that OS(Q,w) is a symmetric function of a single
“scaling” variable, Y=M(w0—Q?/2M)/Q. This result
has been termed “Y scaling,”’ and it has been an espe-
cially important concept in quasielastic inclusive
electron-nucleus scattering.!!

However, in helium and in nuclei the potentials are
steeply repulsive at short distances resulting in significant
broadening of the IA due to the scattering of the recoil-
ing particle from neighboring particles. This broadening
is a “final-state effect”” (FSE), which is the subject of this
paper. If we denote the IA result for QS (Q,w)/M by
F(4(Y), then in several theories the actual scattering law
0S(Q,0)/M =F(Y) is a convolution of a “FSE broaden-
ing function,” Rgg(Y), with F[,(Y). The theories for
FSE can be characterized in the ‘“asymptotic limit”
which may be accurately defined as the broadening of the
IA in the limit of a hard-core short-range potential and
infinite Q. The longer-range part of the potential is as-
sumed to be finite affecting ground-state properties such
as n; and g(r), but not affecting the FSE. In the asymp-
totic limit the FSE should satisfy Y scaling, which implies
that Rgg(Y) will be independent of Q. The broadening
must satisfy the sum rules on S(Q,w). In particular, the
w? (“kinetic energy”) sum rule'? requires that the second
moment of Rgg(Y) should be zero.

The true He-He potential is exponentially repulsive at
short distances, i.e., ¥(r) <e ~%, or equivalently the He-
He cross section decreases as InQ.!'>!t To apply the
asymptotic limit to real experiments on helium at finite
Q, one must use an “effective” Q-dependent hard-core ra-
dius which will decrease as InQ at high Q. This radius

2283 ©1988 The American Physical Society



2284

can be defined as the classical turning point of the poten-
tial for a particle of momentum Q, and it will be dis-
cussed in more detail in Sec. IV. The width of Rgg(Y)
will decrease as InQ at high Q reflecting the behavior of
the He-He cross section.

There have been many theories of FSE in the twenty-
two years since Hohenberg and Platzman’s’ paper.
While a detailed discussion can be found in the original
papers, I will briefly mention those predictions which are
relevant to the present work. Several theories have non-
trivial asymptotic limits; Hohenberg and Platzman® pro-
posed that Rgg(Y) in helium was Lorentzian [asymptotic
limit of Rpg(Y)« Y2 at high | Y |] with width propor-
tional to the He-He cross section; Gersch and Rodri-
guez!® (GR) derived a non-Lorentzian R gg(Y) by includ-
ing the effect of radial distribution function in the ground
state, g(r); Weinstein and Negele'® used Brueckner
theory to derive an asymptotic limit which satisfies Y
scaling without the IA, and they predicted a suppression
of the high-| Y | components of the scattering law com-
pared with the IA; Platzman and Tzoar!’ extended the
Hohenberg-Platzman (HP) theory® to include the asym-
metry due to the real part and the off-energy-shell behav-
ior of the T matrix for He-He scattering at low Q, but
this is negligible in the asymptotic limit; the problem has
also been studied by Kirkpatrick;'® Reiter and Becher!’
derived a Lorentzian final-state broadening for a hard-
sphere system from the Chapman-Enskog equations, but
with the scattering rate corrected by the value of g (r) at
the hard-core radius; Tanatar, Talbot, and Glyde?® have
applied the T-matrix random-phase approxlmatlon
(RPA) to DINS in superfluid *He and normal 3He, which
also predicted an asymptotic limit having Lorentzian tails
at high | Y |. Other theories predict no FSE broadening
in the asymptotic limit: Sears®! has proposed a series ex-
pansion for the FSE using sum rules and moments, but
which suggested that the FSE vanishes at high Q as
0(Q~Y); Stringari® has proposed that alternative Y-
scaling variables could be chosen to correct for final-state
effects, which included the effects of the binding of atoms
in the condensed phase; Glyde?® has used self-consistent
phonon theory for solid *He to predxct that the IA is ac-
curate at Q’s greater than 20 A~!. The problem has also
been studied in the context of quasielastic inclusive
electron-nucleus scattering.?* Rinat®® has provided a crit-
ical review of Sears’! and Stringari’s proposals.?? In
many of these papers,'®2%21:23 the predicted final-state
effects are not a convolution of an Rgg(Y) with an
Fio(Y). While these papers suggest many elements
which may be in a complete theory, one can conclude
that there is at present no theoretical consensus on final-
state effects in momentum distribution experiments.

Most experiments to determine momentum distribu-
tions have been carried out at reactor neutron sources
where the achievable Q’s are less than 10 A ~'. There
have been no systematic comparisons of the various
theories for FSE with experiment. However, the ap-
parent oscillations in the width of S(Q,w) with Q (Refs.
26 and 27) have been correlated with the well established
“hard-sphere glory” oscillations in the He-He cross sec-
tion?® due to quantum statistics. A Bose-condensate frac-
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tion in “He has been inferred from experiments®® using
Q’s in the range from 4 to 7 A 1. Such Q’s are too low
to expect the IA to be valid, and they are too low to ex-
pect most theories for FSE to hold. At these low Q’s the
scattering line shapes are observed to be an asymmetric
function of Y, which is attributed to final-state effects.
The observed scattering is symmetrized about the recoil
energy to remove this asymmetric component. These
symmetrized data are then analyzed for n;. To further
reduce the effect of width oscillations of the FSE with Q,
the inferred n, are averaged over several Q. These two
steps correct for some consequences of the FSE expected
at low Q’s. Such procedures do not utilize a specific
theory for FSE, nor can they be expected to completely
remove FSE from the data. While the inferred values for
the condensate fraction are reasonable and generally ac-
cepted, no well resolved condensate peak is observed.
The data have not been compared with the IA using ab
initio calculations of momentum distributions.“‘6

A new generation of DINS experiments® is in progress
at the new pulsed neutron sources which can be expected
to achieve a much higher Q’s (greater than 20 AN,
Such Qs are sufficiently high to compare with the asymp-
totic limit of the theories for FSE. The goal of the
present paper is to derive a theory for Rgg(Y) in the
asymptotic limit, which can be applied to the high-Q ex-
periments on quantum solids and fluids at pulsed sources
to extract momentum distributions. A successful theory
for the asymptotic limit should suggest extensions to
correct for FSE in low-Q experiments at reactor neutron
sources.

