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We present a perturbation treatment of the scattering of low-energy long-de Broglie-wavelength
electrons scattering from the surface of liquid helium in the presence of ripplonic effects. We ana-

lyze the problem in the so-called distorted-wave Born approximation and consider higher-order

terms in perturbation theory. We show explicitly how quantum-mechanical effects enter in to modi-

fy the behavior of the reflection coeScient.

I. INTRODUCTION

The physics of a surface inelastic scattering experi-
ment, when the incoming probe has very low energy, is
rather unusual and intimately related to the quantum na-
ture of the incoming particle. A correct quantum-
mechanical treatment of scattering from a surface in the
presence of strong inelastic scattering is at the core of a
number of physically interesting situations including
sticking, and the scattering of monoenergetic probes like
helium from surfaces.

The essence of the problem is easily illustrated by a
simple example. Imagine a potential well of depth Vo
and range l near some surface (Fig. 1). In addition, we
wish to include some type of dissipative coupling of the
particle when it is in the neighborhood of the surface. If,
for a classical particle, we model the dissipative coupling
by a frictional force then it will suffer a finite energy loss
b,E as it is accelerated in the potential well. For incident
energies E small compared to hE the particle is trapped
by the well so a classical particle has a sticking probabili-
ty a(E)~1 as E~O. ' However, because of the low en-

ergy, an incoming particle of mass m has a de Broglie
wavelength gE fi/(2tttE——)'~ which can be much larger
than l. In this case quantum effects would seem to
suppress the low-energy absorption probability since the
bulk of the wave packet remains far from the surface.
More specifically, in the so-called distorted-wave Born
approximation (DWBA) there is a wavelength mismatch
between the wave function g inside and outside the well
(Fig. 1). Matching t/i and g' at the step gives an ampli-

tude reduction T=2+E/Vo in the well. The probabili-
ty to be in the well is proportional to

~

T ~, so that for a
finite rate of emission, a(E)=&E for E « Vo because
the time spent near the surface only increases as 1/v E.
This means that for a quantum particle a(E)~0 as
E~0.

For low energies, based on such arguments, predictions
of classical or semiclassical models are indeed in wild
disagreement with quantum perturbation theory. How-
ever, it is possible that higher-order inelastic effects could
suppress phase coherence for the incoming particle, i.e.,

destroy our wave-function mismatch argument and vali-
date the classical method. The question whether quan-
tum reflection is or is not suppressed by inelastic scatter-
ing has an analog for waves traveling across an interface
between two media of difFerent refractive index whose
transmission coefficients are also suppressed because of
"impedance" mismatch. They may have an enhanced
transmission coefficient because of inelastic scattering, as
in the well-known case of Kapitza resistance.

To gain some physical insight into the physical effects
of quantum reflection on the differential cross section for
low-energy inelastic scattering, we will discuss in detail a
rather special case: inelastic scattering of electrons from
bulk He surfaces. The great advantage of this case is
that the surface potential is well understood and of the
Coulomb form. Thus analytic expressions for the probe
wave function in the rigid potential are available, the in-
teraction potential with surface phonons is known in de-
tail, and He surfaces are clean and uncontaminated. In
addition the one-dimensional (1D) Coulomb potential or
image potential which an incoming electron experiences
is in a real sense the smoothest realistic potential. Unlike
the simple square-well type of potential discussed it has
no characteristic range l and quantum reflection effects
from sudden changes in potential will be minimized. If
quantum reflection is significant in the Coulomb case, it
will certainly be so for other potentials.

FIG. 1. Amplitude reduction of an incoming low-energy
plane wave in a rectangular potential well of depth Vo due to
quantum reflection at the threshold of the well.
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In this paper we will explicitly calculate the quantum
reflection and sticking coefficients, for an electron in-
cident on bulk He, in the DWBA. We will also be able
to estimate the range of validity of this perturbation ex-
pansion, by considering higher-order terms in perturba-
tion theory.

II. ELECTRON-RIPPLON HAMILTONIAN

H, =p /2m + V(z) .

V(z) is the static image potential seen by an electron ap-
proaching a surface of bulk He, i.e.,

Ao
V(z)= —,0&z & oo (3)

=Vo, z g0. (4)

The Hamiltonian which characterizes our problem is
given by

+e ++ripplon ++int

Here

height of the surface will lead to a correction term. If
V(z) is only due to interaction between the electron and
the surface immediately below it, hence independent of
the shape of the surface away from the point of impact,
then the corrected potential is just V[z+u (r~~)] where r~[

is the impact point. For z && u, we expand

V[z+u (r~~)]=- V(z)+u (r~~) V'(z) .

