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Corrections to the continuum approximation of the Frohlich polaron: The ground-state energy
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Corrections to the continuum approximation in the formulation of the dielectric polaron are in-

vestigated. The starting point is the small-polaron Hamiltonian of Emin with an arbitrary
electron-phonon interaction potential. The kq representation of Zak is then used. From this Ham-
iltonian and with an appropriate interaction potential, corrections to the effective-mass approxima-
tion in the Frohlich Hamiltonian are calculated from a perturbative expansion for a slowly varying
electron-phonon interaction. This results in a renormalization of the interaction. A Debye cutoff is
also imposed on the phonon wave vectors. The ground-state energy of the polaron is then calculat-
ed with use of the Fock approximation. It is found that in weak coupling and in strong coupling
with small Debye cutoff the corrections to the continuum approximation are small, decrease the po-
laron self-energy, and are proportional to a/L, where a is the electron-phonon coupling constant
and L is the wave vector at which the Debye cutoff is made. In strong coupling, for a large cutoff,
the self-energy is also reduced but much more drastically and the strong-coupling behavior in a
disappears. Polar crystals for which a large polaron is involved can all be classified in the first limit
and the corrections to the continuum approximation are rather small, the largest one being of the
order of 14%%uo for LiF.

I. INTRODUCTION

The polaron is the quasiparticle formed by an electron
in an insulator in interaction with the phonons. This in-
teraction gives rise to a lattice distortion around the elec-
tron. A distinction is made between a small and a large
polaron, according to the radius of this distortion. A
small polaron is considered when the radius is smaller or
equal to the lattice parameter while a large polaron is
considered when this radius is larger than a unit cell. In
a polar material, the large polaron is usually called the
dielectric polaron or Frohlich polaron. In this case, the
lattice is treated as a polarizable continuum and the
effective-mass approximation is used for the electron. In
the literature, this is known as the continuum approxima-
tion. In the case of a small polaron, the electron is con-
sidered as interacting with its nearest neighbors only and
the effective-mass approximation is not done from the be-
ginning. This gives rise to the possibility of self-trapping
for the polaron.

In these two cases, the small and the large polaron,
only limits are considered. For the large polaron, the
effect of the local neighborhood and the effect of the lat-
tice distortion on the local band structure are neglected.
For the small polaron, the effects of long-range interac-
tions are neglected. Real crystals corresponding to these
limiting cases can be found. Large polarons are found in
crystals for which the electron-phonon interaction is
small: the III-V compounds, for example. ' Small pola-
rons are found in crystals of large electron-phonon cou-
pling with a narrow conduction band: the metallic ox-
ides, for example. However, some crystals do not corre-
spond to any of these limits. This is the case of some
perovskites for which the polaron radius is of the order of
the lattice parameter and which do not satisfy either the

small- or the large-polaron definition criteria. In this pa-
per, this case will be called intermediate polaron.

It is important to know more about the properties of
the intermediate polaron. First, because it will enable us
to describe better, on theoretical grounds, the optical and
transport properties of crystals like the perovskites and
the alkali halides. Second, it will help to find the limits of
validity of existing models by comparing the theoretical
predictions of the limiting cases with those of a more ap-
propriate description. Third, it can help to define a quali-
tative behavior for the intermediate polaron. For exam-
ple, is it a state characterized by a mixture or coexistence
of small and large polarons as suggested by Eagles, or is
it a single state characterized by properties intermediate
between those of the small and the large polarons? To
provide an answer to all these questions, a good descrip-
tion of the intermediate polaron is needed.

Here, the polaron problem will be formulated in the kq
representation of Zak. This representation uses a posi-
tion variable (q) to describe the polaron wave function, in
the interior of a unit cell, while a momentum variable
(k), in the first Brillouin zone, is used to describe the
"translationally invariant" motion of the polaron in the
periodic lattice. This representation is well suited to de-
scribe the polaron problem since the interaction of the
electron with the neighboring atoms in the unit cell can
be described simultaneously with the translationally in-
variant motion. Using this representation, the polaron
Hamiltonian .can be written in a form which is valid in
the two previously discussed limits. Then, it is easy to
take the continuum limit and to see under which condi-
tions this can be done. It is also easy to obtain the
corrections to this continuum limit when these conditions
are just barely satisfied. Also, the small-polaron limit and
the intermediate case can be discussed in this framework.
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In this paper, we present the kq formulation of the po-
laron Hamiltonian and concentrate on the continuum
limit of the large polaron. First, we present the polaron
Hamiltonian, the kq representation, and write the pola-
ron Hamiltonian in this representation. We discuss the
Hamiltonian obtained and take its continuum limit. In
Sec. III, lower-order corrections to the continuum ap-
proximation of the Frohlich Hamiltonian are obtained
and the Debye cutoff is introduced and discussed. In Sec.
IV, the ground-state energy of the polaron is calculated,
using second-order perturbation theory and the Fock ap-
proximation of Matz and Burkey, which is valid (it gives
an upper bound to the ground-state energy} for any value
of the electron-phonon coupling constant. These calcula-
tions give us the first corrections to the continuum ap-
proximation. Asymptotic limits are also considered. In
Sec. V, numerical results are given for the ground-state
energy, as a function of the electron-phonon coupling
constant and of parameters depending on the dimensions
of the unit cell. Applications are done to the case of po-
lar crystals and the corrections to the continuum approx-
imation are given for typical cases. We conclude by dis-
cussing the validity of the continuum approximation for
polar crystals. We also discuss the limitations and the
possible extensions of the present discussions.