In my view, the essential physics was included in the
1973 work by Gersch and Rodriguez,'> who considered
the effect of spatial correlations and, indeed, the two-
particle density matrix (GR). A simple derivation of the
effect of spatial correlations was provided by Silver and
Reiter,! who carried out a classical trajectory calculation
using Wigner’s quasiclassical approximation (QC). In
both papers, the physics is as follows. Before a neutron
strikes a He atom, its initial position is in the attractive
part of the potential well due to neighboring atoms, and
it is far from the steeply repulsive core of the potential
(see Fig. 1) which is responsible for final-state effects.
After the neutron imparts a high momentum, the recoil-
ing atom travels on almost a straight line until it is scat-
tered from the repulsive core of the potential from neigh-
boring atoms. Rgg(Y) is approximately the Fourier
transform of the probability of no core collisions as a
function of recoil distance. Since there are no collisions
at short recoil distances due to the initial spatial correla-
tions, there should be no high-| Y | (Lorentzian) tails on
Rgs(Y), and the broadening should be narrower than the
Lorentzian broadening theories which correspond to set-
ting g(r)—1.

As I shall show in Sec. V, the QC (Ref. 31) and the GR
(Ref. 15) theories produce a mathematical form for
Rs(Y) involving g (r) which is similar to what I obtain
in the ‘“hard-core perturbation theory” (HCPT) to be
developed below. However, the three theories differ in
the effective classical trajectory to be used in calculating
Rgg(Y), as well as in other important ways. For exam-
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FIG. 1. Plot of the radial distribution function, g(r), for

superfluid “He and the He-He potential, V' (r).

ple, in the QC calculation the cross section for a hard
sphere is 773 instead of 27r, and the recoil momentum is
Q /2 instead of Q.

This paper is the first of two to present details of the
first perturbative calculation' of the final-state correc-
tions in DINS experiments which includes the effect of
the spatial correlations. The present paper presents the
many-body formalism for the derivation of Rgg(Y) using
a combination of Liouville perturbation theory and off-
diagonal projection superoperators, which I term hard-
core perturbation theory (HCPT). While these methods
are somewhat novel, they have a strong theoretical pre-
cedent’2-3* in the perturbative derivation of the
Boltzmann-equation expression for the electrical resistivi-
ty in a metal due to impurity scattering starting from the
Kubo (linear-response) formula for the electrical conduc-
tivity. An analogous procedure will be developed for
S(Q,w) in this paper. The methods are also related to
the Singwi, Tosi, Land, and Sjolander®® (STLS) scheme
for electron correlations, an analogy which will be
developed elsewhere.’® The “purist” might argue that, in
principle, the present results should be obtained via
Green’s-function methods which invoke Ward identities
to relate vertex functions to two-particle density ma-
trices.’” However, I doubt that such a derivation would
add to the physics.

I derive very simple expressions for Rgg(Y) which in-
volve the He-He phase shifts and g (7). These expressions
meet all the requirements for a quantum theory first dis-
cussed by Silver and Reiter.3! They satisfy the f, »?, and
@* sum rules. Moreover, the results have a compelling
physical rationale independent of the details of the
derivations. In order to put these new results into con-
text, I will compare the HCPT theory to most of the pri-
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or theories of DINS experiments including the IA,
Lorentzian broadening (LZ), #-matrix RPA (RPA),
quasiclassical models (QC), Gersch and Rodriguez’s'
many-body cumulant expansion (GR), etc. The expres-
sion of final-state effects in DINS in terms of g(r) and
phase shifts is reminiscent of extended x-ray-absorption
fine structure (EXAFS) (Ref. 38) theory.

Section II introduces the general formalism of super-
operators and Liouville perturbation theory, which has
previously seen important applications in transport
theory. Section III specializes to the derivation of a
HCPT Dyson equation valid in the limit of high Q and w.
Section IV presents a discussion of sum rules, properties
of the ¢ matrix, and the relation to the IA, LZ, and RPA
theories for DINS. In Sec. V, the Dyson equation is
solved by semiclassical methods to arrive at the final ex-
pressions for Rpg(Y). The O(Q~!) corrections to the
theory are discussed along with the relation to the QC
and GR theories. Section VI concludes and discusses the
theory for DINS experiments in quantum solids and
fluids.

In a subsequent paper,’> massive numerical predictions
are presented for DINS experiments in superfluid ‘He.

II. LIOUVILLE PERTURBATION THEORY
AND SUPEROPERATOR FORMALISM

The problem of deriving the Boltzmann-equation ex-
pression for the resistivity starting from the Kubo expres-
sions for the frequency-dependent conductivity in a met-
al, o(w), is in many ways formally analogous to the prob-
lem of evaluating the neutron scattering law, S(Q,w).
One starts with

olw)= fo’”dt eiot—et( piflty(0)e —iflt.y(0)) | (1)

Here v(0) is the velocity operator. A naive expansion of
the time-dependent part of (1) will result in an infinite
number of terms which diverge as inverse powers of
w+ie. A method for infinite-order resummation is essen-
tial. A solution to this problem is to use Liouville pertur-
bation theory and diagonal projection superopera-
tors.32-34

An operator, 0, is composed of sums of products of
creation and annihilation operators with scalars. A “su-
peroperator,” S, acts on an ordinary operator to 1ts right
to create a new operator, according to SO 0. The
Liouville superoperator, L, is defined by | LO=-[A,0]
L can be written as the sum of kinetic, K, plus potential
¥, terms. Then the time evolution of any operator can be
written

O(w)

f «© dt eiwt—steiﬁla(o)e—igt

0

=—O(0) (2)
o—L+ie

which can be expanded as a Dyson equation

O(w)= [6(0)+VO(w)] . (3)

w— K+z

For example, consider the Kubo formula, Eq. (1), with
the velocity operator defined by



2286 RICHARD N. SILVER 38
=3 L @) operators to their right. The first A mdlcates that ATA
T m : acts on an initial operator of the form & } k@i 1o While the

The perturbative expansion of ¥(w) as in Eq. (3) results in
an infinite number of terms which are singular as inverse
powers of w+ie as o—K +ie acts on components of
V¥(w) of the form @ [, .

The neutron scattering law, S(Q,w)
gous to the Kubo formula. That is

, is formally analo-

S(0w)=RE(5%w)p~20)), pAN=Sala,, .
TN s

(5)

The perturbative expansion of 5 %) as in Eq. (3) results
in an infinite number of terms which are singular as in-
verse powers of o Q2/2m +ie as w K +ie acts on
components of V5 %w) of the form al x8x +o- The be-
havior of S(Q,w) as o—Q?%/2m is precisely what is im-
portant to DINS experiments. It is apparent that
methods which have been applied to the perturbative
evaluation of the Kubo formula should also be applicable
to DINS.