After quantization of u (r~~), the interaction Hamiltonian
becomes

1
H;„r = —g Q V'(z)(a&+a )exp(iq r~~), (9)1 or

with V~(z)=AO/z and Q =(Aq/2pco~)' . This cannot
be quite right because it allows q=O electron-ripplon
coupling. A uniform shift of the He surface (a q=0 rip-
plon) should not affect the scattering probability.

Because of the long-range nature of the Coulomb po-
tential the image potential of the electron does, however,
depend on the shape of the surface away from the impact
point. Shikin and Monarkha showed that this leads to
large corrections to V~(z) for qz && 1:

The squared "effective charge" for the He (dielectric
constant e, ) vacuum interface is

e& (e, —1)
Ao ——

4 (e, +1)

Ao Ao
V'(z) = — qK, (qz },

with E, the modified Bessel function.
For x ~~1,

K, (x)=—+ —,'x ln(x/2),

(10)

The negative of the electron affinity Vo =-1 eV is the ener-

gy required to put an electron into the helium assuming
no bubble formation. The bound states of He thus have
a hydrogenlike spectrum E„= Ez /n (n =—1,2, . . . ).
The corresponding Rydberg energy Ez ——mAO/21 is of
order 10 K and the Bohr radius as =A im Ao is of order
100 A.

The quantity H„pp&,„characterizes the long-
wavelength normal mode vibrations (ripplons) of the free
He surface, i.e.,

where

ripplon X q q~q
q

(6)

Here g is the gravitational constant, cr the surface ten-
sion, and p the density of He and q is the magnitude of
the in-plane wave vector of the ripplon.

Equation (7) is the result of hydrodynamic arguments
and is accurate as long as the inverse wave vector q

' is
large compared to atomic (angstrom) distances. In our
calculation we will be interested in electrons with ener-
gies in the 1 K range, i.e., with wavelengths (z—-10 A.
The ripplons of importance will have comparable wave
vectors. The energies of such ripplons (a /p = 1

cm /sec ) are approximately 10 K, i.e., very small.
The gravitational term in Eq. (7) can be neglected for
wave vectors in this range.

If V(z} is the interaction potential between electrons
and a flat He surface, then a deformation u (r~~) in the

so the interaction potential V (z) depends on q as

q zln(qz} for long-wavelength ripplons (qz«1). The
electron-ripplon scattering cross section is thus
suppressed in the specular scattering direction (q~O),
i.e., the interaction is short ranged and there is no cou-
pling to q=O ripplons. This is somewhat similar to
scattering of electrons from acoustic phonons in bulk
metals by a deformation potential which leads to a q'
dependence in the electron-phonon matrix element.

For x ))1,
K)(x)=&m. /2x e (12)

so for short-wavelength ripplons (qz && 1},the interaction
potential is independent of q and falls off as 1/z as ex-
pected from our naive argument [Eq. (8)].

III. LOWEST-ORDER INELASTIC SCATTERING

The state
~

i } is a product of an incoming electron wave
—a'.r

function e ~~ g;(z) in the rigid Coulomb potential with
all ripplons in their ground state, i.e., e; =E; the electron
energy. The state

~ f ) is the product of an outgoing

The rate of an incoming electron, with energy E;, to
scatter from the helium surface (assumed to be at T=O)
and emerge with an energy Ef leaving the helium surface
with a single-phonon excitation is given by the golden
rule

(13)
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6f =Ef +flCOq

The matrix element in Eq. (13) reduces to

«f I
H t: I

') =M@kIi —
kii

—q»

(14)

(15)

where M is the electronic part of the matrix element
which for fixed q is

(16)

—ik .r
electron wave function e Pf(z) and a single excited

ripplon consistent with energy and momentum conserva-
tion. Here kII is the component of k in the scattering sur-

face. The scattering geometry is shown in Fig. 2. The
final-state energy is thus,

of ripplons. The essential quantum-mechanical aspects of
the problem are, however, illustrated by considering the
T=O situation which only involves ripplon emission.

