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heavy-fermion and high-T, superconductivity
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Real-space pairing among hybridized electrons in a periodic system is proposed. It is mediated

by the s-d exchange of the type which leads to the Kondo effect in impurity systems. The
effective Hamiltonian in the hybridized basis is transformed into a form similar to that for a
narrow-band case. The importance of the results for both the heavy-fermion and the high-T, su-

perconductors is briefly discussed.

In this paper we propose a novel approach that deals
with singlet pairing mediated by antiferromagnetic ex-
change interactions between conduction (c) electrons and
localized (f) electrons in hybridized systems modeled by
the periodic Anderson model (PAM). Namely, we visual-
ize explicitly how the singlet spin correlations in real space
can lead to superconductivity in heavy-fermion systems. '

We also briefly discuss the connection with the exchange-
mediated pairing proposed recently for narrow-band elec-
trons. 2 6 The present approach thus provided a synthesis
of the concept of antiferromagnetic c-f interaction7 with
the recent concept~ of exchange-mediated pairing in nar-
row bands.

The pairing mechanism is supplied by the second-order
coupling V~/U, where V is the magnitude of hybridization
between c and f states and U is the magnitude of the
intra-atomic (f-f) electron repulsion. However, unlike
the standard treatments, 9 the f-c coupling neither
diverges nor vanishes9 as the bare f-level position (af)
approaches the Fermi level. This situation arises because
only a nondivergent part of higher-order processes is
transformed out by an appropriate canonical transforma-
tion. In effect, the PAM is divided into a part corre-
sponding to the U ~ limit that can be treated with the
help of methods devised recently, '0" and a part repre-
senting hybrid (f-c) pairing which is missing in the above
treatments.

The hybrid f cpairing p-rocess has been proposed re-
cently. '2 Here, we derive explicitly the microscopic Ham-
iltonian containing this pairing and show how the effective
two-band situation arises. The method of diagonalizing
the effective Hamiltonian also differs from that of Ref. 12.

The starting Hamiltonian may be written in the Wan-
I

nier representation as
I

Z tmncmacna+ &fZNia
m, n, a l, O'

+URN;tN;)+ g V; (a;~~ +ct a; ), (1)
l i,m, cr

where the (i,j) label f states, the (m, n) label delocalized c
states, and N; a;f~; is the particle number operator for
the localized f states. The first term describes the band
energy of the delocalized c states, the second and third,
single-particle and Coulomb (atomic) energies for f
states, whereas the last represents the hybridization ener-

gy, involving both intra-atomic (i m) and interatomic
(imam) parts. The matrix elements t „and V; represent
hopping and hybridization integrals, respectively. We
choose the matrix elements Vi as reaL Also, we assume
that U& ( p ( and U)) ( Vi (, where p is the Fermi ener-
gy. In other words, we consider here the large-U limit.
Then, the charge transfers f c and f c can be divided
into low- and high-energy processes. Explicitly, we intro-
duce a decomposition

at acma+ Cmaaia = (I Ni a+Ni -a) (ataCma—+Cmaai a)t

-(1—N )( )+N ( )

The first term represents the processes which do not in-
volve U in any order, while the second does involve U and
hence leads to higher-order mixing processes. The basic
idea introduced at this point is to canonically transform
out the second term only and to replace it by an effective
interaction incorporating higher-order virtual processes.
In this manner we avoid singularities that are present in
the original Schrieffer-Wolff formulation. 7 The effective
Hamiltonian obtained in that fashion reads

0= Z tmn+ZVmiVn U+N, ll, d l U+ ef
Cmmn +&gZW

l,a

+g U+ gV; N;tN;i+ g V; (1 —N; — )(a;~~ +c~~; )2
U+ &f m

' ' ' ima, ,

2~im Vmi I 1 —a+2 (Si' Sm 4 Ninm)+ Z Vmi Vin~i cm —acna i
i m U+ay U+ &f i,m, n, cr
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where

SP=—a;~; -a, N; gN;a, and nm gnma

The Hamiltonian contains renormalizations of the
conduction-band width and of U. More important are the
last two terms: the antiferromagnetic f cc-oupling and
the spin-fiip scattering of c electrons by the fmoments.

The Hamiltonian (2) may be rewritten in a more com-
pact form by introducing the pairing operators in real
space

site ~

1 a Tr ~&

$F

site i

VIRTUAl.
HOPPING

THREE- SITE
PROCESSES

b;m- (a;tcm) —a;)c t),( t t t t
2

1
birn (a& (en/ ai 1cm ( ).

Then, the expression (3) has a closed form

(4)
site m site i site n

FIG. 1. Schematic representation of the hopping processes to
second order in V; . The hoppings labeled as 2 and 2' are alter-
native processes.