The singular terms in the Kubo formula are resummed
by what is known as the ““diagonal projection superopera-
tor” method.3?-3* One argues that only the most singular
terms as ®—O0 in the perturbative expansion of the Kubo
formula need be retamed i.e., those parts of ¥(w) which
have the form @ kﬁk A superoperator, A, is defined
which when acting on any operator O, retains only those
components of the form @ kﬁk which produce the singu-
lar terms, i.e.,

A0=3o0.ala,, 6)
k

where the coefficients O, are scalars. It is “diagonal” be-
cause the arguments of the creation and annihilation
operators in its definition, Eq. (6), are the same. Analo-
gously, for the neutron scattering case one would seek an
“off-diagonal” superoperator for the terms of the form
@,y , o Which are singular as ©—Q?/2m, i.e.,

E 20/( kﬁk +0 (7)

A is a “projection” > superoperator, which means it must
satisfy AA=A and AO(0)=0(0). One defines its com-
plement by A’=1—A. Using the general properties of
projection superoperators, and not the specific form of
Egs. (6) or (7), it is a matter of straightforward manipula-
tions* to derive from Eq. (3)

1

30(0)=———[i0(0)+ATARO(w)] , (8)
w—K +ie
where
T=V4 VA 1 A'VA . 9)

o—K—A'VA +ie
This reordering of the perturbation expansion is exact for

any projection superoperator, A, and for any operator, 0.
Remember that all superoperators act sequentially on

final A requires that the final result contains only opera-
tors of the form &} . 40" Therefore, ATA can be
represented in terms of scalar components of a dyadic,
Tk,k,. Then Eq. (8) yields an integral equation for the
coefficients O

1

O (w)=———""—"—"—[i0(0

p— e )+ 2 Ty xO(@) (10)

de; is O for the Kubo formula and is e, o —e; for
S(Q,w).

The first approximation then for both the Kubo formu-
la and S(Q, ) has the form

(0(0)0 10)) > (A0 ()0 1(0)) (11)

which retains all the most singular terms. The second ap-
proximation is to the Tk, «» which depends on the specific
physics of the problem. This amounts to a choice for the
truncation of the continued fraction expansion indicated
by Egs. (2), (8), and (9) and a choice for the projection su-
peroperator A.

Consider the problem of evaluating the Kubo formula
for weak impurity scattering in a metal. Then the poten-
tial is

P=33SVgal ae. (12)

j kg

Here the summation over j means a summation over all
the impurities in the system. The usual treatment is to
take the expectation value, { ), to mean an average with
respect to the “noninteracting” ground state, to take A to
be the same as an average over impurity positions, and to

retain terms to only second order in V in Eq. (9). Then
the first term in (9) is zero provided V(g =0)=0, and the
second term in (9) gives
T p=—NVk —k')
o L (13)
w—e,tep+IeE  w+te—e+IE
and
7;k,kz - E Tk,k' ’ (14)

k'(#k)

where N; is the number of impurities. Sometimes, V (q)
in Eq. (13) is replaced by the single-particle ¢ matrix in
the case of strong but dilute scatterers. Terms of the
form of Eq. (13) may be labeled vertex terms, whereas
terms of the form of Eq. (14) may be labeled “‘self-energy”
terms. When (13) and (14) are substituted into Eq. (10)
and the limit o—0 taken, the result is the usual
Boltzmann equation whose solution for the resistivity is
in standard textbooks.’® There are important cancella-
tions between vertex and self-energy terms which lead to
the familiar 1— cos6, ;. factor in the Boltzmann formula
for the resistivity. Such cancellations will also be impor-
tant to the theory of DINS, for, as we shall see, the im-
proper neglect of vertex terms will lead to the Lorentzian
broadening theories.
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Clearly, helium is a strongly interacting system. A per-
turbation theory for S (Q,w) starting from noninteracting
ground states, such as the above treatment of the Kubo
formula in the limit of weak impurity scattering, is sure
to be slowly convergent. A perturbation theory for the
dynamical response in helium starting from the static
properties of the strongly interacting system, such as g (r)
and n;, taken from experiment or other many-body
theory, is more likely to be rapidly convergent. To devel-
op this, a projection superoperator should be chosen
which can be extended to expectation values, { ), in
“interacting” ground states, |¥,), rather than nonin-
teracting ones.

I define such an off-diagonal projection superoperator,
A, appropriate to the important singularities in S(Q,),
as follows

([@]a,, 00D

R o — Nk

AO=3ala, ., (15)
k

Here ( ) denotes expectation value in the fully interact-
ing ground state, and [2 B ] is a commutator. It is
readily verified that Eq. (15) satisfies the projection su-
peroperator requirements AA=A and A&},
=a fa, +o- Remarkably, the same projection super-
operator is valid for both fermions and bosons. It also
works when { ) denotes an ensemble average. A acting
on any operator projects out only those components of
the operator which produce single particle-hole excita-
tions out of the ground state.

This projection superoperator can be applied to the
Kubo formula for weak impurity scattering to yield iden-
tical results to Eqgs. (13) and (14) when A is augmented by
an impurity average and the Q —0 is taken at the end of
the manipulations.

III. DERIVATION OF A DYSON EQUATION
FOR DEEP INELASTIC NEUTRON SCATTERING

The previous section has identified the formal analogy
between the perturbative evaluation of Kubo expressions
for transport coefficients and the evaluation of the neu-
tron scattering law at high Q and w. In both cases, a
naive expansion results in an infinite number of divergent
terms which must be resummed to all orders by some
method. I have suggested that Liouville perturbation
theory with an appropriate choice of projection super-
operator may provide an appropriate method. However,
in helium the starting point of the perturbation expansion
should be the strongly interacting ground state. A possi-
ble projection superoperator for helium, Eq. (15), has
been proposed. In this section, I combine these formal
developments with the physics to derive a Dyson equa-
tion for DINS. In the following, I explicitly consider “He
so that all creation and annhilation operators are bosons.

There are different momentum and distance scales in
the DINS problem. The characteristic momenta of the
helium many-body system can be characterized by ¢’s
such that n,50 and fd3re i a(r)—1]5£0. The momen-
tum imparted by a neutron to the recoiling He atom in a
DINS experiment is much larger than these characteris-
tic values. This allows a clear separation of the problem
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into high (Q) and low (g) momenta. There are also
different time and energy scales in the problem. The
final-state interactions are due to the collisions of recoil-
ing high-Q helium atoms with the steeply repulsive cores
of the potentials on initially low-g neighboring atoms.
These collisions occur on a time scale which is very short
and an energy scale which is very high compared with
the longer-range and lower-energy interactions responsi-
ble for the collective excitations and the structure of heli-
um. These collisions can therefore be regarded as two-
body, and many-body and collective effects can be ig-
nored.

The goal of the present theory is to capture the leading
behavior at high Q of the final-state effects in helium,
which is applicable to the analysis of DINS data from
pulsed neutron sources. *He is an almost hard-sphere
system, with the He-He cross section ‘“‘glory” oscillating
about an average which decreases logarithmically with
increasing Q. For a true hard-sphere system, the cross
section is constant at very high Q, and Y scaling will be
obtained without the IA. In the spirit of deriving the
asymptotic limit of the FSE discussed in the Introduc-
tion, I drop terms of O(Q ~') which are not present in
the limit of hard-core short-range potentials and Q — .
The effects of such lower-energy (longer-range) com-
ponents of the interaction are only to determine the ini-
tial conditions (ground-state wave function) before the
scattering of a neutron, i.e., the n; and g(r). The exten-
sion to experiments on helium at large but finite Q is
straightforward, and is presented in Sec. IV.