The momentum 5 function in Eq. (15) puts very few re-
strictions on the scattering process since q is a two-
dimensional phonon wave vector. There is no conserva-
tion of momentum in the z direction, i.e., the surface pro-
vides arbitrary momentum in that direction and as we

shall see, it is almost always possible to satisfy the energy
momentum delta functions. Surface sound excitation is
thus somewhat similar to Bremsstrahlung. In the follow-

ing we consider separately the two cases of scattering of
the particle into the continuous spectrum of outgoing
states ( A ) and into the discrete spectrum of bound states
(&).

In an actual experiment at 1 K we are, relative to typi-
cal ripplon energies, at high temperatures. Thus we
should, in principle, consider a thermal distribution of in-
itial states, i.e., the possibility of emission and absorption

I

A. Continuum scattering

In this case the differential rate to scatter into some
solid angle is given by

f I (Pf(z) I
V'(z)

I @;(z})I Q k dkf5(Ef E fm—q—) (17)

where q =
k~~

—
k~~ and V is the scattering volume. Since

kf=k', the usual triangle construction (Fig. 2) gives, for

q and Pf in the angle the ripplon wave vector makes with
the plane of incidence.

(k =v'2mE /R):

(F) 1+ , 2, 2ik—x = J)(&8x ),i . 1

k' '
2x

(22)

q =k'(sin 8'+sin 8 +2 sin8'sin8 cosp )'~z, (18a)

(18b)

where J~(x) is the first-order Bessel function. If we apply

The angles 8', 8f, and P are defined in Fig. 2. Since Rcoz

is small compared to Ef [a good approximation, see the
discussion after Eq. (7)] then the integral over kf is trivi-
al, i.e.,

dW m
I (ff I ~,

'
I
(i';) I '&q"}/2Ef V~

dQ (2m) R
(19)

To compute the matrix element in Eq. (19) we need the
appropriate solutions of the Schrodinger equation

H, g(z) =Eg(z), (20}

with H, given in Eq. (2). In Eq. (20) E is not the total in-
cident energy (E; ) but only the contribution to E, of the
motion in the normal direction, i.e., E =Pi k, /2m with

k,' the projection of the incoming wave vector along the
normal.

In Appendix A we show that
1/2

f;(z}=N 4
X exp( iz /gz ),F, 1 i ,2, ——. —(21). R 2iz

E 1

Here R = —Ap/( EE,F~ is the confluent hypergeometric
function, and N is a normalization factor. We can ex-
press the low-energy limit E «ER (the Rydberg) in a
simpler form if we use the result that, for ka~ ~0

4He SURFACE

FIG. 2. Scattering geometry. The incoming electron has a
wave vector k', the scattered electron a wave vector k . 0' and

8 are the angle of k' and k with the surface normal z. The in-

plane components kI and k(~ are related to the ripplon wave vec-

tor q by kI ——k}t+q (see inset). The angles of k(~ and q with the

plane of incidence are Pf and Pq.
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this to Eq. (21), we find that
' 1/4

f; (z) =N&m.
R

Qz/aa J,(+8z/a~ ) (23)

P;(z) =N(nk, 'z)'~ J,(+8z/aa ), (24)

Eq. (24) is valid for z «(E. Note the peculiar feature
that for z «gz, the wavelength of g, (z) is determined by
aa not the de Broglie wavelength. For z»gx, Eq. (21)
reduces to

P;(z) =N sin k,'z ——ln(2k,'z)+5 (25)

which is the appropriate sum of ingoing and outcoming
waves. The phase shift 5 is a constant.

To fix the normalization N we simply note that the in-
cident probability current density is [see Eq. (25)]

J =z iN i2k
2m

(26)

The integral of J, over a surface S parallel to the He sur-
face gives us the total flux of incoming particles. If we re-

L

for E~0. The factor (E/Ea )'~ is the reduction in am-

plitude of the wave function near the surface due to quan-
tum reflection. Remember that in the Introduction we
argued that this factor was of order QE/Vo for a rec-
tangular well. The characteristic energy below which
quantum reflection becomes important is thus ER, the
Rydberg, and the reduction for this smooth potential is
weaker than for a square well. Alternatively, we can
write Eq. (23) as

quire the initial flux to be one particle per cm per sec
then

1/2
2m

flak,'S
(27}

In Appendix A we also show that the correct final-state
wave function is

ff(z}= —ev'V

' 1/2

y '(z/g~ ),
1 —e mR

(28)

where y
' is not an elementary function and is defined in

Eq. (Al 1). Now R and (E should be evaluated using the
final energy E =Pi k, /2m where k, is the projection of
the final wave vector along the normal. In the limit
E «Ea, Eq. (28) implies that

Pf(z) = —Il nkfzHI" (+8z/ag )
V

(29)

for z « gz. Note the similarity with Eq. (24). We merely
replaced the J1 Bessel function by the H'1" Hankel func-
tion.

