
PHYSICAL REVIEW B VOLUME 38, NUMBER 4 1 AUGUST 1988

Derivation of the resonance frequency from the free energy of ferromagnets
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The general form for the magnetic resonance frequency ~ of anisotropic ferromagnets as derived

from the free energy Fby Smit and Beljers (co/y) =(M sin8) (FeeF&& —Fe& ), although numerical-

ly correct, is physically not convenient, because the origin of the different terms in F is obscured by

an angular-dependent mixing. This mixing is avoided by using the relation

1 Fyy cos8

y M i 8 6
Fee . 2 + . Fe Fey cos6 Fy

sin8 sin8 sin8

Explicit expressions will show the symmetry of each of the terms in F for all magnitudes and direc-

tions of H. In addition, an alternate method which uses only rectangular coordinates and which

can easily be generalized for multisublattice systems is described.

I. THE FORM OF SMIT AND BELJERS

Investigating the angular dependence of the ferromag-
netic resonance frequency co is well established' for the
determination of the anisotropy energy constants in the
free energy F, defined as a sum of terms proportional to
products of the components M; of the magnetization, de-
scribed in a rectangular coordinate system.

Using the classical equation of motion

co 1

2 (F«Ft4 Fe4)—
sin g

has been published independently by Suhl in 1955 and
was found at the same time also by Tannenwald and
Lax. This form has also been derived from a Lagrangian
formalism by Gilbert, again in 1955. Since then, it is
considered to be a standard method.

1 M —T 7

y dt

where y is the gyromagnetic ratio and T is the torque
acting on the magnetization M, it is an elementary pro-
cedure to evaluate the resonance frequency m as a func-
tion of F.

Since the first article by Kittel in 1947, several au-
thors ' have gradually increased the complexity of the
explicit solutions by weakening the restrictions for their
validity.

In 1955, Smit and Beljers (SB) (Ref. 5) treated the gen-
eral case and published a simple form for co in terms of
second derivatives t) F/Bet)Q=Fe& of the free energy F
with respect to the polar angle 8 and the azimuthal angle

P of the equilibrium magnetization M, . Except for the
singular direction 0=0, where co may not be obtainable,
there are no restrictions for the angles 8 and P, in con-
trast to earlier papers. Their form

II. MIXED SUBSTRUCTURE OF SB

Why then treat this old subject again? First, it is not
convenient that the singular direction 8=0 has to be ex-
cluded, since this is a frequently used direction in experi-
ments. Second, and more important, the distinct symme-
try properties of the different terms in the free energy F
are not visible in the expression of SB for the resonance
frequency. The usual assumption that there is a one-to-
one correspondence between the terms in the free energy
F and their second derivatives in the form of SB is naive
and could result in erroneous interpretations. What is
the reason for this unusual behavior of SB? Dependent
on the orientation of the magnetization, all terms in the
free energy F are split into two fractions, except the Zee-
man term. Only one fraction corresponds to the second
derivative of F and is, therefore, visible in the SB form ex-
plicitly. The other fraction cannot be seen directly, be-
cause it is part of the second derivative of the Zeeman
term in F, the term being proportional to the applied field
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X + cos(4a)
Fz

(3)

H in the SB form. In reality, the term proportional to H
in the SB form is composed of the true Zeeman term and
fractions originating from the other terms in F. This
splitting is present also when the Zeeman term is small
relative to the other terms. This splitting is angular
dependent, it is absent for some specific angular varia-
tions.

Therefore, the explicit terms in SB might have symme-
try properties inadequate to the true symmetries of the
corresponding terms in F, since part of the terms are not
visible. As an example, the second derivative of a term in
F with cubic symmetry looses this symmetry property in
the form of SB, since a fraction is split and part of the
second derivative of the Zeeman term in F.