These physical ideas motivate the approximations of
the present theory, which are:

(a) to keep only the most singular terms as w—Q?2/2m;

(b) to include only the dynamics of the high-Q parti-
cles;

(c) to consider only two-body collisions;

(d) to treat “low”-k particles statically in terms of their
initial spatial correlations as expressed by g (7) and initial
momentum distributions as expressed by n;;

(e) keep only terms which Y scale in the asymptotic
limit (hard-core short-range potential as Q — ), i.e.,
drop terms of 0 (Q ~1).

These physical ideas imply that the collective behavior
and long-range order in the condensed state are irrelevant
to final-state broadening of the IA. Thus, the present
theory should be valid for solids as well as fluids, fer-
mions as well as bosons, etc. with the g(7) and n; as the
only important ground-state variables.

To translate these ideas into mathematics, consider the
calculation of S (Q,w), Eq. (5), within only the most singu-
lar terms approximation, (a), as given by Eq. (11). I can
write

Ap %)= 3 SPwala, ., , (16)
k

where the S&(w) are scalar coefficients. Then using Egs.
(5) and (11),

S(Qw)=RE 55 sfoNala ot o) . (7
TN v

The ( ) represents expectation values in a strongly in-
teracting ground-state |¥,). This has no high-
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momentum components so that @ | ¥, ) =0 for any high
momentum, Q. Therefore, S(Q,) simplifies to

lim S(Q,w)—»}—zs,?(w)nk . (18)

high

Because of the n, in Eq. (18), only S2(®) for low momen-
ta k should be considered. These come from a solution of
an integral equation for Ap %) analogous to Eq. (8) us-
ing the approprlate projection superoperator, Eq. (15).
The physics is in the approxnmatlons for ATA in terms of
scalar coeﬁic1ents Tk x asin Eq (10) referred to operators
of the form @ | K8k +0 anda] k8 40

The high-momentum dynamtcs only approximation,
(b), is implemented by allowing T to act only on the
ﬁk +Q? i.e.,

Tala, . o—al(Ta, 4) . (19)
The two-body collision approximation, (c), is imple-

mented by replacing the many-body T superoperator, Eq.
(9), by a two-body T superoperator given by

70— —[T,,0] (20)
such that
1 t
TZ_—5 ) % qa k408 ky—q T kg8, 8, ¥3))
2’

where () is volume, and the Ty k,q are scalar coefficients
given by the two-body ¢ matrix. The operator component
of ?2 is exactly like the two-body potential

s 1
V=5 X ak
20, %, i+a8

I

V(Q)a 8y, - (22)

However, T , includes the interaction between the two
particles to all orders in the potential. On-energy shell,
the Tk‘ kg Can be expressed in terms of the He-He phase

shifts, to be discussed in more detail in Sec. IV.

Approximation (d), treat low-momentum particles stati-
cally in terms of their ground-state spatial correlations and
momentum distributions, is implemented by the choice of
projection superoperator, A. It projects out expectation
values of operators in the ground-state wave function,
| Wo). More specifically, the two-body collision approxi-
mation, Eq. (21), and choice of projection superoperator,
Eq. (15), yields via Eq. (10) a closed system of equations
for the S (w),

1

SAw)=—
w—ep,o+it

i+ 3T eSP@)] . (23)
<

Here the ¢, has been ignored because it is O (Q ~").

The final element needed to complete the derivation of
a Dyson equation for DINS is the explicit calculation of
the T, ,. in Eq. (23) using Egs. (15) and (19)-(21). After
several pages of straightforward (albeit tedious) algebra
with no further approximations, one arrives at four
terms. Without going into excessive detail, it is easy to
see what happens. The first A forces the initial operator
to have the form @ kak +o- The T commutes a product of
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ki+k-k' k'+Q k'+Q ki+k-k'
k-k' k'+Q -k
------ + P
ky k+Q ky k+Q

Tk, k+0h-k'  + Tk, k+Q.k'~ks+Q
7] T-6

FIG. 2. Diagrammatic representation of the ¢ matrices,
T,f’I kyar which occur in the Dyson equation for DINS, Eq. (29).

two @ ' and two @ with this resulting in a new operator
with two @ " and two @. The second A first commutes an
operator of form (@ lak +0)» still leaving two @ * and two
a. Finally, the expectation value is taken in the ground
state. The result is that the Tk, x involve sums over prod-
ucts of the Tklkzq with the ground-state expectation

values of the two-particle density matrix
TG D S A A (24)

The tbkl k,q are related to the radial distribution function,

g(r), and the momentum distribution, n;, by sum rules,
ie.,

~ 3 Dpg=p [ e, 25
)

where p is the particle density, and
31_1.11 N 2 (Dk kzq kl . (26)

If any of the arguments of (I>k’ kyq is a “high” momentum,
then ® kykyq is zero by definition. Finally, we note a sym-
metry relation for bosons

(Dk]kZQ:q)klkZK, K=k2—Q—kl . (27)

Two of the four terms can be eliminated because the
arguments of Q)k‘,(zq involve high momenta. The n; o

in the definition of the projection superoperator, Eq. (15),
is also zero at high Q. The final result is

= 1
Tew="g," 2Tk k+ok-k
kK

+ Tk k+ 0.k —k, +0 )Pk kk k' - (28)
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The two terms in this equation add with a plus sign be-
cause of Bose symmetry. They correspond to the addi-
tion of ¢ matrices for scattering angles 6 and 7 — 6, which
eliminates all odd partial waves in the phase shift analysis

1 . 1
w—ey o+iE + Qn |

SR w)=

The small parameter of this perturbation expansion is the
product of Tknkzq and d>klk2q, which is well behaved at

high momenta and short distances. Philosophically, the
hard-core components of the potential have been
screened by the ground-state correlations. This justifies
the oxymoron, hard core perturbation theory. I shall
show in Sec. IV that many of the previous theories for
DINS can be obtained as approximations to Eq. (29).
Section V presents a semiclassical solution to Eq. (29)
within an approximation for the two-particle density ma-
trix, ®.

For *He, the result would be Eq. (29) with an antisym-
metrized T,fl k,q and ®; , , for Fermi statistics, and with

spin arguments added to T{ , , and @, , ,. *He will be
discussed in more detail in a separate paper.*

IV. SUM RULES, THE T MATRIX,
AND RELATION TO OTHER THEORY

The physics in Eq. (29) can be brought out by consider-
ing the IA limit, the sum rules on S(Q,w), the properties
of the ¢ matrix, and relation to the alternative theories for
DINS. First, if I take the limit of no final state scatter-
ing, T,f’l k,q—0, then the impulse approximation (IA) for

S (Q,w) is recovered

1 d k

SIA(Q,O)) (27 )3 k8

_Q ko
2| o

The Y scaling form of the IA can be written in terms of
the components of k parallel k,, and perpendicular, k|,
toQand Y=M(w—Q%/2M)/Q.