For z»(E

gf(z)= —e xp[i [kfz —R/21n(2k, z)+5]I . (30)
1

V

Comparing Eqs. (29) and (30) we note that the amplitude
ratio

i ff(0) i
I

i gf( ~ )
i

is of order QE/Ea so near
the surface gf is significantly reduced, again due to im-
pedance mismatch.

The matrix element is found by using Eqs. (9), (21), and
(28) in Eq. (16), i.e.,

( Qf i Vq i I/i ) =f
1 —e

mRf
—nRf

1/2
Ao Ao

y '(z /gE ) — qK, ( qz)
z2 z

mR;
xN(z/gE )

e ' —1

' 1/2
2iz

exp( iz/(E ),F,—1 i,2, —
t 2' 'gE (31)

with gz, R;, gz, and Rf the values of gz and R evaluated for the incoming and outgoing particle.

We did not succeed in evaluating this expression analytically, but the limits E; «ER and E; »ER can be found.
First take the limit E; «Ea where we can use Eqs. (24) and (29). Then

(Pf i

V'
i f; ) =nNAp — .f dzzHI"(+8z/a~)

o Z' K, (qz) J,(+8z/a~ )
Z

(32)

or

(kik f)1 l2

(yf i Vq i
(i'~ NAp / g(qadi!) (33}

In Appendix B it is shown that g(x) is proportional to
x' for x «1. The differential scattering probability
d IV/d 0 is [see Eq. (19)]

where d IV v'2 q
d 0 4~ pcs

5/2k f
Apg (qa~ )(Ef )' . (35)

g(x)=n.f dzHI"(v'z )J, (&z ) ———K,

(34)

In the limit E »ER, we can directly use the Born ap-
proximation, i.e., use the asymptotic expression Eqs. (25)
and (30) for g; and gf. In this limit
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with

(36)

e (x)= f dz Ji (~z } ———K,
0 z 8 ' 8

(2ir)
i
N

i
k,'

fin /Sae
q'ktl 'n

(41)

f(x,y}=f dz sin(yz) ——K, (xz) e "~ . (37)
0 Z' Z

The differential scattering rate for E gyE„ is thus

X5(q+k(i —kii)5(EI+fico E;—), (42)

where we have replaced one 5 function by S/(2ir) . The
final result is

dW ~2 q
d 0 4~ Pcoq

5/2k fA2
z 0

2

)
1/2

~

N
~

k,'AOSm 1a -=~ f dP Q ~&~e (q (P)aa ) g
Aaq n=] n

where

(43)

B. Absorption

The absorption probability a is computed in much the
same way as the scattering probability except that the
sum over final states in Eq. (13) is only over the bound-
state spectrum. This partial rate is conventionally denot-
ed by a. The nth bound-state wave function is, for large
n,

P(r) =—
' 1/2

1 2z

n SaQg

Xexp( ikI r z/—naa) . —
II

J, (+8z/aii )

(39)

Note that the final state is now normalized over the area
S, not over the scattering volume. Of course, now there
is no amplitude reduction factor, as in Eq. (29), because
there is no impedance mismatch. Dropping the
exp (z/nazi) —factor in Eq. (39), since the dominant
effects come from large n, we can write the matrix ele-
ment of P with a low-energy incoining state [Eq. (23)] as

2m.k'

X g g, e(qa~)5(q+k(i —"ii' (40)

The function f(x,y) is also discussed in Appendix B.
The angular distribution of scattering probabilities for
E &&Ez and E&&E„are quite different. For E&&E„
[Eq. (38)] scattering is predominantly into the cone

~

kI
~

=
~
k,'

~

if q &&k„as shown in Appendix B [Eq.
(B13)]. We thus recover momentum conservation along
the z direction as is expected for high energy. For
E «Ez, [Eq. (35)] the angular distribution is broad as a
function of 8f with no trace of momentum conservation
along the z direction.

In the limit we have analyzed the problem, i.e., where
the ripplon frequencies may be neglected, it is possible to
simply include finite temperature effects into the scatter-
ing rate Eq. (38). Specifically one needs only to multiply
Eq. (38) by keT/fico .