This splitting is shown in a simple example for a Zee-
man term F (H, M) = —M.H with axial symmetry and a
term

Fcub(g M) g (m 2m 2+m 2m 2+m 2m 2)

with m, =M;/M, exhibiting cubic symmetry. The second
derivatives of the cubic term in the expression for the res-
onance frequency should reflect the cubic symmetry.
This is not always true for the SB form, as demonstrated
by comparing two rotations. First, 8 is rotated in the
(001) plane with angle a=/ and g=n. /2. The resonance
conditions derived by SB (Ref. 5) are then given by

2
'

ZFge 2E
[—,
' +—,

' cos(4a )]
y M

III. A FORM WITH VISIBLE SYMMETRY

In order to find a form in which each term reflects its
symmetry, the general expression valid for all directions
and magnitudes of 0 was evaluated by the involved
method of Keffer and Kittel, see Eq. (A4). The same ex-
pression (A4) was obtained when a rectangular method
was used, which is described in Appendix B.

When the expression (A4) is compared term by term
with the corresponding expression derived according to
Eq. (2), the source of the covering of the symmetries can
be seen. Indeed, the SB form can be transformed into the
form (A5) by not neglecting terms proportional to the
first derivatives Fs (Ref. 15) and F&, respectively,

1

M
Fyy cos8F + . Fe

sin2g sing
'2

Fg~

sin8
cose Fy
sin8 sin8

(5)

For 8=m/2, th. is form is exactly the same as the origi-
nal form of Eq. (2), since then the prefactor cosg/sing of
the neglected terms vanishes. Therefore, it is not surpris-
ing that all the explicit examples of SB were published for
8=@/2 Also fo. r all other angles, except 8=0, the origi-
nal SB form is still numerically correct, since at equilibri-
um the first derivatives F& and F& are zero. However,
this form is then no longer physically convenient since
the different terms of the free energy F are mixed. The
"Zeeman" term in F&&/(sin 8) contains also orthorhom-

equal to Kittel's result.
Performing a rotation of H in the (010) plane, one

would expect that the resonance frequency is described
by the same form, with now a=g and /=0, since these
rotations should give the same angular dependence due to
the cubic symmetry of the considered free energy F.
However, SB give a different form for the rotation in the
(010) plane
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The terms explicitly proportional to K do not reflect the
symmetry with respect to the twofold axis at a=g/4,
with deviations gradually increasing to 2K/M for o.~0.
This deviation is shown in Fig. 1(a) for the term
M '(sin 8)F&& . Figure 1(b) displays the same term for
a rotation in the (110) plane, together with the corre-
sponding correct solution. These deviations are indepen-
dent of the relative magnitude of the terms, i.e., of
H/(

i
K

i
/M).

Similar effects are present also for quadratic terms in F,
i.e., demagnetization, uniaxial and orthorhombic anisot-
ropy energy. Since only the term M '(sin 8)F&& devi-
ates, it is evident that the transformation to the curved
azimuthal coordinate P has to be reconsidered.
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FIG. 1. Angular dependence (broken line) of the cubic an-
isotropy energy of fourth order in the term M '(sin 8)F

&&
of

Smit and Beljers (Ref. 5), compared to corresponding correct
term (solid line), for rotation in (a) (010) plane, (b) (110) plane.
The reason for the deviation (shaded) is explained in the text.
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bic and cubic terms which are hidden in the neglected
term (cos8/sin8)F&. Therefore, the important limiting
case M~~H for a strong field H cannot be found simply by
taking the limit 8=8II, P=P& for the Zeeman term, be-
cause then the orthorhombic and cubic contributions of
the neglected terms are lost. The deviations in Fig. 1 are
hidden in the Zeeman term of SB. A similar mixing is
present also for smaller fields H.

The terms neglected in SB are due to the different cur-
vature of the azimuthal angle P with respect to the rec-
tangular rotational angle g in the form

(co/y) =(1/M )(FI~Fqq F~„)—
of SB. Moreover, these neglected terms will make Eq.
(5}also valid for 8=0.

The form of Eq. (5) is incorporated in the equations of
motion published in 1978.' The neglected terms are
present in the straightforward evaluation of the deriva-
tives in the curved spherical coordinates for nonequilibri-
um conditions, thus not neglecting first derivatives.

The new Eq. (5) can also be found using only the origi-
nal SB form, thus bypassing the geometrical procedure
for derivatives of curved coordinates, by assuming small
but nonzero deviations 8—8', p —(tyI in the Zeeman
term of Eq. (2}. The resulting terms are replaced by cor-
responding expressions evaluated from Fe ——0, F& ——0.
Then, the resulting Eq. (5) seems to be defined unambigu-
ously only for large fields H, but there is no mixing for all
fields H. Therefore, the original formalism of SB implies
also the new form Eq. (5), however, only in an rather im-

plicit fashion.