4 2i8
- l 1
ik > (21 +1)(e

c.m. [ even

Tkﬁkqut(k

c,m.’6)= -
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of T . A diagrammatic representation of these ¢ ma-
kykaq

trices is shown in Fig. 2. I label this Bose-symmetrized ¢
matrix T,?I kyq* Then the final HCPT Dyson equation for

the S&(®) in the limit of high Q is

S TR kvok—kPu kk—iSP@) | . (29)
s

QSIA(Q)m)

FIA(Y)E M
d%k,dk,

__f (27)?

Here n(k,k,;)=n,. Thus in the IA the scaling variable,
Y, corresponds to the parallel component of the momen-
tum distribution. Fy,(Y) is normalized to unit integral
over Y.

In the limit of high Q, it is straightforward to show
that the sum rules? on S (Q,®) simplify to

nk,k)8(Y k). (D)

f sum rule— [ © YF(Y)dY =0, (32a)
©? sum rule—»fw YZF(Y)de%(EKE) , (32b)
o sum rule— [ Y’F(Y)dY=0(Q~"). (32¢)

Here, O(Q ") in Eq. (32c) means that it goes to zero
with increasing Q at least as fast as Q ~!. In the spirit of
approximation (e), the test will be whether the asymptotic
limits (hard-core short-range potential as Q — ) of the
various theories satisfy these sum rules. If the final-state
broadening can be represented by a convolution of an
Rgs(Y) with Fi, (Y), then the sum rules are equivalent to

f sum rule—»fw YREg(Y)dY =0, (33a)
o sum rule— [ ¥ Y2Rg(Y)dY =0, (33b)
o sum rule— [ YRe(Y)dY=0(Q""), (33c)

Eq. (33b) clearly rules out Lorentzian wings on Rgg(Y).
We shall also need the properties of the ¢ matrix,
T,f‘ kyq* In terms of variables of the center of mass (c.m.)

frame for the collision, when the ¢ matrix is on-energy
shell it can be represented in terms of partial waves

—1)P;( cosb) , (34)

where p=M /2 is reduced mass, the particle momentum k_ =(k,—k,)/2 determines the phase shifts §;, and 0 is the
scattering angle. The forward ¢ matrix, 6=0, is related to the total cross section

FEa S (I +3)[1— cos(28,)]

Tt =
c.m. =0

(35)
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by the optical theorem

kC.m.

ImTy k,0=—" 2u Otot -
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(36)

In the asymptotic limit, the summation over partial waves in Egs. (34) and (35) can be converted to an integral over

impact parameters

1+2 |2
2|0

(37

At high Q, the phase shifts may be accurately evaluated using the Langer form of the Jeffreys-Wentzel-Kramers-

Brillouin (JWKB) approximation
172

© L 2 JR—
Blzfr ar| [2ulE -V (r]—— —V2uE —VZuErO+% . (38)
0 r
Here ry, is the classical turning point of the trajectory and L =/ + 1. Equivalently,
, = ’f dr [ — v r)—-——] —r0+b7” (39)
I
where V'=4MV /Q2 Here the classical turning point is  and they are related to the S{(w) by
defined by 1—V'(rq)—b%/r3=0. For a potential which X (0,0)
is strictly hard core at short range, in the asymptotic lim- SQw)= j—ke (44)
it ry is independent of b. The exponential of 2i8, phase Ry — Mg

oscillates to zero for b <, and is one for b > r,.

To extend the asymptotic limit result to predict FSE
for the steeply repulsive He-He potential at finite Q, one
can calculate a Q-dependent r,. This will decrease as
InQ at high Q for a potential which has the form
V'(r)«<e ™9 at short distances. More generally, one can
simply retain the full phase shift analysis which will re-
tain certain terms of O(Q ~'). In addition to the InQ de-
crease of the average of o, the O(Q ~!) terms produce
“glory” oscillations about the average whose phase de-
pends on quantum statistics.*! This will be discussed fur-
ther in Sec. V.

The specific quantity of interest in Eq. (29) is
Tk k+0,q- At high Q, the phase shifts are independent of

k and k, and depend only on k_,, —Q /2. The scatter-
ing angle becomes

q
0~2—. (40)
o

Then, one can write

lim T2 oo =t(kep,00—>1(0/2,2q,/Q) . 41)

high Q
B .
The real part of T"p k +0,q is small.

The integral equations of the form of Eq. (10) and (29)
are examples of an exact relation for the components of
the susceptibility

X(Q,0)=i{[pUAw),p_p(0)]),
W(Q0)=i{[p%Aw),a ] o8] . 42)

In particular, the X, satisfy an exact relation of the form

X =X° +x2?1)— S Ik, k)X, 43)
2

In HCPT, the kernel is

Iycer(k,k')=—

" 2T, k k+0k—k Pk —k - (45)
kKM

The alternative theories differ in the choice of kernel,
I(k,k'), and in their predictions for FSE in the asymptot-
ic limit.

The theories of Hohenberg and Platzman® and Platz-
man and Tzoar!” (labeled LZ for Lorentzian) can be ob-
tained by taking the limit of a structureless fluid,

g(r)—1, which corresponds to ®y , ,—ny 1y 8, _o
That is
k—k'
Inz(kk')= T : 46
Lz( ) N ki:’nk‘ ky.k+Q,0 (46)

Then Eq. (29) has the solution

lim SQe)= ‘ . @

g(r)al 1 B
akznlekl,k+Q,o
1

w—ey +0

This has the form of a self-energy correction to the prop-
agator for a high Q particle. Applying the properties of
the ¢ matrix discussed in the previous paragraph, one has
in the asymptotic limit
SRw)~ - . (48)
k QZ k”Q + _LQ (Q)
TM M 2M Ttot

Substituting this into Eq. (18), using the Y-scaling vari-
able, and Eq. (31), it is straightforward to derive the LZ
prediction of a convolution



38 THEORY OF DEEP INELASTIC NEUTRON SCATTERING: ...

FLZ(Y)E—AQ;S(Q,a))= 7 YR (Y YR,

(49)

where the final state broadening function, R;(Y), has
Lorentzian form

—YZ_FJF’ r=f;—am. (50)
While LZ satisfies the f sum rule and ®>® sum rules, it
does not satisfy the »? (“kinetic energy”’) sum rule in the
asymptotic limit. Extending this theory to a steeply
repulsive He-He potential at finite Q leads to the width
oscillations which have been experimentally observed at
low 0.*! An emphasis in Platzman and Tzoar’s paper'’
was on the importance of the off-energy-shell behavior
and real part of Tkﬁ kyq leading to an asymmetry in the

1
Ri7(Y)=—

line shape. However, this effect is negligible in the
asymptotic limit.

