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Long-wavelength optic vibrations in a snperlattice
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For a critical examination of the dielectric continuum model as applied to a superlattice, we have
introduced a microscopic model, which takes proper account of the long-range Coulomb interaction
and yet permits easy solution for the long-wavelength LO and TO modes. With this model, it is

shown that such long-wavelength modes approach different limits depending on directions of propa-
gation relative to the axis of the superlattice. This demonstrates that to treat the confined bulklike
modes in superlattices as modes of isolated slabs is inadequate.

According to the dielectric continuum theory, ' the
optic modes in a superlattice consist of bulklike modes
confined to slabs of either constituent material and cer-
tain interface modes. In this theory, the bulklike modes
confined to different slabs are completely decoupled.
Thus the early treatment of lattice vibrations of a slab of
ionic crystal by Fuchs and Kliewer has become a stan-
dard reference in discussion of the optic modes in super-
lattices. The vibration modes derived from Raman
scattering are directly identified with the slab modes.
As slabs have translational symmetry only parallel to the
slab plane, only the parallel component k~~ of the phonon
vector k is considered as effective. Thus a long-
wavelength phonon such as observed in Raman scatter-
ing, no matter in what direction its wave-number vector
lies, is identified with a k~~~O mode. In the following, we
shall show by a simple model that long-wavelength optic
modes with k differently oriented with respect to the axis
of a superlattice are clearly distinct and converge to
different limits when k~O.

Our basic approach is to work out a microscopic model
for an ABABAB. . . superlattice, which is completely
compatible with the dielectric continuum model in the
long-wavelength limit (i.e., with respect to bulk A and B
materials) and takes proper account of the long-range
Coulomb interaction. Moreover, it should be simple so
as to permit rigorous and definitive conclusions to be
drawn about long-wavelength optic modes with
differently oriented wave-number vectors. Thus we use a
model in which we simulate the relative motion of the op-
positely charged particles in the lattice cell by a charged
oscillator. We first consider the A material to be
modeled by a simple cubic lattice of oscillators, associat-
ed with corresponding electric dipoles. Then the
AB AB AB. . . superlattice can be envisaged as formed as
follows: along a cubic axis (to become the axis of the su-
perlattice and designated as the z axis) of the A lattice,
after every m layer (in the xy plane) of A oscillators, fol-
low m layers of B oscillators, which differ only in a

change of the intrinsic oscillator frequency coo to be ex-
pressed in terms of
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with wave-number vectors k, related by reciprocal-lattice
vectors of the superlattice, which can be expressed as fol-
lows:
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While the model in itself can contain the full play of
the Coulomb interaction and yet circum vents the
difficulty of directly dealing with the long-range Coulomb
interaction in a superlattice, it clearly has its formal limi-
tations. Thus the model implies that the two materials
have the same bulk phonon dispersions apart from a rigid
shift of

bazoo.

However, as the calculated optic models are
mainly confined to one of the materials, one can use the
dispersion parameters of the material to which the calcu-
lated modes are confined. The situation is somewhat
similar to the usual effective-mass treatment of quantum-
well electrons, where the barrier material is effectively as-
sumed to have the same effective masses as the well ma-
terial. The important parameter is the barrier height;
hcoo here is just its equivalent.

To work out the vibrational modes of this model super-
lattice, we can think of (1) as an added "perturbation"
(not implying it being small) on the simple A lattice,
which owing to its superlattice periodicity of 2ma (a is
the lattice constant) will couple together the A lattice
modes,
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(x, y, and z are unit vectors along the cubic axes), where

s = —m, —(m —1), . . .0, . . . , (m —2), (m —1)

and k, is restricted to the minizone

(4)

(k, &
2ma

(5)

Owing to the superlattice periodicity, the lattice mades
are to be specified by a wave-number vector k {k~~,k, ).
Clearly we can conveniently work out the lattice modes
with wave-number vector k of the superlattice by using
the above A lattice modes as the basis vectors. With
these basic vectors, one readily deduces the correspond-
ing dynamical matrix:
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These s+0 modes, which we shall designate simply as the
s modes, are essentially independent of the wave-number
vector of the long-wavelength mode. They all represent
modes along the z axis and owing to the cubic symmetry
are either longitudinal, polarized along the z axis,

s
Q 3

=z

with frequencies which we denote by

CdLp($) &

ar transverse, polarized in the xy plane,

(9)
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with frequencies which we denote by

corp( s ) (10)

On the other hand, the s =0 modes are completely deter-
mined by the wave-number vector of the long-wavelength
mode:

k =o=k

where r0 (k,j) are the squared frequencies of the A lattice
modes.

For the purpose of the present Brief Report, we shall
specifically discuss only the long-wavelength modes with

k «n/ma .

