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Exact k-q solution for a Bloch electron in a constant electric field
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In a series of recent papers, a new method for exactly solving the Schrodinger equation for a sin-

gle electron in a crystal subjected to a constant, external, electric field (W'annier-Stark problem) has
been presented. In the present report, the k-q representation of J. Zak [Phys. Rev. 168, 686 (1968)]
is shown to give exactly these same results.

The k-q representation was introduced by Zak' who
claimed that it is a natural method for exploiting the
crystal symmetries of translation in real and reciprocal
wave-vector space such as to reduce the complexity of
the equations governing the motion of a crystal electron
subjected to external fields. This method does not seem
to have been applied to very many problems in solid-state
physics —probably because the method is unfamiliar and
also because the problems to which it has been applied
have been mired in controversy. In particular the ques-
tion of the existence or nonexistence of the so-called
Wannier-Stark ladder states and the question of Bloch
oscillations have heretofore not been convincingly
answered within the k-q representation approach. Emin
and I have recently shown that exact solutions to the
time-dependent and time-independent Schrodinger equa-
tions for the electric field problem may be found in terms
of electric-field-dependent (EFD) Bloch functions as sug-
gested earlier by Wannier, Kittel, and others. Crucial
to the derivation of these exact results is the realization
that the position operator may be decomposed into two
terms: one which is periodic with the periodicity of the
lattice (this may be visualized as a sawtooth function) and
a second term which is not periodic (a staircase function).
The periodic component may be interpreted as physically
no more than a polarization effect within a unit cell and
as such should not induce interband transitions. This
term is therefore to be included in the crystal periodic po-
tential. We then solve the resulting Bloch equations
which include this EFD term (electric field times
sawtooth function) and use these EFD Bloch functions as
a complete orthonormal basis in which to expand the ex-
act solutions. The other component of the position
operator is then shown to couple only k states within the
same EFD band. The reader is referred to our papers '

for further discussion.
This decomposition of the position operator into two

terms is quite explicit in the k-q representation, yet a
solution analogous to ours has not been previously
presented. In fact, in reading discussions of the k-q rep-
resentation, one gets the erroneous impression that such
a solution would be incorrect. I now briefly present the
essential features of the k-q representation and then
derive the exact EFD Bloch solutions using the k-q
method. For clarity the derivation is in one dimension;
the extension to three dimensions is straightforward.

The k-q representation is a quantum-mechanical repre-
sentation which uses the basis functions

T(a)eke(x): e' gkq(—x)=e'"'tttkq(x),

gk (x)=e'2 "~'gkq(x)
2m'

a

(2)

kq

where a is the lattice spacing, Na is the total length of the
crystal, 8=1, and the k values are restricted to
k =2rrj /Na, j=0, 1, . . . , N —1. The f (kq) are arbitrary
phase factors. It is important to also note that q is re-
stricted to 0(q &a. In other words q takes values in a
unit cell while k takes values in the first Brillouin zone.
The sum over I in Eq. (1) is a periodic representation of
5(x —q) for 0 & q & a. It is easily shown that the eke(x)
are complete and may be chosen orthonormal namely,
upon replacing k2' /Na and henceforth using j as a
label

N —1

g f dqf' (x)g (x') =5(x —x')
j=0

and
Na

dx QJ' (x)PJ (x)=5 5(q' q) . —
0

(4)

Equations (3) and (4) are actually phase dependent, de-
pending on one's choice of f (jq); however, this phase
dependence is easily taken into account when deriving
operator representations in the j-q representation. If we
make Zak's phase choice f(jq)=i/a/2rte '2 ~e~~' we
find that, in the j-q representation, the operators p and x
are represented as

~ a
P = —l

Bq
'

re
X = . +q .

2K Clj (6)

(x) f (kq)e ikxye i2ml(x —q)/a
kq

I = —ce

These are eigenstates of the translation operators in real
and reciprocal space:
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I address the question of what the operation a/aj' means
below.