Another theory for final state broadening invokes the
t-matrix random-phase approximation.?

Igpalk, k') > —T8 50 - (51)

The emphasis in this paper was on interpreting the width
oscillations which are observed at Q <10 A ~!. For *He
T{ «,q is the solution of a Galitskii-Feynman theory tak-
ing into account the occupation factors, n,. In the
asymptotic limit, the occupation factors are unimportant
and the Galitskii-Feynman and free-particle forms of
T{ k,q OF T,f’| k,q converge. Ignoring the small real part

of the T,f’] k,q» ONeE Obtains the usual RPA

X%Q,0)
—i%}lﬂato(Xo(Q,w)
The same manipulations as for the LZ theory lead to a
prediction for Fgp,(Y)

Fia(Y)+7T[F}(Y)+ G2, (D)]

X(Q,0)~

(52)
1

Fgpa(Y)= , (53)
RPA [14+aTF o (V) P+ [aTG 1, (V)]
where I is defined in Eq. (50), and
1 w , FralY’)
GIA(Y)E;Pf_wd Y_v (54)

This does not have the form of a convolution, so that an
Rgpa(Y) cannot be defined. Like HCPT and LZ, RPA
broadens the sharp Bose condensate peak in “He. Also, it
has the same Lorentzian wings in the asymptotic limit as
the LZ theory; that is

large | ¥ | Fiz(¥)=Frpa(¥)—>—— (55)

7Y

RPA also does not satisfy the ? sum rule, Eq. (33b). I
shall show in Sec. V that a solution of Eq. (29) does satis-
fy the w? sum rule, so that the Lorentzian wings predict-
ed by both LZ and RPA, Eq. (55), are absent in HCPT.
For the asymptotic limit, all three theories (LZ, RPA,
and HCPT) predict a Y scaling broadening of the IA.

T k+Q

LZ DYSON EQUATION

K k+Q
¥

RPA DYSON EQUATION

HCPT DYSON EQUATION

FIG. 3. Diagrammatic representation of the Lorentzian
broadening (LZ), t-matrix RPA, and hard core perturbation
theory (HCPT) Dyson equations for the S&() (hatched) in the
high Q limit appropriate to deep inelastic neutron scattering.
The filled boxes represent the difference between the two-
particle density matrix, Eq. (24), and the g(r)—1 limit of the
two-particle density matrix, i.e., box=¢k|k2q—nklnk28q. The
lines with right arrows are particle lines. The lines with left ar-
rows are hole lines. The dashed lines represent Ty k,yq-

For helium at finite Q, the three theories predict a slow
logarithmic approach to the IA governed by the behavior
of o, at high Q.

A diagrammatic representation of these three theories
is shown in Fig. 3. The LZ theory corresponds to only
self-energy terms. The RPA corresponds to only summa-
tion of bubble diagrams. The HCPT includes self-energy,
vertex, and bubble diagram summations, but the
“effective” interaction is a product of a T,fl Ky with a

q)k;kzq such that the high-momentum components of the

interaction are screened by the ground-state correlations.
I note that such screening is the physical idea behind
phenomenological polarization potentials for quantum
fluids,*? although a treatment of collective modes with
these ideas is beyond the scope of the present paper.

V. SEMICLASSICAL SOLUTION
OF THE DYSON EQUATION FOR DINS

In this section, I solve the HCPT Dyson equation, (29),
by semiclassical methods within an approximation for the
two-particle density matrix, d>k] kyq* The semiclassical

methods are extensions of those*’~*° which have been

successfully used in the description of He-He scattering.
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I show how HCPT satisfies the sum rules for S(Q,w). 1
compare with the quasiclassical theory of Silver and
Reiter,’® the earlier quantum theory by Gersch and Ro-
driguez,'* and the Brueckner theory of Weinstein and
Negele.!® I discuss the O(Q ~!) extensions beyond the
asymptotic limit, which are important to the interpreta-
tion of reactor neutron experiments.

I begin by simplifying Eq. (29). Because the high Q
limit of T,flyk +0,q is given by Eq. (36), I focus on

1
— 3o 56
", kzl Ky kg (56)
which occurs in the sum in Eq. (29). While there have
been no full calculations of the two-particle density ma-
trix,*® the sum rules [Egs. (25) and (26)] relate <I>klk2q to

n,, which has been theoretically predicted, and to g(r)
which has been both predicted and measured by neutron
diffraction experiments. I know the n, weighted average
of (56). Therefore, 1 replace this quantity by its n;
weighted average over k

L s o wa—p[direvgin . (57)
n kl 1

This also satisfies Eq. (26). Note that (57) is true only in
an average sense, and it would be interesting to have a
correlated basis function evaluation of <I>k] kyq 1O obtain a

more exact theory. With this approximation S&(®) no
longer depends on n;, and therefore a convolution form
for the final-state broadening is possible. That is, it will
be possible to derive a final-state broadening function for
the HCPT theory, R ycpr(Y).

A solution for S&(w) will be found which depends only
on the k, component of k. First, I rewrite Eq. (29) in
more compact form by making the definitions

’ J— Q
I (k”)=—A75,?(w) (58)

and

Mp [ d'a -
rQ)=—"5"[ 5, 5"0/220.,/Q) [dreiTg ().

(59)
Then, Eq. (29) looks very simple

’ . ® dk," ’ PNTHL?
(¥ —kpI'(ky)=i = [ © ——LD'(ky—kI'(k}) . (60)
This has the form of a convolution, and it may be solved
by Fourier transform, i.e.,

I(x)Ef‘m

— ©

dk ikyx

—Le™ (k) (61)
27

so that Eq. (60) becomes

Y+i d

— I (x)=i8(x)—T(x)(x) . (62)
dx

The solution of Eq. (62) is

RICHARD N. SILVER 38

Ix)=8()exp |i [Tax (¥ +Tx] |, 63)
where O(x) is a step function. Then
Qg0
MS"N(CO)

= fom dx exp

i |~k Yr 4+ [Tnax ] |
(64)

Finally, plugging this into Egs. (18) and (31), the final-
state broadening for HCPT is predicted to be a convolu-
tion

Re =
R Y)=— d
HCPT( ) p fO X €Xp

i [Yx + [ T(x)ax ] ] .
(65)

Next, I solve for the I'(x) in Eq. (65), which is the
Fourier transform of Eq. (59). The scattering angle, Eq.
(40), is small and the order of partial waves which con-
tribute is high. Therefore, I can use the small-angle
large-/ approximation for Legendre polynomials in terms
of Bessel functions

Pi(cos8)=Jy((I +1)6)

i . (66)

1 27 1 2
= fo dgexp |i|l+ qu'n(d))