Z(3) m Ao
a

2n' aiiR'&crp

1/2

1+sin ' —2 sin 'cos ', 44
0

where Z(3) =1.202 is the Riemann g function. We have
used Eqs. (7) and (27) for co and N. For the case of ab-
sorption, even though the ripplon frequency may be
neglected in all situations of physical interest, it is not
possible to simply multiply Eq. (44) by k&TIAcoq as we
have done for Eq. (35) to include finite-temperature
effects. The problem of how to include finite temperature
for the absorption probability is much more complicated
and interesting, and will be discussed in a future publica-
tion.

Equation (35) and (44) are our principal results. The
physical implications will be discussed in Sec. V but first
we will consider the validity of perturbation theory.

IV. HIGHER-ORDER PERTURBATION THEORY

The expression we used [Eq. (13)]for the single ripplon
emission rate 8'is, of course, only the first term of a per-
turbation series in 0;„,. Higher-order corrections will
contain electron self-energy corrections and electron-
ripplon vertex corrections. For instance, when k, ~0 we
should expect in higher order some type of polaronic
mass enhancement for the electron. In this section we
will determine the expansion parameter of the perturba-
tion theory and the validity of neglecting higher-order
corrections.

The lowest-order corrections to the one-ripplon emis-
sion rate involve intermediate states with one virtual rip-
plon. From continuum perturbation theory:

0int~int H int

8'= g H,'I+ g ' '" ". 5(e,. —eI),

q(P)=k'(sin 8'+1 —2sin8'cosP)'~

is the wave vector of the emitted ripplon. For small x,
e(x) =(I/ir)&x/2 [Eq. (B14)] so for k'as «1, Eq. (43)
reduces to

where (45)
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with e; and ef the initial- and final-state energy, respec-
tively, and with r and r intermediate states. As shown in
Fig. 3, there are three types of intermediate states includ-
ed in Eq. (45).

(a) Emission of a virtual ripplon q', followed by reab-
sorption and emission of a real ripplon q (this is an elec-
tron self-energy correction).

(b) Emission of a virtual ripplon q' followed by emis-
sion of a real ripplon q and reabsorption q' (a vertex
correction}.

(c} Emission of a real ripplon q followed by emission
and reabsorption of a virtual ripplon q' (a self-energy
correction once more).

The intermediate electron states are taken to be of low
energy (E; &&Ea). First because we are interested in

low-energy initial states and the main contribution in Eq.
(45) will come from intermediate states with e„=-e,.
Furthermore, for E=0 both the bound states and scatter-
ing states have, as we saw before, a wavelength which is
energy independent so there are no interference terms in
the matrix elements. For intermediate states with ener-
gies

~
E„~ &&E„ interference terms appear and the ma-

trix elements are reduced. We thus use E„as an energy
"cutoF' for intermediate states. We first consider inter-
mediate scattering states. We need to evaluate matrix
elements such as

+(k [ H;„, /
k)+, (46)

VS fd qQ 5(q+kll kll'ii/ k, k,'h(q~, ), (47)

where
~
k)+ is an outgoing or incoming solution of the

Schrodinger equation and H;„, is given by Eq. (9}. Matrix
elements between an incoming and an outgoing wave

2iz7a~
contain (for E~O) an oscillating phase e and are
neglected. Remaining matrix elements are of the form

+(k f H;„, /

k')+

ki k' k"

(b)
k' k k"

(c)
k' k"

where

h (x)=ir f dz
i
H', "(&z ) i

———,'xK, (xz)
0 Z

The first diagram in Fig. 3 contributes a factor

FIG. 3. (a), (b), and (c): Higher-order corrections to the sin-

gle ripplon emission rate. The wave vectors of intermediate
states of the electron are k' and k", of the ripplon q'. The emit-
ted ripplon has a wave vector q while k' and k are the wave
vectors of the incoming and outgoing electron.