r=ic)/c)k+q, (2b)

where r and p are the electron position and momentum in
the usual position representation, k is restricted to the
first Brillouin zone, and q is limited to a unit cell.

We now write the polaron Hamiltonian in the kq repre-
sentation, using Eqs. 2. We obtain

g2
Hz ——— i) /c)q +g U(q+ia/c)k G)—+g Acoobi bi

2m
1

+g [ul(q+ i c)/i)k }b&+ui'(q+ i c)/~)k }bi ]
I

(3)

for a free electron. As k does not carry complete
quantum-mechanical information about the electron
motion in a periodic structure (k is given in the first Bril-
louin zone within a reciprocal-lattice vector), partial in-
formation about the electron position can also be given.
The quasicoordinate q will describe the position of the
electron in a unit cell without specifying in which unit
cell it is. The kq representation is obtained from the fol-
lowing transformation:

p = —iA'c)/c)q

and

II. THE POLARON HAMILTONIAN
IN THE kq REPRESENTATION

We consider the case of an electron interacting with
the longitudinal-optical (LO) phonons in a polar crystal.
Optical phonons with wave number near the center of the
Brillouin zone, the only ones that interact strongly with
the electron, have no dispersion. In this case, the lattice
contribution of the polaron Hamiltonian is the same as
that used by Emin to describe his molecular crystal
model of the small polaron. This Hamiltonian, in the r
representation, is R=ic)/c)k (4a)

Note that the phonon operators are left unchanged by
this transformation. The second term of the right-hand
side of this equation is just the potential energy of an
electron, located at q in a unit cell, and moving in the
periodic potential of the crystal. Because of its periodici-
ty, once the sum over the lattice vectors G is done, it
does not depend on c)/c)k. In the following, it will be
written W(q}.

It can also be shown that R, the position coordinate of
a unit cell in the direct lattice, and k are conjugate coor-
dinates

A.

HF = +g U ( I' G ) +g AQ)obi bi
2m G 1

and

(4b)

+g [ui(r)bi+ui*(r)bi ],
l

where m, r, and p are, respectively, the electron mass, po-
sition, and momentum, and U(r —G) is the static contri-
bution of the atoms in the Gth unit cell to the electron's
potential energy. b& and b& are the phonon second quant-
ization operators and coo is the zone-center frequency of a
LO phonon. The last term in Eq. (I) was used by Emin to
describe the electron-lattice interaction energy in the
molecular crystal model. In our case, this term will be
used to describe a general linear electron-lattice interac-
tion. A more specific form of ui(r) will be given later
when the continuum limit will be taken in the case of the
dielectric polaron.

The kq representation corresponds to a choice of coor-
dinates that is well adapted to the symmetry of a crystal
having the usual lattice periodicity. In this representa-
tion, k is the quasimomentum and is a conserved quantity

+X ["i(q+ )bi+ ui'(q+R }bi ] .
I

(5)

Note that even if k does not appear explicitly in this
equation, it will appear in the wave functions since R is
the coordinate conjugate to k.

Equation (5) contains exactly the same physics as the
Emin Hamiltonian [Eq. (I)]. As such, it has exactly the
same eigenvalues. Equation (5) is thus an adequate start-
ing point to discuss the properties of the small polaron.
A treatment similar to that of Emin should lead to exact-
ly the same results concerning the small-polaron proper-
ties. In that case, u&(q+R) depends both on q, the elec-

The commutator of R and k is thus equal to i. With
these new definitions, Hz can be written:

$2
H@ ——— c) /c)q + W(q)+g ficoobi bi

2m
1
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tron coordinate in the unit cell, and on R, the specific cell
in which the electron is located. In the inodel used by
Emin, UI corresponds to a deformation potential coupling
at the level of a unit cell. This is a good description for
the small polaron and it can lead to self-trapping because
the electron-phonon interaction can renormalize the
periodic potential at the level of a unit cell.