Equation (66) means that the forward diffractive scatter-
ing dominates in Eq. (29). Here, n(¢) is a unit vector.
Then doing the d?q, integral in Eq. (59) forces

112
r—— l+5 En(tﬁ) . (67)
I define the impact parameter, b, by
B PO N )
b= |I+ 2o (68)

Then it is straightforward to derive

F0=3"2 5 (21 £ 10— 1)g[(b2+x2)12] . (69)
I | even
To turn the summation over partial waves in Eq. (69)
into an integral over impact parameters, I use the Poisson
summation formula

S @2+ 1) —1)P,( cosd)
1 even
=f0°°dl(21+1)f,P,( cosf) , (70)
where
f,EeZiBI—-l—i— s e2i5,+iM1rl s e2i8,+iM111. (1)
M even M odd
(s£0)

This can be rewritten in terms of b

rHCPT(x)=2—”BfO°°db bfogl(b2+x)2],  (72)

i
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where f, has the obvious definition. This is simply relat-

ed to the He-He ¢ matrix by

Mp,
Qo

Q
20

llm FHCPT(X)=—
X —>
or g(r)—1

(73)
Im Fyepy( )= %0 tot

according to the optical theorem. So in these limits, the
LZ results for the final-state broadening are recovered.
However, the g(r) in Eq. (72) screens the scattering at
short distances resulting in the prediction of a non-
Lorentzian broadening for HCPT.

The HCPT theory, Eqgs. (65) and (72), has a very simple
physical interpretation. Essentially, it amounts to a clas-
sical trajectory calculation for a particle of momentum Q
where the effect of scattering is to pick up a complex
phase proportional to the ¢ matrix, and where the rate for
scattering at position x along the trajectory is proportion-
al to the probability g[(x*+5?%)!"?] of encountering a
particle with impact parameter b. Y has become the
conjugate variable to the distance, x, along the trajectory.

In the asymptotic limit, one has

Tprcpp(x)~2mip fo"’db b g[(b+x3)17] (74)

which yields Y scaling via Eq. (65). For FSE in He at
finite but large Q, one could calculate a Q dependent 7,
which decreases logarithmically with increasing Q. This
would appear to be approximate Y scaling apart from the
slow logarithmic variation of ry. Or one could retain the
full phase shift analysis which would keep some terms of
0(Q 1), such as those which give rise to the glory oscil-
lations of the He-He cross section. The g(r) is to a good
approximation zero for r <r.

Using Eqgs. (65) and (74), let us examine the sum rules,
Egs. (32) and (33). Straightforward algebra gives

[7 dY Y"Rycpr(Y)

. d
2

dx

=lim —

lim = exp [1 fo ['(x')dx ] . (75)

Invoking the property that I'(x) is an even function of x,
the sum rules become

© Re
1 R Y)dY=——
f sum rule— f_wY HCPT( )dY 217' F(O) ’ (763.)
w? sum rule—»fw YZRHCPT(Y)dY=7R§F2(0) , (76b)
o sum rule— [ Y3Rycpr(Y)dY
d’r 3
= (0)—T>(0) | . (76¢)
dx?

E(x)=pfd3r6( || —rg)O(|r+x| —rg) ‘l—exp

i2M
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But since g (r) is zero for r <r, one finds using Eq. (74)
that the I'(0), and its second derivative, are zero. The
right-hand sides of Egs. (76) are zero, so that HCPT
satisfies all the sum rules.

Qualitatively, small- | Y | corresponds to large x where
I'(x) goes to Lorentzian result, Eq. (50). Since the total
second moment is zero, at large- | Y | Rycpr(Y) must be
negative. This leads to a suppression of the high-| Y |
components of F(Y) compared to Fi,(Y). HCPT quali-
tatively agrees with the paper of Weinstein and Negele,'®

and it disagrees with Lorentzian broadening
theories™!”~% which have predicted an enhancement of
the high-|Y | components of F(Y). Unfortunately,

Weinstein and Negele only treated the high-| Y | behav-
ior of the final-state effects, and they made no predictions
for the small-| Y | region which is important to the
determination of the Bose condensate fraction in *He.

It is interesting to compare the HCPT results to the
predictions of the two prior theories for FSE which in-
volve g (r). These theories assume that the effective r; is
the same as the hard-sphere radius which might be ob-
tained by, say, a fit of a Percus-Yevick equation to g (r).
In fact, the radius characterizing high-energy collisions is
usually significantly smaller than the radius characteriz-
ing the spatial structure.

The 1987 quasiclassical (QC) theory of Silver and
Reiter’! produces an integral over a classical trajectory
which is almost identical to HCPT

Re =
Roc(¥)=—2
oc(Y) - fo dx exp

i [Yx +f0x/2FQC(x’)dx’ } ] .
()]

This is the same as Eq. (65) except for the factor of 1 in
the limit of the integral. I'oc is identical to Eq. (74) ex-
cept that the argument of g (r) is different

Fhcer =x>4+b% rhc=[x+(rj—b)2P+b%.  (18)

The geometrical interpretation is that rycpr is the dis-
tance between the centers of the two He atoms whereas
rqc is the distance between their edges. These theories
differ by a factor of 2 in the small Y broadening corre-
sponding to the difference of 2 in the classical and quan-
tum cross sections.

In 1973 Gersch and Rodriguez (GR) derived!® a result
which may be written in terms of Y as

Re iYx —E(x
Ror(¥)=="= [ “dx e™—E), (79)
where
[Vt -vain]|. (80)
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The term in large parentheses in Eq. (80) is similar to the
eikonal approximation*’ for the scattering amplitude.
The effect of real space correlations is approximated in
the step functions, ©O(x), which correspond to g(r)
—O( | r | —ry). Equations (79) and (80) can be put into a
form which is almost identical to HCPT by a series of
manipulations: (1) at high Q the only nonzero contribu-
tions to (80) come from the parts of the integral over r
which make the phase of the second term in brackets os-
cillate rapidly, (2) identify r,—b and rj——x’
+(r3—bH'2% (3) consider V(r)~V,O(ro— |r|) in the
limit ¥j— oo; (4) derive the resulting
FGR(x)=2m'pfoodb bO[x —2(rd —b2)17?] (81)

to be used in Eq. (65).

In contrast, within the same step function approxima-
tion for g(r) and classical turning point approximation
for the phase shifts, one obtains

FHCPT(x)zZﬂ'ipfo °db bO[x —(r2—bH12].  (82)

For completeness, the analogous quasiclassical formula to
be used in Eq. (65) is

Loc(x)=mip f dbbO | T +2r§—b")'" (83)
and the LZ broadening theory is
[ (x)~mipr} . (84)

The ¢ matrix RPA cannot be put into the form of Eq.
(65).