H g t „ct~„+ef+N; +URN;tN;~+ g V; (1 —Ni )(a;~~-+ct~; ) —g '"
b;t b;„,

imn, U,+ef
(s)

where the irrelevant renormalization of U in (3) has been
ignored. The first four terms represent the PAM in the
U ~ limit while the last provides a real-space singlet
pairing off and c electrons. 'The pairing part is composed
of two-site (nt n) and three-site terms. The former rep-
resents pair binding, whereas the latter represents a hop-

ping of the conduction electron from tn to n via the local-
ized paired ~it )) intermediate state (i.e., exhibits reso-
nant behavior of the hybrid f-electron-conduction
electron bond ),6 as shown schematically in Fig. 1. The
range of the pairing interaction depends on the nature of
hybridization matrix element V(R; —R ). In the sim-

plest case of intra-atomic hybridization Vi Vb; we ob-
tain the hybrid intra-atomic pairing postulated before. '2

However, if ef 0 one encounters additionally a residual
hybridization which cannot be transformed out within the
canonical perturbation expansion formalism if ef&V.
The itinerant character of bare atomic (f) states is pro-
vided by the presence of this residual hybridization.

To draw physical conclusions from the processes con-
tained in the form (5) we can apply in principle any of the
methods' '2 proposed for the PAM in the U ~ limit

I

and treat the pairing part (the last term) in the Hartree-
Fock approximation. Having in mind the application to
the heavy-fermion case we use the simple ansatz intro-
duced by Rice and Ueda, '0 i.e., we renormalize the residu-
al hybridization term in (5) according to

Vmi (1 Ni —a) (aiacma+cmaaia): Vmi (aiacma+cmaaia)~
(s')

with q (1 —n)/(1 —n ). For the nonmagnetic state
considered here we have q q (1 —n)/(1 —n/2). Such
renormalization leads to an effective single-particle hy-
bridization by assigning to the residual hybridization the
principal qualitative function of promoting the effective
f-f hopping. In other words, the itineracy offelectrons is
provided by the residual hybridization which is nonzero as
long as nf (1. This procedure is justifiable when the
width W of the c band greatly exceeds

~
V ~, and near the

limit nf~ 1 (we have in mind the application to heavy
fermions). Incorporating (5') into (5) and taking the
space Fourier transform we obtain

H geknk +ef+Nka+ QVk (ak~ka+ck~ka) QVk Vqbk bq, —
k,a k, a k, a U+ ef N k, q

where Vk q
'1 Vk, and ek and Vk are the Fourier transforms of t „and V; . Also, '3

bk (aktc —ki
—ak)C —kt )/W2.

Note that the term UJN~tN;~ in (5) has been neglected since the renormalization V; Vi is caused by the cir-
cumstance that, for U ~, we have that (N;tN;~) 0.

Next, we decouple the last term of (6) using the Hartree-Fock (BCS-type) approximation in real space

bt b;„=(bt )b;„+b(t (b;„)—(bt )(b;„)+ ,' g[(at~„+ct~; )S—SS-—
+

& g(N; ~t~„+N; (ct ~„)—N; (ct~„)),— —
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where

S =&a;t~ ).
The first three terms in Eq. (7) provide a singlet paired
state, the next three renormalize the residual hybridiza-
tion

Vmi Vin
Vim Vim g S—

n +cf
while the last three renormalize both the position of the
atomic level

Vmi Vincf- cf —g &e -~„-.),
mnU, +cf

and the hopping matrix element

~ VmiVin-
tmn tmn ~ NiU+ cf

All the additional contributions are of second order and
should not change the essence of the problem. Hence, we
neglect them hereafter and assume that the system has no
spin polarization.

Performing the transformation to the hybridized basis
for the operator bk we have

bk ——(sin28k)(adyta —t, ~

—ak~at kt)/42+(cos ek)(ajtPt k~
—aj~Pjt)W&

2
—s(sin ek)(pjta-k~ —pj~a —kt)/42+ 2 (sin2@)(pjtpt kJ pJ/p —kt)/J2.

On substituting this expression into the Fourier transform of (7) and the resultant in to (6), we arrive at the effective
Hamiltonian

H g(Ek ajoag~+E-k+pJ pk ) — g
Vksin2ek(adyta-k)

—aj)a-kt)/42+2
~

A
~ N/(U+cf)+

sh,

k, cr U+cf k

where 6= —(I/N)gqVq&bq) is the gap parameter; the
angle of mixing is determined from the condition

tan(28k) 2Vk/(ck cf),

and the energy of quasiparticles in the two hybridized
bands (a and p) are given by

~ i i 2 ]/2
gk+ g~

Ek+ + +Vk

Additionally, we have assumed that V-k sVk—= +'Vk.
Hence, the transformation to the hybridized basis leads to
a two-band situation. ' The pairing takes place in the a
band if nf (1 and the overlap between the hybridized
bands is small (e.g., when there is a hybridization gap or
pseudogap between the bands). In that case Eq. (8)
reduces to the BCS Hamiltonian for the a band

H-QEk aj ak-
k, a

+&gyk(adyta

k~
—a)~a —kt)/J—2+H.c. , (9a)

k

with

—2$ Vk Vk
)'k (91 )U+cf (ck —cf) ll+4Vk/(ck —cf)'] 't'