The other limit, that of the large polaron, is more in-
teresting. Then, v&(q+R) is nearly a constant over a unit
cell. It changes significantly only over several unit cells.
This is the case of the 1/r dependence for the dielectric
polaron in the continuum approximation. Ia this limit,
to first order, u& depends only on R. The q and R are
again decoupled as it is seen from (5}. The q part of the
Hamiltonian is easily diagonalized, resulting in the mth
energy band of the free electron. The result is

H =( (k)+g Rcoob& bI+X [v&(R)b)+vI'(R)b) ] ~

I I

In this equation, 8 (k) is the electronic energy of the
mth band and k is a wave-number operator that does not
commute with R, as can be seen from (4b). For small ei-
genvalues of k, a quadratic form can be used for the band
energy, using the efFective-mass approximation:

fi 8H=-
2m' BR2 +g Rcoob) b)+g [u((R)b

+v)'(R)b) ], (7)

where m ' is the efFective conduction-band mass. If vI(R)
is chosen as being equal to Ce"'a/l, the Frohlich Hamil-
tonian is found, where C is proportional to the square
root of the electron-phonon coupling constant a. To this
Hamiltonian, which is used to describe the large polaron
in the continuum approximation, we will add, using the
kq representation, corrections due to the discreteness of
the crystal lattice.

III. CORRECTIONS TO THE CONTINUUM
APPROXIMATION

In this section, we calculate second-order corrections
to the continuum approximation in the Frohlich Hamil-
tonian. From these, we obtain the corrections to the
ground-state energy of the free polaron. Our starting
point will be the Emin Hamiltonian written in the kq rep-
resentation [Eq. (5)] in which we substitute a long-range
electron-phonon interaction term characteristic of polar
crystals [u,(r) equal to V,e" and V, proportional to
i —1].1

H = — () /(}q + W(q) +g Acuob) b)
2m I

+g ( V il (9+R)b + V. » il (9+R)bt—).
where

i 2me (e„—eo )
2 —1 1 I/2

I ))i(u X 0~

and X is the system volume. eo and e„are the low- and
high-frequency dielectric constants, respectively. coo is
the LO-phonon frequency.

It has been shown, in the last section, that if the
electron-phonon interaction potential v&(q+R) does not
depend on q, the Emin Hamiltonian reduces to the
Frohlich Hainiltonian in the continuum approximation.
We now want to obtain corrections to the continuum ap-
proximation in the case where the interaction potential
varies only slowly within a unit cell. This is similar to the
impurity problem that was treated by Zak, using the kq
representation. ' We will use the same treatment here,
assuming that vI(q+R} varies slowly over a unit cell.
This is equivalent to saying that its dependence on q is
weak. This is plausible in the case of a 1/I potential,
since in that case the long wavelengths are the most im-
portant.

Following a procedure described by Zak, ' an expan-
sion of the Hamiltonian in the derivatives of a slowly
varying potential V(r) can be obtained. The corrections
to the effective-mass approximation can be calculated to
second order and the following Hamiltonian is obtained:

8 RH =8 (k}+V(R)+A ' +B,(

(9)

g (ln) plJ (lob)

For a crystal of cubic symmetry, a further simplification
occurs:

This can be written as

(12)

In Eq. (12), a, the root incan square of the electron orbit
radius for the level corresponding to the conduction
band, is defined. In what follows, a will be approximat-
ed by the square of half the nearest-neighbor distance di-
vided by 6.

The first-order contribution is absent for a crystal having
the symmetry of inversion. The interband contributions
have been neglected in (9). The coefficients A ~) and
8 ' are c-numbers and can be calculated if one knows
the periodic part of the Bloch wave function [u ), (q)] for
the band m. An order of magnitude for these coefficients
can be obtained if the tight-binding approximation is
used for the band structure. If we assume the absence of
degeneracy for the atomic levels and if the corresponding
atomic wave functions a (r) are real, we find

A '=
—,
' g f d rx;xja (r+R)a (r) (10a)

R

and
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Using these approximations, the polaron Hamiltonian
becomes, replacing A' (k) by the effective-mass approxi-
mation,

VR+ g Rcoob!' b! '+ V(R)+a 8 V(R)
2m 1

(13)
with

(R ) y ( V e il Rb + Ve e
—i I Rb.t

)

1

m' is the effective conduction-band mass. The last term
of (13) is easily evaluated. Its effect is to renormalize V!
to V&(1 —a 1 ) in V(R). The resulting large-polaron
Hamiltonian, including the corrections to the continuum
approximation, is thus, in a dim ensionless system
(%coo——2m *=1&=1),

'(!2 +g b tb +g (g e il Rb +g e e
—(!Rb t

) ( 14)
I 1

where B& is given by

(15)

In this dimensionless system, we have
' 1/2

i 4~a
I l 0

2

a= (e„—eo ),—1 —1

2Acop7 p
' 1/2

2m Qjp

where 0 is the dimensionless volume of the system and a
is the electron-phonon coupling constant. ro is often
called the quantum radius of the polaron. It is the natu-
ral unit of length in the polaron problem.