IV. RECTANGULAR METHOD

The rectangular method of Appendix B combines the
advantage of the SB method, i.e., it uses a general solu-
tion in a fraine with the coordinate g along M. Instead of
rotational angles g, i) a rectangular frame denoted

(MF— M )
1 2

This form is equivalent to the form of SB
'2

(6)

with Fsr i—n Eq. (6}describing the lowering of M3 when
3

M is rotated along the rotational angles g, g.
The stable equilibrium is found by setting F ——0 and

1

F~ =0 (with FM ~ &0 and Fsr ~ &0, thus minimizing
2 1 1 2 2

F), which is equivalent to M 'Fe 0, M ——'(sin '8)F&
=0 of SB.

The next task is to transform the free energy F, usually
defined in a system x,y, z, which rejects the symmetry of
the anisotropy energy into the equilibrium system 1,2,3.
Instead of spherical coordinates, an orthogonal transfor-
mation M;=gsb+Ms is used, defined by a transforma-
tion matrix B with Eq. (B8) as an example. After apply-
ing this transformation to F, it is then easy to find the
relevant terms of the derivatives, and less involved for
higher order terms than the SB formalism, as demon-
strated in an example for Zeeman interaction and cubic
anisotropy energy of sixth order, i.e., for

F= —H'M+ Ecub~ 2~ 2~ 2
(2) x y g

with m, =M, /M.
First, the M; are expressed in the equilibrium com-

ponents Ms with the coefficients b, s of Eq. (B8),

1,2, 3~~( will be used. Furthermore, the derivatives with
respect to angles are replaced by derivatives with respect
to the components M„M2,M3, with the values M& ——0,
M2 ——0, and M3 ——M at equilibrium. The general expres-
sion for the resonance frequency has the form

'2

= (MFA ~ F~—)(MF~ si Fsr—)
y 1 1 3 2 2 3

F = H„(b„,M i +—b„2M2+b„3M3) Hy ( by iM i +by—qM q +by 3M3 ) Hz(bz i M, +b—zqM2+ bz3M3 )

~cub
+ s [(b„iMi+b„2M2+b„3M3}(byiMi+by2M2+by3M3} (b, iMi+bz2M2+bz3M3) ] .

M
(8)

As an example, the evaluation of the term MF~ ~ F~ in Eq. (6} w—ill be performed. This term corresponds to
2 2 3

M 'F„„ofEq. (7) and is equivalent to the expanded term of SB M '(sin 8)F&&+(cos8/sin8)F& in Eq. (5).
Which terms of F remain after derivation and setting M, =0, M2 ——0, and M3 ——M7 For F~, only terms in Fpropor-3'

tional to M3 and M3 will contribute, yielding 1 and 6M after derivation. For F~ ~, the terms proportional to MzM3
2 2'

have to be selected, yielding 2M . Hence the final result is, using b, 2
——0 of Eq. (B8),

g cub ~cub
Fsr +MFA sr H—„b„3+Hyby3+——Hzbz3 6b„~byibz3—+ 2(b„~by3bz3+b„3by2bz3+4b„2bz3by2by3bz3) .

The explicit form is found by inserting the explicit values of the coefficients b;s of Eq. (B8).
This method is so simple that the derivation can be performed for all possible terms of a free energy F, see Appendix

B. Furthermore, since the general result has the derivation already performed, this method is suitable to computeriza-
tion and to generalization for multisublattice problems.
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V. CQNCLUDING REMARKS

The aim of this paper was (i) to show that the form for the resonance frequency of Smit and Beljers is physically not
convenient due to a mixing of the different terms in F, and (ii) to propose alternate forms which avoid this mixing. Lim-
iting cases, with a strong field 0 as an example, are directly visible in these alternate forms.

In addition, explicit expressions are given in Appendix A which do not mix Zeeman, orthorhombic, and cubic anisot-
ropy energy terms, valid for all magnitudes and directions of H, including 0=0. Finally, Appendix B describes an al-
ternate method which gives closed forms for all possible terms of the free energy I', including multisublattice systems.