The problem with which we are concerned, namely,
finding the eigenstates and eigenvalues of a single elec-
tron in a periodic crystal potential subjected to a con-
stant, homogeneous, external electric field, is the problem
of finding solutions to Schrodinger's equation in the x
representation:

+ V(q)+Aq F~(A,
Ijq)=el'~(AIj, q)

2m Qq
(12)

subject to

change the EFD band indices. To proceed, first solve the
following equation, where A, =eE:

p
2

+V(x)+eEx P (x)=E g, (x) .
2m

Fi'(A,
Ij +N, q)=F~(A,

Ij,q),

F (A, Ij,a)=e' ' F (I,
Ij,0), (13)

If we expand g (x) in terms of the pie(x) as

N —1

tp~(x)= g J dq C (jq)g&q(x)
j=O

(8)

then Schrodinger s equation is, in the j-q representation,
r '2

1 + V(q)+eE . +q C'(jq)i¹ 8
27r j

—l
Bq2m

=E,C (jq) .

That V is a function of q only is easily shown. ' I have at-
tempted to be quite careful and specific in discussing
which values of k =2' /¹ and q are relevant. Equa-
tion (9) is to be solved for j =0, 1, . . . , N —1 and
0&q (a; however, we may, if we wish, extend the
definitions of all j- and q-dependent terms in any manner
so long as consistency is maintained. Such an extension
is equivalent to a phase choice for f(jq). With Zak's
choice of phase we have

C (j+N, q)=C'(j, q),
C~(j,q + a)=e'i~jlivC~(, ) .

These may be interpreted as boundary conditions for the
allowed solutions of Eq. (9). Finally, since j is an integer
we must determine what is to be meant by the operation
8/Bj in the j qrepresentat-ion of x. I addressed this same
question in a recent Letter in which I proved that one
may use 8/Bj in formal proofs so long as it ultimately
operates on a function of j written in a Wannier-type rep-
resentation

F~(~
I jq) =F.(~

Ijq) =e"—"""'u.(l
Ijq» (14)

where the quantum index P may now be identified with
the crystal momentum j and EFD band index n. Here
u„(A,

I j,q+a)=u„(A,Ij,q). Since F„(A,
I j+N, q)

=F„(A,
Ij,q) we have the Wannier representation in

terms of EFD Wannier functions

N —1

F„(A,Ijq)= g e' J' w„(A.
I q —sa) .

s=0

We may also write

N —1

ep ——e„(A,
I
j)= g e' " e„(A,

I
s)

s=0

to derive

2

&
+ V(q)+Aq w„(A,

I q —sa)
2m Qq~

N —1

= g e„(~I
s —s')w„(A,

I q —s a) . (16)
s=0

To solve Eq. (9) use the ansatz

C (jq) = A„(A,I j)F„(A,
Ijq),

where

Fi(P
Ij,a}=e'i~j~+ Fi(P

I J,O) .
Bq

It is clear that the solutions to Eq. (12} with boundary
conditions (13) are EFD Bloch functions

s=0
N —1

A (AIj)= ge' J' A (A Is).
s=0

(17)

and s is always interpreted as s mod%.
Since C (jq) are periodic in j~j +N, the C (jq) do,

in fact, have such a Wannier representation and the proof
in Ref. 5 is directly applicable to the present j-q deriva-
tions.

As mentioned previously, we see that the virtue of the
j qrepresentation -(with this choice of phase) is that it ex-
plicitly decouples x into two terms: q which is periodic,
and (iNa/2n)(B/Bj) which, as I shown below, does not

I

This gives
r

1 8
z + V(q)+kq+ . A„(A,

I
j)F„(A,I jq)

iA,Na 8
2m Qq 27K Bj

=E A„(A.
I
j)F„(A,I Jq) . (18)

Rewrite using the above Wannier representations and
then sum both sides with g. 0'e ' J'~ to arrive at

N —1 N —1 N —1

g A„(A.
I
l —s) g e„(A,

I
s —s'}w„(A.