In Eq. (8), the polaron Hamiltonian was written in the
kq representation. Consequently, k is limited to the first
Brillouin zone and q is limited to a unit cell in the direct
space. In writing Eq. (14), a perturbation expansion has
been done for a slowly varying electron-phonon interac-
tion potential. The unperturbed state was then the con-
tinuum approximation. As a consequence, R, the vari-
able conjugate to k, which, in the exact problem, was a
discrete variable indicating the position of a unit cell in
the crystal, has to be considered as a continuous variable
in (14). On the other hand, the phonon variables have
not been modified by the use of the kq representation or
by the perturbation expansion done on the electronic
variables. Because a phonon wavelength cannot be short-
er than the dimension of a unit cell, the phonon wave
vectors must be restricted to the first Brillouin zone. In
the present work, we will use the simplification intro-
duced by Debye and make the Debye cutoff approxima-
tion: the phonon wave vectors will be limited to a sphere
of radius equal to the Debye wave vector L =m/a*,
where a * is the lattice parameter. Note that this cutoff is
necessary to obtain finite values for the ground-state en-
ergy of the polaron. Because of the I term in B&, an

infinit value would be obtained for the energies without
this cutoff. This is reminiscent of the case of the
piezoelectric polaron for which such a cutoff is necessary
to obtain finite energies.

The use of a Debye cutoff is not new in polaron theory.
It was used by Schultz who applied this cutoff in a path-
integral approach. It was also done by Lee and Pines' in
the context of a unitary transform technique. Sumi and
Toyozawa" also considered the Debye cutoff when they
studied an electron interacting with both acoustic- and
optical-phonon modes. This cutoff was used to study the
error introduced by the continuum approximation. They
all found that this error was small for polar crystals of in-
terest. In what follows, we find energies comparable or
equal to those found by the above authors if corrections
to the effective-mass approximations are neglected. In
the present paper, in addition to the Debye cutoff on the
phonon wave vectors, we consider corrections to the con-
tinuum approximation of the Frohlich Hamiltonian
brought by relaxing the effective band mass approxima-
tion: the electron-phonon interaction is included in the
tight-binding band-structure calculation from the begin-
ning. These corrections will then be calculated using the
kq representation together with a perturbative expansion
for departures from the effective-mass approximation.

IV. CALCULATION
OF THE GROUND-STATE ENERGY

EG =P I~! I'
(1+1 —2P I )

(16)

where P is the momentum of the polaron. If the angular
integrals are done, we find

2j2 2

Eo P f dl—— — tanh
~P p I

2/P

(1+1 )

For small P, this reduces to

Eo ———aE+P (1—as!I6),
with

(17)

(18)

aE= 2a 1 4a a
tan L — (L —tan L)

aM
2a 1 L 2L

tan L + 1+L (1+L )

4a 2a
1 5L 2L

, +1+L (1+L )

In this section, we calculate the ground-state energy of
the polaron at zero temperature, starting from (14).
First, a second-order perturbation theory will be used for
weak coupling and, second, results valid for any coupling
will be obtained from the Fock approximation.

For small electron-phonon coupling, second-order per-
turbation theory can be used to obtain the ground-state
energy of the polaron. We obtain
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From (18), an effective mass can be written:

Nl
m

1 —aM /6
(19)

In these equations, the t2 terms coming from (17) have
been discarded because these terms were not kept in the
expansion of Eq. (9). aE denotes the renormalization,
arising from the Zak corrections and from the Debye
cutoff, of the electron-phonon coupling constant present
in the polaron self-energy. aM refers to the same quanti-
ty, but in the efFective-mass expression. If the limits
a~O (removal of the Zak correction to the continuum
approximation) and then L~ 00 (elimination of the De-
bye cutoff) are taken, we find aE ——aM ——a, the usual
value for the continuum approximation in second-order
perturbation theory. ' If these limits are taken in the in-
verse order, divergences occur, since the cutoff was neces-
sary to evaluate the energies. We can summarize Eqs.
(18} and (19) by noting that the net effect of these two
corrections is to reduce the effective strength of the
electron-phonon coupling constant both in the polaron
self-energy and in its effective mass.