This work was supported by the Swiss National Science Foundation and by the U.S. National Science Foundation un-
der Grant Nos. DMR-8702933 (J.E.D.) and DMR-8304250 (P.E.W. ).

APPENDIX A

In this appendix equilibrium conditions and the resonance frequency co are given for the free energy F (Ref. 17)

F= HM+—,'(N,' M—„+N' M +¹ M, )+K~'&"~ (rn„m +m„m,+m» m, }+K~&~ m„m„m,, (A 1)

with m;=M, /M, and with an effective demagnetizing tensor N' and cubic anisotropy energy terms K~~~~~, K~&~& of
fourth and sixth order. Second-order terms —,'K;m; are absorbed in ¹' .

The equilibrium magnetization M, will be described by the polar angle 8 and the azimuthal angle P with respect to
the symmetry frame x,y, z. The conditions for equilibrium are

0= —H„cosOcosP —H cosO sing+ H, sinO

+(MN„' cos P+MN' sin P MN,' )co—sOsinO

2g cub

+ [2cosOsin Ocos /sin P+cosOsinO(cos 8—sin 8)](1)

M

2g cub
(2)+ cosOsin 8cos /sin P(2cos 8—sin~O),

M
(A2)

0=+H„sing Hcosg+—(MN' MN„' )si—nO cosP sing

cub 2g cUb

sin Ocos(J) sint))(cos P —sin P}+ cos Osin Ocosg sing(cos ((}—sin P) .(1) ~ 2 2 (2) 2 3 2 2

M I (A3)

It is, unfortunately, not possible to evaluate the equilibrium angles 8 and P from the equilibrium conditions Eqs. (A2)
and (A3) for an arbitrary direction of the applied field H in closed form. Therefore, approximation techniques'3 are
needed and a computer is helpful. However, once these angles are known, the evaluation of the resonance frequency a
is straightforward by using

12

H„sinOcosg+H»sinOsing+H, cosO+(MN„' cos /+M¹» sin P —MN,' }(cos 8—sin 8)

cub

[cos48+sin48(cos /+sin P) —3 cos Osin 8(1+cos /+sin (t )]2K(/) 4 4 ~ 4

M
cub

[sin~Ocos /sin P(6cos 8+sin 8—11 cos Osin 8)](2) . 2 2 2 4 4 2 2

M

X H„sinOcosg+H»sinOsing+H, cosO+MN„' (sin P —sin Ocos P)

+MN„' (cos P sin Osin P—) MN; cos —8
2~ cub

+ [cos 8+sin 8(cos /+sin P) —6sin Ocos /sin P]
(1)

2~cub
+ [cos Osin 8[cos /+sin P —(4+3 sin 8)cos /sin P]I
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(1)2E'"
( M—Ne~+MNe~)cos8 cosP sing+3 [cos8 sin 8 cosP sing(cos P —sin P }]

2E'"
+ [cos8sin 8(3cos 8 2—sin 8)cosg sing(cos P —sin P)]

(2)

M

'2

(A4)

1 dM

r dt
(Bl)

are expanded as a Taylor series

T, = g dT jdMk I, Mk
k =1,2

APPENDIX 8
In this appendix an elementary algebraic method is de-

scribed which relates the ferromagnetic resonance fre-
quency to to the free energy F. Similar to Smit and
Beljers (SB), a general expression is derived connecting co

to derivatives of F. However, instead of using
differentiation with respect to rotational angles, the
differentiation will be performed with respect to a
rectangular system 1,2,3. This has the advantage that or-
thogonal transformations can be used, which eliminates
the problem of SB involved with the azimuthal angle (().

Suppose that the equilibrium magnetization M,q
is

along 3 of a rectangular coordinate system 1,2,3. In or-
der to evaluate the resonance frequency co, the torque
components T1,T2 in

311———322 ——MFM M, 312 ™M M
—FM

2 1 2 2 3'

and

'2
6) = (MF~ ~ FM )(M—F~ sh F~ )—
y 1 1 3 2 2 3

(MF~ ~—}'.
1 2

(B6)

The point is that the free energy F is usually defined in
the laboratory system x,y, z which refiects the symmetry
of the magnetic material, whereas Eq. (B6) is written in
the system 1,2,3 with 3 along the equilibrium direction
Meq defined by FM ——0, FM =0. Further, it would be