The dynamical matrix (6) is particularly simple with such
long-wavelength modes, because for all wave-number
vectors k, with s+0, we can simply put

Such long-wavelength modes in a lattice with cubic sym-
metry as in the present simple A lattice are well known to
consist of a longitudinal mode with frequency coLQ and
two transverse modes with frequency co'fQ.

To obtain some concrete idea of how long-wavelength
modes propagating in different directions diNer, in the
following we examine separately long-wavelength modes
propagating along and perpendicular to the axis of the
superlattice. We notice that in both these cases the three
s =0 modes (one LO, two TO) can be taken to be polar-
ized along the x, y, and z axes. As the dynamical matrix
(6} does not couple modes with mutually perpendicular
polarizatians, in both cases the dynamical matrix will
resolve into three 2m )&2m matrices, each involving one
s =0 mode and 2m —1 s modes, all polarized along one
of the cubic axes. Since in these matrices only modes
with completely parallel polarizations are coupled, from
(6}one sees that the nondiagonal elements do not differ in
all these cases and only the diagonal matrix elements
diNer. Thus for comparison, we list below the diagonal
elements af the dynamical matrix for modes polarized in
the x, y, and z directions, separately for long-wavelength
modes propagating along the z direction (along the axis
of the superlattice) and along the y direction (perpendicu-
lar to the axis of the superlattice). For long-wavelength
modes propagating along the axis of the superlattice k
(0,0,k, ) with x, y, and z polarizations, respectively, they
are

~os( —m }, . . . , ri)rp( —1),corp, mrp(1), . . . , romp(m —1);
Tp( m) ' ' ' ~TO( ) ~TO Tp( ) ' ' ' ~Tp( I )

~Lp{ m) ' ' ' ~Lp( ) ~LO Lp( ) ' ' ' ~Lp(

For lang-wavelength modes propagating perpendicular to
the axis of the superlattice k(0, k, 0) with x, y, and z po-
larizations, respectively, they are

Tp( 1) ~Tp Tp(1) ' ' ' ~TO(m

~Tp( m) ' ' ' Tp( 1) Lo Tp(1) ' ' ' Tp(m
2 2 2 2 2

cotp( —m), . . . , c0Lp( —1),corp, toto(1), . . . , cotp(m —1) .

Comparing the two cases, we see that they certainly show
a difference, namely, the roles of co&Q and cu&Q are inter-
changed for the y- and z-polarized modes. One may fur-
ther infer from this that the difference between long-
wavelength modes propagating in different directions has
its origin in the long-range Coulomb interaction, because,
as is well knawn, the difference between co~Q and co&Q is
due to macroscopic fields resulting from long-range
Coulomb interactions.

Actual computations of the long-wavelength modes
from the dynamical matrix (6) require for input only the
dispersion curves for the LO and TO modes of the A lat-
tice along a cubic axis and the parameter hcoo, which
expresses the relative shift between the dispersion curves
of the A and 8 lattices (throughout this Brief Report al-
ways referring to squared frequencies). We can divide the
dynamical matrix (6) by hcoo and work with dimension-
less quantities. For our calculations, the LO and TO
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dispersion curves are taken as parabolic:

~Lo(s) =aiLo BLo[k, /(n /a)]
2=coLo —Bi o(s /m )

2

piro(s) =achro Bro[k, /(n /a)]

fo'Bro (~™)
2 2

(12)

(13)

8=0'
-0.0096

e=45' 8=90

where coLQ N fQ BLQ and 8&Q are all understood to be
dimensionless.

We have made calculations with parameters which
simulate the phonon dispersions of GaAs for long-
wavelength modes propagating in general directions in
the yz plane. The results can be summarized as follows.

(a) For long-wavelength modes along the z direction, as
the s =0 modes have the same direction of propagation
and TO,LO polarizations as the s modes, one expects this
case to be normal" and the results close to those of
much-discussed linear-chain models. This expectation is
confirmed by the calculated results, which show that both
the longitudinal (z direction} and the transverse (x,y
directions) modes are vibrations confined to either A lay-
ers or B layers with 0, 1,2, . . . , m —1 nodes (internal
nodes). As shown in Fig. 1, the column marked "8=0"'
illustrates the vibration patterns of the LO modes
confined to A layers with 0, 2, and 4 nodes calculated in a
2m =7+7 model. One finds that if these confined modes

are identified with sinusoidal waves (with the same num-
ber of nodes) with nodes at both faces of a slab of a
definite thickness d, their frequencies fall accurately on
the bulk dispersion curves given in (12) and (13). The
thickness d is found to be close to but not exactly equal to
ma, which is the thickness of the A and 8 layers.