We now turn to a formalism valid for any value of a.
It is the Fock approximation of Matz and Burkey. 6 This
treatment is chosen for many reasons: it is simple to use,
it gives an upper bound to the ground-state energy, and it
is valid for any value of the electron-phonon coupling
constant. ' Also, the energies obtained from this formal-
ism are the same as those obtained by Gross, ' using uni-
tary transforms, and by Feynman' in its rigid oscillator
approximation. This formalism predicts a self-trapping
phase transition around a=6 in the continuum model, a
result which is not found within the more precise Feyn-

man path-integral formalism' (using the Feynman two-
particle model}. However, the asymptotic results coin-
cide and the energies predicted by the two methods are
quantitatively nearly the same. In the present case, as the
corrections to the continuum approximation only are
considered, the Fock approximation can be used without
problem. In this context, an upper bound to the ground-
state energy can be written' (here, r has been substituted
for R to indicate a continuum variable):

Ep= fd r @p(r)P 4p(r)

+g fd r f d r, ~8&
~

exp[il (r —r, )]
I, n

4„(r)4„'(r,)
X @p(r)@p(rl ),

ep —1 —e„
(20)

EP=T+T~+T2

where

(21}

where the I4„(r}J form a complete variational model
spectrum, the e„'s being its eigenvalues. Here we will use
the usual Gaussian model spectrum of variational param-
eter P. This is the best one-parameter spectrum for the
free polaron. '"' Note that (20) differs from the usual
expressions for Ep for two reasons: first, the electron-
phonon interaction potential has been renormalized from
VI to BI, because of the Zak correction to the continuum
approximation and, second, a Debye cutoff at L is present
for the I summation.

Evaluation of (20) with a Gaussian spectrum (of varia-
tional parameter P) ' and a Debye cutoff (L) gives

T =3P2I2,
' 1/2

2 00

T, = — apf—dr
7r 0

(1 e 2P t)1/2—
(1 e

—2p t)l/2 21/2p

3/2 2 1/2 22 aaP d
e P

y
L

(1 —2p t)l/2
p (1 e 2p t)1/2 (1 e 2p t) 21/2p

21/2pLe L(1—e —')/2P

( 1
—2P t)1/2

This equation has to be minimized with respect to P.
tt't(x) is the error function. All the t2 contributions com-
ing from the Fock approximation are present. Because
(21) was derived from a perturbative expansion in t2, the
a contributions arising from (20) have not been written
since they would not have been complete: the expansion
in (9}was truncated to the second order.

In (21), T results from the kinetic energy of the elec-
tron, T, results from the Fock term with a Debye cutoff,
and T2 results from the Zak corrections to the continuum
approximation. If the limits a ~0 and L~~ are taken,
the usual expression for the Fock approximation for the

free polaron is found
' 1/2

3p2 2
p apf "dt

—fe

(1 —2P t)1/2
(22)

If only a =0 and L is finite, T2 ——0 and we find an energy
(Ep ——T+Tl ) already derived by Schultz and by Sumi
and Toyozawa" (in the case where the interaction with
the acoustic phonons is neglected). The resulting expres-
sion contains the Debye cutoff but not the other correc-
tions to the continuum approximation. In weak cou-
pling, the minimization of Ep gives P=0. An asymptotic
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expansion of (21) can then be done and we find

4 2

Eo= — tan 'L+ (L —tan 'L) .
7T

(23)

2a 4a aL
E0 ———a+ +

mL
(24)

The first term of this equation is the usual weak-coupling

This is the same result as that found from perturbation
theory [Eq. (18)]. Without the Zak correction, it was
found by Sumi and Toyozawa" in the same limit. The
corrections to the continuum approximation can be ob-
tained from the large-L litnit (L »1) of (23):

ground-state energy, the second term is the correction
coming from the Debye cutoff and the third term comes
from the Zak corrections to the ground-state energy.
The last two terms are of the same order of magnitude
since a is proportional to L '. The correction coming
from the Debye cutoff' (the second term) is the same as
that found by Schultz from the Feynman path-integral
formalism.

In strong coupling, minimization of (21) will generate a
large value of P. For these values of P, an asymptotic ex-
pansion of (21) can be obtained. This expansion cannot
be easily done for T2 in its actual form. It can, however,
be rewritten in a more tractable form, after integrations
by parts:

4aa m
2

2 2

' 1/2
L

134

e (2t) —1)t

+ — P(1 —2P )f dt (1—e t ')'+
2 0 (1 e

—2t) t)1/2 v'2P
L (1—e

—2P t)1/2

Vzp
(25)

We have to consider two limits: P »L and L »P. First,
for P»L and for large values of P, exp( 2P t)~—0 and
we obtain

&min =
' 1/2

2 a 4V 2tt a
9m

(28a)

and

1/2
2 L

P4 (26a)

(28b)

and L is much larger than a. We find, from (21), using
(25) for T2 and a procedure described by Schultz, 9

+ L + + —31n2.a 2a 4a aL 8a a
3tr nL

T2

1/2

2aP a
2 3 2

Lx
' 1/2

Le (L /2P)—(26b)