A geometrical representation of the HCPT, GR, and
QC classical trajectories is shown in Fig. 4. Consider the
collision of two particles whose initial configuration is
shown. The high-momentum particle has a center at
point 1 and the low-momentum particle is centered at
point 2. The impact parameter for the collision is b. The
range of force between the two particles is shown by the
circle with radius ry. Now, imagine particle 1 moving to
the right as shown by the arrow. The QC theory consid-
ers the collision to have occurred when the point QC
passes through 2. The HCPT considers the collision to
have occurred when the point labeled HCPT passes
through 2. Finally, the GR theory is the same, but for
the point labeled GR. Alternatively, the variable x is the
distance between point 2 and points QC, HCPT, and GR
in the three theories. The high momentum is Q for
HCPT and GR, and it is Q /2 for QC. I have no explana-
tion for the approximations which led to these differences
between the three theories.

The HCPT is certainly more general than the QC and
GR theories, as it takes into account the real g (r), uses
the real behavior of the He-He phase shifts, has a well
developed connection to conventional perturbation
theories as discussed in Sec. IV, and has the potential to
be extended to O(Q ~') phenomena such as the glory os-
cillations and asymmetry due to the off-energy shell be-
havior of the ¢ matrix.

There are many terms of O(Q ~!) which should be
dropped in the asymptotic limit, but which will be impor-
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tant for experiments on helium at low to modest Q.
While a systematic treatment of such terms is beyond the
scope of this paper, it is possible to draw some con-
clusions from HCPT. Consider first the “hard-sphere
glory oscillations” of the final-state broadening which
have played an important historical role?®?’ in the devel-
opment of this subject. The principal contributions to
the integral over impact parameters in Eq. (72) come
from the stationary phase regions. In the asymptotic lim-
it

Q

bacos———(r(z,—bz)”2 . (85)

o

limhsﬁb b d 8?8 ="

Equation (85) may be used to show that only the M = —1
term in the summations in Eq. (71) has a stationary
phase, so to an excellent approximation

2i8, 2i8, —inQb /2

fo—e t—l+e (86)

Expanding the phase of the third term in Eq. (86) about
b =0 in the hard-sphere limit

2
25,,—17%2—@0—%’;. (87)

Performing the stationary phase integral one obtains for
the M = —1 term in Eq. (71)

CLASSICAL TRAJECTORIES

FIG. 4. Schematic representation of the classical trajectories
which contribute to hard-core perturbation theory (HCPT),
quasiclassical (QC), and Gersch and Rodriguez (GR) theories
for final-state effects in DINS. Shown is the initial configuration
of particles 1 and 2 immediately after a neutron imparts a high-
momentum Q to particle 1. The circle of radius r, represents
the range of the steeply repulsive core of the potential about
particle 1. Particle 1 moves to the right colliding with particle 2
with impact parameter b. The final-state broadening function is
the fourier transform of the probability of no collisions as a
function of the distance x along the trajectory. The DINS scal-
ing variable, Y, is the conjugate variable to x. The probability
of a collision is governed by the radial distribution function,
g(r), where r is the distance between particles 1 and 2,
r=(x24b%""2, and x is the distance between particle 2 and the
point with the corresponding theory label. In QC the moving
particle has momentum Q /2.
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Q b
Eq. (88) also holds for the He-He potential with r, a Q-
dependent classical turning point. This term produces
the “hard-sphere glory oscillations” in the He-He cross
section via Eq. (68), which may be understood in terms of
quantum interference between forward and backward
scattering.* However, the effect of g[(x2+52%)!/?]
—g(x) in the stationary phase integral is to strongly
suppress such terms in Eq. (67), so HCPT predicts that
glory oscillations in the FSE should be much smaller than
in the cross section. In contrast, in the LZ and RPA
theories the glory oscillations would be comparable to
those of the cross section. The results for *He are similar
in form to Egs. (67), involving the spin up-up and spin
up-down g(r). The results are identical in the approxi-
mation that these g () are the same, except that the third
term in Eq. (83) is multiplied by a — 1 for Fermi statis-
tics.

Other terms which are O (Q ~!) include: The large im-
pact parameter behavior of the phase shifts which in-
volves the attractive part of the potential; the off-energy-
shell behavior of the ¢ matrix;'® the e, in Eq. (23); self-
energy corrections to the low-momentum particles;'® etc.
A detailed comparison of theory with reactor neutron ex-
periments on *“He and *He at modest Qs should include
all these effects which are not important in the asymptot-
ic limit considered in the present paper.

F_j(0)~— (88)

VI. CONCLUSIONS AND DISCUSSION

The primary conclusion of this paper is that in DINS
experiments the impulse approximation to the scattering
law should be convoluted with a final state broadening
function, Rycpr(Y). This is expressed in terms of the ra-
dial distribution function, g(r), and the He-He phase
shifts by Egs. (65), (72), and (86), which are reproduced
below to summarize the results of this paper

Re ro
RHcpT(Y)=7fo dx exp

i [Yx 4+ [T ||

(65)
FHCW(x)=—2—7;Ef0wdb bfogl(b2+x)12],  (72)
fb—>e2i8”—l+e2i5b_ﬁgb/2 (86)

Rycpr(Y) is relatively easy to calculate and apply. It
satisfies the relevant sum rules including the f sum rule,
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the »? sum rule, and the > sum rule. To satisfy the w?
sum rule it must be non-Lorentzian. In the asymptotic
limit of infinite Q and a hard-core short-range potential,
the theory provides a Y scaling correction to the IA. For
the helium potential which is exponentially repulsive at
short distances, the final-state broadening of the IA plot-
ted on a Y scale decreases slowly as InQ at large but finite
Q. I have provided a review of the predictions of most of
the prior theories of DINS experiments,”!*~2* and I have
shown how most of them can be obtained as approxima-
tions to the present hard core perturbation theory
(HCPT).

The many-body formalism of HCPT involves Liouville
perturbation theory and projection superoperator
methods which have previously been applied to diagonal
singularity resummations in transport theory.’?~3* The
extension to off-diagonal singularities has permitted the
development of a perturbation theory for the neutron
scattering law for strongly correlated ground states. The
dynamical response has been calculated using ground-
state properties such as g(r) and n; obtained by experi-
ment or other many-body theory. The result was a per-
turbation expansion in which the high-momentum (hard-
core) components of the interaction were screened by the
ground-state spatial correlations, as one physically ex-
pects. I believe that such methods should be applicable
to a variety of other problems involving strongly correlat-
ed ground states.

In the high Q limit, HCPT has been shown to be
equivalent to a classical trajectory calculation. However,
this trajectory differed from both Wigner’s quasiclassical
method®! and Gersch and Rodriguez’s'® application of
the eikonal approximation. These differing semiclassical
approximations deserve further exploration in their own
right.

Numerical predictions? and a comparison with DINS
experiments® for superfluid “He at pulsed neutron
sources*® will be presented in following papers.
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