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Local-density-pseudofunction theory of bulk Si
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The pseudofunction implementation of local-density theory for Si is shown to produce the accept-
ed results: a bond length of 2.34 A, a bulk modulus of By=1.03 Mbar, a pressure derivative of the
bulk modulus of dB,/dp =3.44, and a band structure in agreement with previous calculations and

many data.

I. INTRODUCTION

Calculations of electronic structure based on the local-
density approximation' are known to produce reliable
changes in ground-state properties of solids, and are not-
ed for determining equilibrium lattice constants. Local-
density calculations for Si, in particular, have been exten-
sive, and therefore a standard has arisen for any new im-
plementation of local-density theory, namely its ability to
predict the equilibrium lattice constant of bulk Si.

Kasowski et al.> have recently proposed the pseu-
dofunction method, which is a version of local-density
theory based on a combined localized and extended basis
set, and has the merit that it solves the local-density
equations for a realistic potential in the bond-charge re-
gion, while preserving the advantages for intuitive physi-
cal visualization of a real-space representation.

The pseudofunction method is, in principle, numerical-
ly superior to other implementations of local-density
theory in the following senses: It is computationally fas-
ter than the correspondingly rigorous k-space methods,
namely the norm-conserving pseudopotential scheme®
and the linearized augmented-plane-wave (LAPW)
method.* While of comparable speed with the real-space
augmented-spherical-wave’ (ASW) and linear combina-
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FIG. 1. Computed total energy of bulk Si (in eV per atom) vs
Si—Si bond length (in A). The solid circles are the points com-
puted. The experimental bond length is indicated by the arrow
labeled “expt.”
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tion of muffin-tin orbitals® (LMTO) methods, the pseu-
dofunction scheme is more rigorous: It does not approxi-
mate the potential in the interstitial regions of the crystal
and, in fact, determines both the correct solution of the
local-density equations and a realistic potential. Never-
theless, the novelty of the pseudofunction method has
caused its predictions to be called into question when
they have disagreed with the predictions of more estab-
lished methods, most notably for a K monolayer on the
Si(001)2x 1 surface.” In this case, the pseudofunction
method predicts that the adsorbed K is metallic, with a
K—Si bond length of 3.3 A, in apparent agreement with
subsequent data featuring a bond length of 3.14+0.1 Al
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FIG. 2. Computed band structure (in eV) of bulk Si. Solid
line, pseudofunction method; dashed line, norm-conserving
pseudopotential method (Ref. 10). The symmetry points are

I'=(0,0,0), X =(2m/a; )(1,0,0), U=Qn/a )($,1,1),
K=(02n/a; )(0,%,%), and L =(2m/a; )(%,%,%), where q; is the

lattice constant.
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TABLE 1. Energies (in eV) of symmetry points in the Si band structure.

LAPW EMTO Pseudopotential
Level (Ref. 4) (Ref. 15) (Ref. 6) Present Expt.
r, —12.02 —11.87 —11.93 —12.52 —12.5+0.6
s 0 0 0 0 0
Cis,c 2.49 2.44 2.57 2.46 34
Ty 3.18 3.38 3.55 4.2
X, —7.84 —7.88 —7.86
Xs —2.82 —2.92 —2.98 —2.9,—3.31+0.2
X, . 0.55 0.57 0.90 1.3
X4. 10.32 10.18 9.99
L, —9.64 —9.69 —9.77 —9.310.4
L, —7.06 —6.98 —7.23 —6.71£0.2
L;, —1.16 —1.27 —1.21 —1.38 —1.2+0.2,—-1.5
L, 1.40 1.47 1.51 1.42 2.1,2.41+0.15
Ly, 3.37 3.25 3.07 4.61 4.15+0.1

However, the more established version of local-density
theory, based on the norm-conserving pseudopotential
appro;ach,9 finds a significantly different bond length of
2.59 A. This raises the question of whether agreement
between the pseudofunction theory and experiment is for-
tuitously good (in which case the pseudofunction method
must be judged as unable to predict bond lengths reliably)
or whether the method is indeed as good as other com-
monly employed implementations of local-density theory.

II. CALCULATIONS AND RESULTS

In order to address this question, we have computed
the equilibrium bond length, bulk modulus, pressure
derivative of the bulk modulus, and electronic structure
of bulk Si using the pseudofunction method. The com-
puted total ground-state energy, as a function of Si—Si
bond length, is displayed in Fig. 1, and predicts an equi-
librium bond length (at zero temperature) of 2.34 A. The
observed bond length is 2.3508 A,'®!! which is virtually
the same as both the bond length we find theoretically,
and the value of 2.36 A found by Yin and Cohen using
the norm-conserving pseudopotential method.!® Clearly
the pseudofunction method does a rather good job of pre-
dicting the bulk Si bond length.

The bulk modulus By= —dp /(dV /V,) and its deriva-
tive with respect to pressure, dB,/dp, are 0.99 Mbar
(Refs. 10 and 12) and 4.2 (Refs. 10 and 12) experimental-
ly. By and dB/dp can be determined from our calculat-
ed total energy by least-squares fitting the volume depen-
dence of the total energy to Murnaghan’s equation of
state,'®!>!% which (to within an arbitrary additive con-
stant) is

dB /dp

X[V (Vo /V) +V(dBy/dp —1)] .

The resulting least-squares-fitting parameters are B,
=1.03 Mbar and dB,/dp=3.44, in general agreement

with both the data and Yin and Cohen’s results obtained
using the norm-conserving pseudopotential method: a
bulk modulus of 0.98 Mbar and dB,/dp=3.2.'°

A by-product of our total-energy calculations is the
band structure of Si (Fig. 2) which is in quite good agree-
ment both with that predicted by other total-energy cal-
culations*!>16 and with data.'®~!° (See Table 1) Of
course, we find a fundamental band gap of 0.62 eV, simi-
lar to the fundamental gaps of other local-density
theories, about half the experimental value. This is a
well-known shortcoming of local-density theory, which
can be corrected!*—but not easily.

There should be and are slight differences among the
predictions of the various local-density schemes even
when executed to perfect convergence, because of the
different exchange-correlation potentials used. We em-
ployed the parametrization of Hedin and Lundquist,?
following the extended muffin-tin orbital (EMTO) work
of Kasowski.'> Hybertsen and Louie'¢ take the Ceperly-
Alder exchange potential,2! while Hamann’s LAPW cal-
culations were based on Wigner’s interpolation formula.??
Thus, to within the limits imposed by the different basis
sets and treatments of exchange-correlation, all of the
local-density methods, including the pseudofunction
scheme, give essentially the same predictions for Si.

III. SUMMARY

In summary, the pseudofunction method produces a
good bond length, an accurate bulk modulus, a pressure
derivative of the bulk modulus in agreement with the
data, and a reliable band structure for Si—and hence
should be viewed as an established implementation of
local-density theory for covalent semiconductors.
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