Minimization of Eqs. (26) to which we add T gives (for
P»L)

2aL 2a L
0 3

+3P2 (27)

with

2aL
min

4a aL
15m

Equation (27), without the Zak correction, is the same as
that found by Sumi and Toyozawa" in the same limit.
The first term is the strong-coupling limit of E0 calculat-
ed with a Debye cutoff. It is the same as that found by
Lee and Pines' in the same limits. The second term of
(27) comes from the Zak correction to the continuuin ap-
proximation. It is of the same order of magnitude as the
first term, L being proportional to a -1

For L »P, P minimizes to

The first term is the usual strong-coupling polaron
ground-state energy. The second term is the correction
coming from the Debye cutoff to the first term. The two
last terms come from the Zak correction to the Frohlich
Hamiltonian. The second and third terms have the same
dependence on a and L and are of the same order of mag-
nitude. They are identical to the corresponding terms for
weak coupling [Eq. (24)]. The second term is the same as
that found by Schultz for all values of a: it results from
a Debye cutoff done on the electron-phonon interaction.

A few remarks can be made about the above results.
First, in weak coupling and in strong coupling when
L »P (or a), the corrections to the continuum approxi-
mation are exactly the same: a term in L ' coming from
the Debye cutoff and a second term in a L coming from
the Zak corrections. Because a is proportional to L
these two terms are of the same order of magnitude and
are proportional to a length that characterizes the
discreteness of the lattice. In the remaining limit [strong
coupling (a»1) with L «P or a], the effect of the
cutoff is more dramatic: the strong-coupling behavior in
a disappears. The resulting ground-state energy is pro-
portional to a, a behavior typical of weak coupling. This
suggests that an important Debye cutoff can reduce
enough of the electronic recoil correlations to eliminate
the strong-coupling regime. The polaron radius then be-
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FIG. 1. Ground-state energy of the polaron as a function of
a, for L =10 and S =0.2777. The solid curve is for Eo, the
dashed line for Eo, and the dotted line for Eo.

FIG. 3. Ground-state energy of the polaron as a function of
L, the Debye cutoff, for a =3 and S =0.2777. The solid curve is
for Eo and the dashed one for Eo.

comes so small that phonons of very short wavelength
would be necessary to describe the lattice distortion
around the electron. If these components are absent be-
cause of an important cutoff (L «P), the strong-
coupling regime can no longer exist. In that case, the
Frohlich Hamiltonian is no longer valid. This shows that
the asymptotic strong-coupling behavior of the Frohlich
Hamiltonian can never apply to a real crystal. This is be-
cause, for a real crystal, L is always finite and, for the
asymptotic case, we can always find a value of a for
which L «P.

V. NUMERICAL RESULTS

In this section, we present numerical calculations for
the ground-state energy of the polaron, as calculated
from Eqs. (21}. These results will be presented for three
levels of approximation: the ground-state energy as ob-
tained from the continuum Hamiltonian (Eo ), its value

calculated with the Debye cutoff' (Eo ), and finally its
value including the Debye cutoff and the Zak second-
order correction (Eo ). Also, the numerical values of
these corrections will be given in the case of real crystals
in order to test the validity of the continuum approxima-
tion and of the Frohlich Hamiltonian.

In order to do these calculations, we need a relation be-
tween a and L. From Eq. (12}and the definition of L as
being n /a ', we find

a=—
L (29)

where S is a geometric factor depending on the crystal
structure. From the above definitions, it is calculated to
be 0.2777 for the zinc-blende structure, 0.5554 for the
cesium chloride structure, and 0.3206 for the sodium
chloride structure. These values have been obtained as-
suming an ionic radius equal to half the distance between
two nearest-neighbor ions.
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FIG. 2. Ground-state energy of the polaron as a function of
a, for L =5 and S=0.2777. The solid curve is for Eo, the
dashed line for Eo, and the dotted line for Eo.

FIG. 4. Ground-state energy of the polaron as a function of
L, the Debye cutoff, for a=20 and S =0.2777. The solid curve
is for Eo and the dashed one for Eo.
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The numerical calculations have been done on Eqs.
(21). They have been checked with the asymptotic expan-
sions of Sec. IV and were found to agree to more than six
digits. The result is shown in Figs. 1 —4. In Fig. 1, we
have plotted Eo, Eo, and Eo as a function of a for a be-
tween 0 and 20, for S =0.2777 and for L = 10. In Fig. 2,
the equivalent graph is presented for L =5. From these
figures, we observe that the effect of the Debye cutoff on
TI and of the Zak correction is to reduce the self-energy
of the polaron. We also note that the effect of the Debye
cutoff is more important than the effect of the Zak
correction. This is due to our choice of parameters:
L = 5 or 10 and S =0.2777. This choice is, however, typ-
ical of real crystals for which S is always smaller than 1,
reducing the contribution of T2, this term being propor-
tional to a . We also observe that the effect of the Debye
correction is much more important for L =5 than for
L =10. Note also that, for these curves, we are in the
L »P limit. As a consequence, the L &&P limit can nev-
er be reached for existing crystals.