(i
f
H;

/

k', q')++(q', k'
[ H;„, /

k" &++(k"
/ H;„, / f &

[E; —[R (k') /2m] fico'
I I E; —[fi (—k") /2m]I

(49)

where (i
~

is still the standing-wave superposition of an incoming and an outgoing solution of wave vector k. The en-

ergy E, =A' k' /2m.
~ f ) is an outgoing state of momentum k and a real ripplon of momentum q. Using Eq. (47)

gives, after some elementary algebra,

4 fdk,' fdk,"fd q' krak,"Aogqh (q'aa )

E, — [(ktl —q') +k,' ]—fico' (k,' —k,
"

)

(i /H;„, [f) . (50)

J

The factor in large parentheses is thus a dimensionless correction terin to the first-order matrix element (i
~

H'"'
~ f )

for ripplon emission. For perturbation theory to hold, it should be small compared to one. To compute the integrals
we must specify the integration path around the singularities. This is done by allowing an infinitesimal damping term
—i e in the energy e, of an intermediate state. The resulting integrals over k,' and k,"are elementary:

k"
Zf 'dk,"

(k,' k,
" )+ie—

E~
ln

2@i

(51)
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f 'dk, '
2 2

E, — (kll —q } —A~ — k, +is
2m 2m

m
ln

$2 f2
E, —(kll —q ) —~~

2

+i m8 '(kll q +fico' E;— (52)

E
ln

fi k' /2m

1

(2n )
fd qQ h (qas)

~ ~max

with 8(x) the step function. In Eq. (52) we assumed that the energy of the intermediate ripplon
~

%co~
~

&&Es.
This reduces the self-energy correction to

'2
mAO

ln
E„

2

E, — (kll q) ~co
2m q

2

+i~8 (kl, —q) +~~ —E,
2m

(i
~ H;„, ~ f ), (53)

E~

fi k,' /2m
(54)

Since both h and Q are slowly varying for order-of-magnitude estimates we replace the integral over q by

q,„Q~ h (q,„as ). The final result is then
&max

where q,„ is the maximum ripplon wave vector. To estimate this (complex} integral, we note that the dependence on q
in the logarithm is weak. In the limit R k, /2m «Ea, the integral is of order

'2

2
1n f "dqqQqfi (qadi) (i

~
H;„t

~ f ) .
$2 0

2
m Ao E„

ln
A' k' /2m

q,„Q h (q,„as)(i ~H;„, ~f) . (55)

We must add to Eq. (55) the contribution from highly
excited virtual bound states. A completely analogous cal-
culation shows that they give a contribution similar to
Eq. (53), but exactly canceling the logarithmic divergence
for k,'~0. The other two diagrams of Fig. 3 are similar
to Eq. (55). We conclude that the dimensionless expan-
sion parameter of the perturbation series is

A, =(q,„Q,„)h (q,„as ) /aq . (56}

A physically more transparent form for the expansion
parameter is found by noting that the expression

(u')—:f '"qQ,'dq =q', „Q,
' (57)

is the mean square of fluctuations in the surface height
u (rll) due to zero-point motion. Thus the expansion pa-
rameter is

A, =—((u )/as)h (q,„as) . (58)

Once the quantum fluctuations in u (r~~) become compara-
ble to the Bohr radius az of the incident particle, pertur-
bation theory may break down. However, for electrons
a~=100 A so with (u )'~ =1 A, q,„=lOAo ',
A, =10 and perturbation theory is amply justified. The
criterion ( u ) «a~ basically means that zero-point fluc-
tuations of the surface do not disturb the bound-state

spectrum. The result A, -(u )/as could already have
been inferred from Eq. (8).

V. DISCUSSION AND CONCLUSION

In the Introduction we posed the question whether
quantum reflection leads to zero adsorption probability in
the limit E-+0. Within DWBA we found [Eq. (44)]

a=k' m Ao/(ash' &crp) (59)

so a(E) is proportional to E'~4 for Coulomb scattering.
For potentials which are less smooth (e.g., 1/z ) quantum
reflection is expected to be further enhanced. For a
square well a(E)-E'~ so, in general, we would expect
that a(E}-E"with —,

' & y & —,', but the exponent depends
also on the q dependence of Q and V~. Comparing ad-
sorption with inelastic scattering we see that the inelastic
scattering rate [Eq. (35)]

m Ao
W(E)=(k/as)k/~ k(l~

' (op)
$3

(60)

is reduced compared to a(E) by a factor of order E/ER,
due to the amplitude reduction of the outgoing wave near
z=0 as discussed in Sec. III. Low-energy scattering and
adsorption are thus completely dominated by quantum
effects if the incident energy is small compared with the
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characteristic energy of the adsorption potential and if
perturbation theory holds. Including higher-order terms
did not change the conclusion that a(0)=0. We believe
that a(0) =0 to all orders in perturbation theory.