(b) Long-wavelength modes along the y direction are
found to differ from the above most conspicuously in the
zero-node modes. The results of calculations for a
2m =7+7 model show that the zero-node LO modes
confined to A and 8 layers are similarly shifted down-
wards to between the corresponding three-node and
four-node modes and the vibration patterns are also very
much altered. Owing to symmetry reasons, the modes
with an odd number of nodes are not affected by the
change in the direction of the long-wavelength mode, but
the even-node modes are perturbed to different degrees
according to their closeness to the shifted zero-node
mode. The shifted zero-node LO mode and the perturbed
even-node modes confined to the A layer are illustrated
in the third column of Fig. 1, which can be compared
with similarly confined LO modes illustrated in the first
column (long-wavelength along the z axis}. The behav-
iors of the LO modes confined to 8 layers are entirely
similar. For the TO modes, the zero-node modes are
shifted upwards, thus further removed from the other TO
modes, which are therefore less perturbed.

(c) For long-wavelength modes propagating in a gen-
eral direction in the yz plane, the s =0 LO and TO modes
in the yz plane are no longer polarized along the cubic
axes. They couple simultaneously with the s modes with
z polarization [with LO frequencies coio(s)] and the s
modes with y polarization [with the TO frequencies
coro(s)], leading to 4m X4m dynamical matrices. In Fig.
2 the calculated squared frequencies are shown as func-
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FIG. 1. LO modes for long wavelengths along three direc-

tions (thc angle 8 with the axis of the superlattice 0=0',45', 90');
vertical and horizontal arrows represent, respectively, displace-
ments in the z and y directions. Model used: 2m =7+7,
BLo 0'55 BTo 0. 1, coLQ ~To 0.3. Thc figure g1vcn 1n thc
upper right corners are the squared frequencies of the modes,
with zero taken at coLo ( A).

0
I

45 cjo

FIG. 2. The squared frequencies of long-wavelength modes
as functions of the direction of propagation with the parameters
taken to be the same as Fig. 1.
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tions of direction of propagation 8. Out of the 4m =28
modes, only the 14 modes confined to GaAs slabs are
shown. The modes that remain unchanged owing to spe-
cial symmetry are represented by dashed lines and the
solid lines represent the modes changing with direction 19,

though this is not apparent on the scale of the figure in
many cases. We believe that the two branches which are
observed to shift most conspicuously with 8 [the shifted
zero-node modes noted under (b) above] correspond to
the "interface modes" in the dielectric theory, as suggest-
ed by Cardona. Thus, like the "interface modes, " these
modes start off from the bulklike modes at 8=0', and at
8=90' we find that they show the typical variation with
d, l(d, +dz) as discussed by Colvard et al. (d, and d2
are slab thicknesses of the two materials}.

(d} Although our model is a special simplified model,
with the incorporation of realistic material parameters,
e.g., bulk material dispersion values for roTo($) rDLo($)
(using the value for that material to which the calculated
modes are mainly confined), the model yields realistic cal-
culated results. Thus, as noted under (a} above, the cal-

culated confined modes fall accurately on the bulk disper-
sion curves. The calculated results for another direction
of propagation should be equally accurate, for the
difFerence is only in the s =0 modes, which are precisely
represented in the model in each case.

In conclusion, the above calculations demonstrate that
a11 long-wavelength optic modes are generally dependent
on the directions of propagation. Clearly the bulklike
modes cannot be simply identified with modes of isolated
slabs as in the dielectric theory. As regards the failure of
the dielectric theory with respect to the bulklike modes,
it may be noted that Sood et al. in their paper' apparent-
ly already noted a discrepancy between their experimen-
tally observed LO modes and the vibration patterns pre-
dicted by a slab model treated as a dielectric continuum;4
their experimental results agree with the results obtained
above, namely, that the modes have nodes at the two
faces of the confining layers.

This work was supported by the China National Natu-
ral Science Foundation.

'Also at the Department of Physics and Measurement Technol-
ogy, Linkoping University, Linkoping, Sweden.

'S. M. Rytov, Zh. Eksp. Theor. Fiz. 29, 605 (1955) [Sov.
Phys. —JETP 2, 466 (1956)].

2C. Colvard, T. A. Gant, M. V. Klein, R. Merlin, R. Fisher, H.
Morkoq, and A. C. Gossard, Phys. Rev. B 31, 2080 (1985).

R. E. Camley and D. L. Mills, Phys. Rev. B 29, 1695 (1984).

4R. Fuchs and K. L. Kliewer, Phys. Rev. 140, A2076 (1965).
~A. K. Sood, J. Menendez, M. Cardona, and K. Ploog, Phys.

Rev. Lett. 54, 2111 (1985).
J. E. Zucker, A. Pinczuk, D. S. Chelma, A. Gossard, and W.

Wiegmann, Phys. Rev. Lett. 53, 1280 (1984).
7M. V. Klein, IEEE J. Quantum Electron. QE-22, 1760 (1986).
M. Cardona (private communication).