In Figs. 3 and 4, we plot Eo and Eo as a function of
the value of the Debye cutoff L, for a=3 and 20, respec-
tively. Features similar to those of the first two figures
are seen: small value of the Zak correction and a de-
crease in the self-energy of the polaron. For large L, the
value of Eo is asymptotically obtained. In Fig. 3, P mini-

mizes always to zero and L is always larger than P. In
Fig. 4, P minimizes asymptotically around 5 and both
limits (P»L and L »P) are present on the curve. In
both curves, we see that the effect of the discreteness of
the lattice is important only for L smaller than —10.

In Fig. 5, we have plotted P;„,the value of P that min-

irnizes the ground-state energy, as a function of a, for
L =5, 10, and without cutoff. This quantity (P) charac-
terizes the inverse radius of the polaron in the strong-
coupling regime. The Zak correction is not included be-
cause, for parameters of interest, it does not change
significantly the value of P;„. In this figure, we see that
the effects of the corrections to the continuum are more

p 6

10 14 16 18 20
a

FIG. 5. P;„as a function of a as obtained from the minimi-

zation of T+Tl, without T2. The solid curve is obtained
without cutoff, the dashed one with L = 10, and the dotted one
with L =5.

important than in the case of the ground-state energy.
They can be as high as 50% for the same parameters as
before and are apparent for much larger values of L P;„.
is seen to increase linearly with a, for large a, when the
cutoff is absent, while for L =5 it is not the case. Also on
this graph, we see that the P»L limit can be reached
only for very small values of L (around L = 1 for a =20).

We have also calculated the corrections to the continu-
um approximation for a few polar crystals. In Table I,
we present Eo and Eo and the percentage of correction
to the continuum approximation, together with a, L, and
S for GaAs, CdTe, AgC1, AgBr, T1C1, KC1, RbC1, LiF,
and NaC1. Most of the parameters used in these calcula-
tions come from Kartheuser. ' In the last two cases, we
used the electron bare mass in the calculations, since the
band mass is unknown. From these data, we observe
that, for these crystals, the corrections to the continuum

TABLE I. Ground-state energy of the free polaron in polar crystals. In this table, a is the electron-
phonon coupling constant, L the Debye cutoff, and S the geometric factor defined in (29). Eo and Eo
are the polaron ground-state energy as calculated from the continuum approximation and from its
corrections, respectively. In the last column, we put the percentage of correction brought by the
corrections discussed. The values of the parameters have been taken mostly from Kartheuser (Ref. 17).

Crystal

GaAs
CdTe
AgBr
AgCl
Tlcl
Kcl
RbC1
NaC1'
LiF'

0.068
0.315
1.56
1.94
2.56
3.44
3.81
4.86
5.13

22. 12
21.74
17.55
13.37
19.45
9.05
9.44
5.94
5.31

0.2777
0.2777
0.3206
0.3206
0.5554
0.3206
0.3206
0.3206
0.3206

Ec
(meV)

—2.499
—6.561

—26.63
—44.66
—52.58
—91.99
—85.04

—163.1
—424.6

Ez
(mev)

—2.417
—6.342

—25.48
—42.15
—49.88
—84.42
—78.33

—143.0
—366.5

100(EEO/Eo )
(%')

'

3.3
3.4
4.3
5.6
F 1
8.2
7.9

12.3
13.7

'For these crystals, the band mass being unknown, the bare mass has been used.
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approximation never exceed 14% (the largest correction
is 13.7% for LiF and it has been calculated using the bare
mass}. Also, L is always larger than 5, while a is always
smaller than 5.2. As a result, real crystals always satisfy
to the condition L »P. In fact, for a free polaron, P
minimizes to zero for all the crystals studied above.

As a conclusion, the corrections to the continuum ap-
proximation for the ground-state energy of the polaron
are seen to be relatively small for the polar crystals de-
scribed above. They never exceed 14%. However, their
effect on P;„, a parameter characterizing the internal
structure of the polaron, is much more important. Also,
we have seen that these crystals are all in the regime with
L »P. This means that the electronic recoil correlations
are not eliminated by the cutoff. Consequently, in these
crystals, particularly those with the strongest electron-
phonon coupling constants, polarons with internal struc-
ture can exist, even in the framework of a discrete formu-
lation.