The expansion parameter of the perturbation theory is
A, -(u )/az in the case of Coulomb potential. The
Coulomb potential, as is true for any power-law potential,
has no length scale. The coupling to the ripplons does
not add a new length scale to the problem while for
E «E„ the wave function is basically independent of gE.
The only remaining length scales are (u )'~ and aa so
A, =(u )/aa is a "natural" expansion parameter. For
electron scattering from He surfaces A, «1 so Eq. (44)
should be valid and quantum reflection effects should be
huge for incident energies less that 10 K.

For adsorption of charged ions on He, I,—1 and per-
turbation theory breaks down. Now a(0) could be finite
and the bound-state spectrum will be severely affected.
In a separate publication we will discuss the strong cou-
pling regime where we indeed find a(0)&0 and crossover
to quasiclassical behavior. Since a(0} appears to be zero
in perturbation theory this indicates that either there is a
"phase transition" in a(0) or that it has an essential
singularity at A. =0 such as exp( —1/I, ).

An interesting remaining question is how sensitive our
conclusions are, to the analytic structure of the Coulomb
potential. Coulomb potentials have an accumulation
point of bound states at the ionization threshold. Typical
terms in our perturbation expansion in Sec. IV are of the
form

y(x}=f e"'w(z)dz, (A2)

(oj ii Im z

lt C+C
ie !
a I

-l6
I

t &rt I

J

Rez

with C some contour in the complex plane. Substitution
into Eq. (A2) leads to a first-order equation for tn (z) with
solution

y(x)= — e"'(z i—)'"' ' '(z+i)' ' ' 'dz . (A3)
1

C

The integrand has branch points at z =+i and z =00.
The branch cuts are chosen to lie along the imaginary
axis from +i to +ei, with e small, and then from +@i to
—oo parallel to the real axis [see Fig. 4(a)]. Different
choices for C lead to different asymptotic properties.
First, we take a contour C, +C2 surrounding both

f dE (D (E)/E —E()+ie),
where D (E) is the density of intermediate states. For po-
tentials without an accumulation point, D(E) drops to
zero at the ionization threshold and for Eo equal to the
ionization threshold there could be a logarithmic diver-
gence, as in the Kondo problem, in which case we would
not have a converging perturbation theory in the limit
E~0. van der Waals potentials (1/z ) may or may not
have accumulation points depending on the strength, and
certainly need to be considered separately.
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APPENDIX A

To find the scattering states of the 1D Coulomb poten-
tial we first write the Schrodinger equation in dimension-
less units. Expressing length in units of x =z/gE and en-

ergy in units of R =Ac/gFE the Schrodinger equation
reduces to

(c)
C

I)

$C)
I

d y R
2+ 1 ——y =0.

dx
(Al)

The general solution of Eq. (Al) is then found by Laplace
transformation'

FIG. 4. {a) Branch cuts in the complex plane. (b) Contour L
used in the definition of the elastically scattered solution [Eq.
(A4)]. (c) Contour C& used in the definition of the outgoing
solution [Eq. (A l l)].
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branch cuts and define the new variable x =(z+ i)x .The
result, y+ (x), is

(Ri /2) —1

To represent the outgoing wave we use a different con-
tour. If the contour C, only surrounds one branch cut
[Fig. 4(c)], the upper case, then the resulting function

—ix v —2y+ (x)=—xe '" e "v 1—
1T L v

dv, (A4)
y (x) e (z 1)( '/ ) —(z + I)( i/2)+ ld1

y+ (x)=2ixe '",F, 1—,2, 2ix (A5)

where the contour I. in the complex v plane is shown in
Fig. 4(b). This contour integral is one of the representa-
tions" of the con6uent hyper geometric function

,F, (a, y, z), so

(Al 1)

is not an elementary function. Its asymptotic properties
were determined by Sexi. ' For x ~0

( 1
—nR)'

y'(x)= +O(x),
mR

(A12)

az
)F)(a,y, z)=1+ +r

(A6)

The asymptotic properties of,F, can now be used. In the
limit z ~0, 1F1 can be expressed as a power series:

while for x~ ~,
1/2—nR

y
(
(x ) e

—n r /2

mR

&( exp[ i (x —R /2 ln2x +5 )], (A13)

enR
y+ (x)=2i

mR

' 1/2
R

sin x ——in2x+5
2

so, for x~0,
y+ (x)=2ix .

