
PHYSICAL REVIEW B VOLUME 38, NUMBER 3 15 JULY 1988-II

New procedure for evaluating a large number
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A new, very e5cient procedure is provided for obtaining a large number of continued-fraction pa-
rameters for the Green s function in translationally invariant systems. This is achieved by succes-
sive applications of the recursion method to different regions in k space. The well-known problems
connected with computer-memory limitations are thus definitively overcome.
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Within the new basis, the crystal Hamiltonian 0 is
represented as

H = g H„„(k) I iP«„& ( ~P«„ I
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The recursion method is usually associated' to an
appropriate local basis representation of the crystal Ham-
iltonian on a given cluster in real space. Consider a clus-
ter with lengths

I N, r, I, I N2r2 I, and
I N3r3 I

along
the fundamental translation vectors; if n, is the number
of orbitals within each unit cell, the total number of de-
grees of freedom of the cluster is N, =n,,N, N2N3. It is
evident that N, soon becomes unworkable as the size of
the cluster increases.

In the case of the cubium (simple cubic lattice with one
s-like orbital per site) for instance, in order to obtain 50
exact pairs of parameters one should handle a cluster
with about one million atoms. Thus it would be highly
desirable to take advantage systematically of the symme-
try operations of the underlying problem to reach as
many exact steps as possible, and then to use analytic
theories for extrapolating the continued-fraction parame-
ters. ' Recently important progress has been obtained
with the formulation of the recursion method in the k
space for the perfect crystals, ' taking advantage of the
point symmetry group operations via the special k-points
techniques. "

The purpose of this Brief Report is to show how to
handle separately groups of Bloch sums in k space so that
we can overcome definitively any problem related with
computer-storage memory limitations. As an
exemplification of our procedure we discuss the k-space
formulation of the cubium model obtaining the Green's
function and the density of states to any desired accura-
cy. Finally, other fields that should benefit from the
present procedure are brieAy mentioned.

Consider the set of orthonormal localized orbitals
I((} „I (centered in the positions d„within the cell r ) for
the representation of the crystal Hamiltonian in real
space; we pass the the k-space representation by means of
the corresponding Bloch sums

where the matrix elements can be determined' ' either
theoretically or semiempirically following standard ap-
proaches.

The basic idea of our new procedure for the valuation
of a large number of exact continued-fraction coeScients
exploits the separability property of k space expressed by
Eq. (2), i.e., the fact that application of the Hamiltonian
H to a Bloch function of vector k does not involve excur-
sion to other k'&k points. From a large number of de-
grees of freedom belonging to a region in k space (what-
ever chosen, but still manageable for the computer
memory) we generate an appropriate tridiagonal matrix;
the first few hundred (or so) pairs of chain parameters is
all we need to store out of the large number of initial de-
grees of freedom. The other regions in k space are dealt
with similarly. The so-generated tridiagonal chains be-
come then the basis of further recursions.

Let us start the iterative process with a localized state

I Po &=
I fo& given by

Ifo&= (3)

The sum over k runs over (a large number) JV of ap-
propriately chosen points in the first Brillouin zone (typi-
cally several hundred thousand special k points' '"). We
divide now the set of A points in k space into an arbi-
trary number of subzones S&,S2, . . . , Sj each con-
taining JV', , JV2, . . . k vectors, respectively (A',
+JUL+ +JV~=JV). We can rewrite Eq. (3) in the
form

I
fo&= ( i) iy2 g I kv&+

( )i j2

+(~ )i/2
I

S.

(~ )i~2 g I kv
j k

(4)

For every subzone S, we consider the seed state
S S

I fos & =
i~2 & I

~'kv& = g eke I @kg&(~s)'" k

where c&„' ——1/(JVs)' if p=v and kES, and vanishes
otherwise. The standard three-term relations of the re-
cursion method, ' with the seed state specified by Eq. (5)
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and the Hamiltonian by Eq. (2), determine the expansion
coefficients cI,"„' (n =1,2, . . . ) of the hierarchial set. The
iterative expressions are as follows:

(6)

As an exemplification of our procedure we have con-
sidered the case of the cubium. The Hamiltonian of Eq.
(2) in the presence of one s-like Bloch sum of vector k be-
comes

H = gg(k)
I 4), &(4), I

with the next terms of the hierarchy given by
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As a result of the unitary transformation to tridiagonal
form for each of the subzones, we obtain a set of indepen-
dent linear chains. Let n be the actual number of interac-
tions carried on, and

I f„s & the set of chain states gen-
erated starting from

I fos &. We can construct the opera-
tor H„(including n + 1 states in each chain):

with g(k) =2h [cos(k„a)+cos(k a)+cos(k, a)] (the hop-
ping integral h between two nearest-neighbor orbitals is
taken as the unit of energy). The Brillouin zone of the
cubium is again a simple cube, and for simplicity we sam-
ple it with a uniform mesh of k vectors. Among the pos-
sible ways to collect into groups the k vectors of the
three-dimensional mesh, we have chosen to collect to-
gether the k vectors lying in planes perpendicular to a
crystal axis (say the k, axis). For any of these planes, we
are thus left with a two-dimensional problem for which
we have performed a very large number of exact re-
currences. Actually in this specific case the computer-
storage locations could be further reduced by separating
each plane into lines of point parallel to one crystal axis
(say the k„axis), and the numerical results could also be
handled with a personal computer with limited memory
capabilities.

In Fig. 1(a) we plot the first 150 parameters b„(25
coeScients were reported in the paper because of the

3.05

(7)
To "sum up" the obtained chains, let us consider the ini-
tial seed state of Eq. (4). Starting from it and using again
the recursion procedure with the Hamiltonian expressed
by Eq. (7) we can easily determine the expansion
coefficients (denoted by y'„'s) of the new hierarchial set
with i =1,2, . . . . The iterative expressions are as fol-
lows:

(i +1) (i) (i) (i)~ns =Qns~ns'+ n+],S'~n+], S+ ~$Vn —],S

(8)

with the next desired coeScients given by
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It is worthwhile to point out explicitly that if the set of
k vectors in Eq. (3) is such to assure n,„exact coefficients,
and n in Eq. (7) is chosen so that n &n,„, then the
continued-fraction parameters provided by Eq. (8) are ex-
act at least at the n,„th step. The simplicity of the recur-
sion relations, summarized by Eqs. (6) and (8), combined
with the successive procedure of selecting out the
relevant variables, are the basic reasons for the large
number of continued-fraction parameters accessible with
our new procedure.
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FIG. 1. (a) Recursion coefficients b„plotted for 150 values of
n (b) Values .of P„n'~ = (b„b„)n'~' plo—tted for 15—0 values of
n to provide evidence of the asymptotic behavior.
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