VI. CONCLUSION

In this paper, we have investigated how corrections to
the continuum approximation of the Frohlich Hamiltoni-
an describing the dielectric polaron affects the properties
of its ground-state energy. These corrections include a
Debye cutoff (of wave vector L } and a renormalization of
the electron-phonon interaction coming from corrections
to the effective-mass approximation. The starting point
has been the small-polaron Hamiltonian of Emin, with
an arbitrary electron-phonon interaction. This Hamil-
tonian has then been formulated in the kq representation
of Zak. The resulting Hamiltonian is equivalent to the
small-polaron Hamiltonian of Emin if a short-range in-
teraction is chosen. Also, the Frohlich Hamiltonian can
be derived from it if an expansion for a slowly varying
potential is done, using the continuum limit as a starting
point. The resulting Hamiltonian has the same form as
the Frohlich Hamiltonian, but with the summation over
the phonon wave vectors limited to the first Brillouin
zone and the electron-phonon interaction potential V& re-
normalized to V&(1 —a 1 ), a being a constant of the or-
der of the atomic radius. If the continuum limit is taken
(a ~0 and L~ oo ), it tends towards the usual Frohlich
Hamiltonian.

From this new Hamiltonian, the ground-state energy of
the polaron has been calculated, using second-order per-
turbation theory which is valid for small electron-phonon
coupling and the Fock approximation which gives an
upper bound to the ground-state energy for any strength
of coupling. We find that two limits are important.
First, in weak coupling and also in strong coupling when
a is not too large, L, the cutoff wave number, is much
larger than P. In this case, the continuum polaron behav-
ior is preserved with corrections proportional to a/L re-
ducing the self-energy of the polaron. Second, in strong
coupling and when L «P, the corrections are more im-
portant and the strong-coupling behavior in a is de-
stroyed. However, for large polarons in existing polar

crystals, L is always larger than P and only small correc-
tions to the continuum limit are predicted. The largest
value of these corrections for the ground-state energy is
13.7% in the case of LiF.

Recently, cyclotron resonance was done on both silver
bromide and chloride. ' In that experiment, a beautiful
agreement concerning the dependence of the cyclotron
mass on the magnetic field was found with the path-
integral theory based on the continuum approximation.
Unfortunately, for the silver halides, the corrections to
the continuum approximation are not large enough to be
seen. The error for the ground-state energy is estimated
to be of the order of 5% (see above). This experiment
measures the difference in energy between the ground-
state energy of the polaron in a magnetic field and its first
Landau excited state. Because the radius of the Landau
orbit is much larger than the lattice spacing, even for the
largest magnetic field that was used, the corrections to
the continuum approximation for the first two Landau
levels are expected to be also of the order of 5%. The
curvature of the dependence of the effective mass on the
magnetic field is only slightly affected by these correc-
tions, even if the energies themselves can be shifted sub-
stantially. This conclusion is consistent with the previous
discussion: the corrections to the continuum approxima-
tion of the free polaron are small for real crystals. They
can become important in high fields only if the localiza-
tion due to these fields is important enough to be smaller
than a unit cell. It is not the case for the above experi-
ment: the magnetic field is not high enough.

In the previous sections, we have considered the effects
of the corrections to the effective-mass approximation in
the Frohlich Hamiltonian. These corrections have been
calculated in the continuum limit. The results that have
been obtained are thus applicable to large polarons.
Also, a Debye cutoff has been included in the phonon
wave vectors. This takes account of the discrete charac-
ter of the lattice. There is another point that has not
been treated here: we have used in the present calcula-
tions the electron-phonon interaction potential derived
by Frohlich' in the continuum approximation. This is
evident from the use of the dielectric constants to de-
scribe the lattice polarization. This is correct as far as we
consider a long-range potential as it is the case for a
dielectric polaron in a polar crystal: this potential is in
l ' and is more important near 1=0 (for long wave-
lengths). However, if a polaron with a radius of the order
of a lattice parameter is considered, corrections to this
potential for interactions with nearest neighbors have to
be considered. One would then speak of a polaron in a
regime intermediate between large and small polarons.

We have seen that the corrections to the continuum
approximation for the ground-state energy, in the large-
polaron limit, are rather small in the case of existing po-
lar crystals. These corrections are expected to be larger
for a polaron in a large external field (polaron bound to a
defect or in a magnetic field). It is the case because these
fields have the effect to localize the polaron wave func-
tion. On the other hand, they are expected to be smaller
in the case of excited state, since the wave function is
then more extended. They are expected to be larger for
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surface or interface polarons, again because of a localiza-
tion of the wave function. Also of interest is the case of
intermediate polarons: polarons in a configuration for
which neither the small polaron nor the large polaron is
valid, as is the case in the perovskites. ' These points
will be treated in future publications.
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