On the other hand, for large z,

,F, (a, y, z) = ( —z) + e'zr(y) . r(y) .. .
I y —a I a

which, for x ~ 00, leads to

(A7}

(A8)

(A9)

m.R
e

—n.R
mt R /2)

&v
(A14)

where now R and gE should be evaluated using the final
2

energy E =k, l2m.

APPENDIX B

with 8 again an irrelevant phase factor.
For large x, y'(x) is thus an outgoing plane wave.

Note that, as expected, y '(0)&0. We conclude that
' 1/2

y'(z/(E ),

mR
nR2)/;(z) =N

kE

with 5 an irrelevant phase factor. This is the correct
asymptotic form for f;(z), so we conclude that

' 1/2

In this Appendix we will discuss the various functions
appearing in the evaluation of matrix elements. To
evaluate the asymptotic behavior of

g(x)=m f dz H')" (&z )J((&z ) —— K)(xz/8)—
0

' ' 2 8

.R 2iz
&& exp( iz /gE )—)F) 1 i , 2,——2' 'gE

with N the normalization factor.

(A10} (Bl)

[see Eq. (3.4)] we separate the integral over z into two
parts,

g(x)=m. f dz HI" (&z )Ji(&z ) ———K, (xz/8) +f dz H()" (&z )Ji(&z ) ———K, (xz/8)
0 x 8 8/x z 8

(B2)

For z & 8/x, the argument of the E, Bessel function is less than one, so we expand

1 z
K, (z) =—+—ln(z/2)+

z 2

For z )8/x, K (z) goes to zero exponentially fast. Using this in (B2) gives

2

g(x)=m —f dzH()"(&z )J((&z ) ln(xz/16)+ f dz H()" (&z )Ji(V'z )—
0 128 8/x Z

(B3)

(B4)

We will consider separately the x ~0 and x ~ 00 limits.

1. limx~0
The upper bound diverges in the first integral so the in-

tegral will be dominated by the large-z region. We can Xln(xz /16)+V'x/2, (B5)

use the large-z expansions for the H1 ' and J1 Bessel func-
tions, with the result

8/x2

g(x)=- dzz cos (z —3m/4)
32 0
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where we have neglected a sine-cosine product in the first
integral. The remaining integral can be expressed by the
Ci or cosine integral function

gX 2/xf (x,y) = exp iz ——y ln(xz/2)

' 3/4

g (x)=&x/2+ —— ——' in(4&2/x )
x 2 8

64 9 x

ix 2
dw exp &w

2 0 x

Expanding y = 1+hy with hy && 1,

lnw . (B11)

+Ci(4&2/x )
4

(B6) f=— dw e' r "'lnwiw (6 /x)
2 0

where y is Euler's constant. So to lowest order for x ~0, sin(x/by )+-lx x 2

2 Qy2 2

g (x ) =&x /2+ 0 ( x ~
) . (B7)

+ z [y —Ci(x/by )+in(x/by )], (B12)
Qy

2

g(x)=i ln(x/16) . (B8)

To find the asymptotic properties of

f (x,y) =f dz sin(yz) z
——K((xz) e" s

0 Z' Z
(B9)

for small x (k'»q), we expand the Kt Bessel function,
with the result that

2/x . iz/ X XZf (x,y)= f dz sinyz e" ~ ln
0 2 2

(B10)

Note that the quantity in large parentheses is a slow func-
tion of z so the integral will be strongly peaked near

y =+1. We are only interested in the region near y=1
where

2. lirn x ~ ~

For small z, HI" (&z )Jt (v'z ) = i /tr—, and for x ~ 00

the integral is dominated by the small z region. Using
this gives to lowest order (for x ~ co )

with y Euler's constant. The limiting behavior of f (x,y),
for small x, is

f(x,y)= .

lX
(y —1)' «x2'

lx
(y —1) »x

2(y —1)

(B13)

e(x)= f dz —J, (&z ),
8/x Z

h(x)=sr f dz —
l
H, "(&z )

i

8/x Z

(814a)

(B14b)

with the result that both e(x} and h (x) are proportional
to &x for small x [e(x)=(l/sr&2)&x and h (x)=&2x ]
just asg(x}.

using the asymptotic expansions of the Ci function. This
represents a peak at y= 1 of width by =&x .

The functions e (x) and h (x) are evaluated in the same
fashion as g(x). We are mostly interested in the range
x & 1 where we can approximate
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