1 2

convenient to execute the differentiation for a general ex-
pression of F

Az) —— (MF~—~ F~ )—.
1 1 3

Thus the resonance frequency co is connected to the free
energy Fby the form

of the deviations Mk, 2 from M,q. With the notation

Ajk dT /BMk ~——,q, the terms of first order become

p p px

F=g g g C'~' M "M~M, *,
p =Op„=Op =0

(B7)

M1 2 2=T) ——A)(M(+ A) Mz+2O(M), M }+z

(B2)

1 dM2

Ck
=T2 ——Az(M)+ A2zMz+O(M)&Mz)+

(B3}

The usual procedure of setting M.(t)=MOJe'"' in Eqs.
(B2) and (B3) yields the expression for the resonance fre-
quency co, with the condition A» ———322 for the ab-
sence of damping,

'2
2~12 ~21 ~ 11r

(B4)

Using the relation

T= —Mx F
(B5)

these coefficients Ajk are

for a motion which conserves the free energy F and using
for brevity

F =BFlaM,
~

x cos8 cosP —sing sin8 cosP

y = cos8 sing cosP sin8 sing

z —sin8 0 cos8
2

.3.
(BS)

for 2 within the xy plane with the angle P between the y
and 2 axis and 8 between z and 3.

Each component M; in F can be replaced by
M; =g&b;&M&, using the transformation B of Eq. (BS).
By doing so, the original constants C'p' defined in the

px»y
symmetry system x,y, z remain, but the free energy F is
expressed in terms of Ms with 5= 1,2, 3.

The general expressions for the derivatives are now
easily evaluated as functions of the constants Cp p the

px py'

coefficients b;&, and p,p„,p . The first derivative FM is
1

written

where the constants CP' describe terms of order
pz ~py

p =pz +py +ps.
It would be easy to select the relevant terms which sur-

vive differentiation and then set M1 ——0, M2 ——0, and

M3 ——M for the equilibrium condition, if F could be ex-
pressed in M„M2,M3.

Assume that the equilibrium direction 3 is known.
Then, the orthogonal transformation B with the elements

b; & connects both systems
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p p px cycl
pn p(n +1) p(n +2)

M X X X X p y Pn nl n3 (n+1)3 (n+2)3
p=1px=0 p =0 n =x,y, z

(B9)

The derivative FM is found by replacing 1 with 2. However, the derivative FM appearing in Eq. (B6) for the resonance
2 3

frequency co is different:

p p px

p=l p =0 p =0x y

For the diagonal second derivatives, only one term is given

p P Px cycl

FMM —g g g g C)I'), M
p=2p =0 p =0 n =x,y, zx y

(B10)

pn
—' p(n +1) p(n +2) 2 pn p(n +1) p(n +2)X [2PnP(n+ 1)bn lbn3 b(n+ 1)lb(n+1)3 b(n+2)3+Pn(Pn 1)bnlbn3 b(n+1)3b(n+2)3 ] ~

(Bl 1)

because FM ~ is again found by setting 1~2.
2 2

Finally, only one cross term is relevant in Eq. (B6) for the resonance frequency co:

p P Px cyc1

FM M ——g g g g C)I 'p M [p„p(„+1)(b„,b(„+1)2+b„2b(„+1)1)bn3b(n+1)3 b(n ~p')3
p=2px=O p =0 n=x, y, z

+P„(P„—1)b„lb„2b„3b(„'"+1)3b(n+2)3] (B12)

Although the general case seems to be rather involved,
the symmetries of the anisotropy energies reduce the
number of nonzero constants C' ' drastically, since they

px py

are written in the symmetry system x,y, z. In addition, all
terms containing the coemcient b, 2 vanish, because it is
zero for the transformation of Eq. (B8).

The remaining task for a specific free energy F is now
reduced merely to the evaluation of the products of the
elements b;& which connect the system x,y, z to 1,2,3.

Moreover, each such product can be written in a simple
form

+cos "8 sin ' 8cos 'sttp sin 'stI) .

Thus for the evaluation of a product only one prefactor
and four integers q, &, q, &, q, &, q, &

are needed. Further-
more, this method can be computerized, since
differentiation has been performed already.
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