I q —s'a) —Aal g A„(A,
I
l —s')w„(A,

I q —s'a)
s=0 s'=0 s'=0 N —1

=E g A„(A,I
l —s')w„(A,

I q —s'a) .
s'=0

(19)
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Next, using the orthonormality of the Wannier functions, we have that Eq. (19) gives

N —1

N5„„.g A„(A,
~

l —s)e„(A.is —l') —AalA„(s(.
i
I —1'} =N5„„,E A„(A,

i
I —l') .

s=0
(20)

It is clear from Eq. (20) that we may associate the eigen-
state index a with the band index n and another index p:
a~(n', p),

E ~E„,j3(A, ),
A„(A,

i
s)~A„"~(A,

i
s),

such that A„"~=0 unless n'= n and therefore A„"~~A ~.

We next use the fact that Ag(s(,
i
s) only depends on s

with values from 0 to N —1 (and is extended periodically
modulo N) to set l'=0 with l with values from 0 to
N —1. We then have that if A ~(A,

i
s) and E„&(A,) solve

N —1

g Ag(s(,
i
s)e„(A,

i
1 —s)=[E„&(A,)+s(,la]Ag(s(,

~

l) (21}
s=0

that C~(s(, ijq)= AP(A,
~

j)F„(s(,
~
jq) solves Eq. (9) and

therefore that

N —1

P(& i
x) —= y f dq Ag(~

i j)+„(~i jq)e '2 jq/N
y,,(x}

j=0 0

(22)
!

I

exactly solves the original Schrodinger equation, (7), with
eigenvalues E„)A,) given by the Nth-order secular equa-
tion (21). Equation (21) is the same equation which I had
previously derived in Ref. 5 using a different approach
[this is easily shown by converting Eq. (17) in Ref. 5 to
Wannier representation]. Finally, using the 5-function
property of fj (x) as a function of q, Eq. (22) reduces to

P(A,
i
x)= y Ag(k

i
j)e" j"/N'u„(X

ijx)
j=0

for p with values of 0 to N —1, which is just the form of
the solution presented previously in Refs. 3 and 5. I have
therefore shown that the j-q representation gives the
same exact results as derived previously using different
methods.

Though the preceding j-q derivation is fairly simple, I
personally believe that the representation of the position
operator given in Ref. 5 is more useful. In particular the
j-q basis functions seem to be, in some sense, an overcom-
plete set. This may be seen in Eq. (20) where we have
more indices than are needed for the solution. In the rep-
resentation of Ref. 5 we write

N —1

xp„j(x)=xg e' js/ tii„(x—sa)
s=0

N —1 N —1

= g (x —sa)e' "'/ w„(x—sa)+ g sac' j' w„(x—sa)
s=0 s=0

N —1

gg e l 2' Js /N~ ~ gg
2n. Bj

where 8/Bj again must be defined in terms of its effect on
a Wannier representation. The first term may be rewrit-
ten using

i2ssjx/Na
nj nj

so

( ) e
—i2mjx/Nay ('

nj nj

N —1

=e —i2ssjx/Na y ei2+js/NiO (X —SQ)n
s=0

N —1

ne
—

& 2ssj( sa)x/Naui '(X —Sa)
s=0

Hence

N —1 iNa 8
(X S&}ei2wjs/Ntij (X S&) ei2ssjx/Na & (X)

2n- Bj

This looks much like the standard crystal momentum
representation for x. There are, however, two differences:
(1) We now understand that 8/8 j is valid only when
operating on Wannier representations (this gives rise to
secular determinants, not differential equations) and (2} in
our earlier papers we showed that the appropriate Bloch
functions to use are the EFD Bloch functions, not the
usual zero-electric-field Bloch functions.
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