For more than two electrons per site this Hamiltonian
should'be understood as representing hybridized hole
states. The first basic conclusion one may draw from the
form (9a) of the effective Hamiltonian is that the heavy
quasiparticles provide pairing if the Fermi energy lies in
the peak region of the density hybridized states. ' The
factor yk introduces, in general, an anisotropic pairing; it
vanishes in the localized-moment limit (nf 1), as does

the pairing. Additionally, if Vk V (i.e., if the hybridiza-
tion is intra-atomic), then in the mixed-valence limit

~ ck cf ( ((
~
V

~
the Hamiltonian (9a) reduces to the

BCS Hamiltonian with almost isotropic s-wave pairing
among the occupied hybridized states. Moreover, it is
crucial to note that Eq. (9a) is of the same form as that
derived for exchange-mediated superconductivity in a
strongly correlated narrow band, 2 s where the pairing is
supplied by the kinetic exchange term'5 t 2/U. Here, the
role of d-d exchange is played by the f-c kinetic exchange
V2/U In oth. er words, we have ~roved a formal
equivalence of the previous approaches to high-T, su-
perconductivity (which start from the Hubbard Hamil-
tonian and include the kinetic exchange in the metallic
phase'5 for n ( I) with the present approach starting
from the periodic Anderson-Wolff Hamiltonian (1). The
difference is in the k dependence of band energies (qck
and Ek , respec—tively), in the k dependence of yk, and in
that for the present case the pairing vanishes as nf 1. '

One should also note that in the fourth-order terms(-V4), which were neglected in the derivation of (3), an
f-f exchange-mediated pairing appears that corresponds
directly to that considered by Anderson2 and others. 3

In physical terms, we have demonstrated the relevance of
the exchange mediated -pairing for the heavy-fermion
systems. The hybrid pairs move as long as the residual hy-
bridization V does not vanish.

There is, however, one difference between the narrow-
band formalisms and the present one. Namely, the
former lead to a Mott insulating state in the limit n 1.
Hence the superconducting phase evolves into antiferro-
magnetic or other 4 insulating phases. In the present
model, the ground state for n =1 is metallic or semimetal-
lic, depending on the position of cf with respect to the bot-
tom edge of the conduction band. It is not yet clear
whether the concept of Mott-Hubbard subbands can be
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Ek ~ [(Ek— p )2+ (J2&y ) 2] 1/2 (10)

We can also calculate the self-consistent equation for the

gap parameter

S ~ 1 PEa1- gyk Vl, sin 28k tanh& k Ek

This equation differs from the corresponding BCS equa-
tion for the isotropic case by the presence of the factor
(J2)yk V$. For a simple estimate of the critical tempera-
ture [it is a solution of Eq. (11) for 6 0] this factor can
be approximated by considering the case Vk V and re-
placing ak

—a with a constant equal to ( af ) = ) af —p ~.

Then, Eq. (11 reads

1
2q V4 1 '~U de

h
~'a

( )U+af (ac)'+4V'" '

applied to the hybridized band (see, however, Ref. 17).
The Hamiltonian (1) is also a good starting point in the

treatment of high-T, superconductors, where the quanti-
ties V; play the role of intersite hybridization between
the d„2»2 state of the Cu2+ ion and the neighboring p„
and p» states of 0 . If we believe that for this case the
direct p-p overlap between neighboring anions is small
compared to V; then neither the renormalization
V; q

'~2
V~ nor the Hartree-Fock approximation of the

second-order term seems to be appropriate. In other
words, the present paper may be regarded as dealing with
a regime (W»

~
V

~
) complementary to that discussed by

Zhang and Rice, 's who ascribe the main role to hybridiza-
tion in forming the bare hybridized bands, and calculate
the d-d pairing to fourth-order terms in V. However, one
can see a qualitative difference between the present pair-
ing mechanism represented by (5) and those of either
Hirsch'9 or Emery. 2o Namely, here we have an admix-
ture of 2p and 2p states to the essentially 3d states of
Cu. In effect, the hybrid p-d states are those of holes
hopping from one oxygen to another via the Cu 3d 0 inter-
mediate configurations. The 3ds states are not involved.
A more quantitative analysis requires inclusion of the
fourth-order terms in (5) as well.

The Hamiltonian (9a) may be easily diagonalized to
yield quasiparticle energies in the superconducting phase
of the form

re,

2V
kg T, 1.14 expU+ sy

U+ ey , [(~a)'+4V'],
4qp u V'

(12b)

where p(p) is the density of hybridized states (per site per
spin) at the Fermi energy. In this equation we have as-
sumed that the characteristic energy corresponding to the
Debye temperature in the ordinary BCS case is
J 2V /(U+sf) the f-c coupling constant (exchange in-

tegral). One should notice that T, 0 if either U
or q 0 (nf 1), or V 0. Also, a maximal value of
T, =J/kq is achieved for da 0. However, the weak-

coupling approximation made in deriving (12b) may then
be violated as illustrated below.

For numerical estimate of Eq. (12b) we take U 10 eV,
ha 1 eV, q 0.04 (i.e., n 0.98) and p(p, ) 200
states/(eV spin) (i.e., y-I 9 molK2). Then T, =0.1 K
for V 0.5eV (V 20meV). The value T, =0.6 Kisob-
tained, e.g., for U 8 eV, d,c 2 eV, and V=0.6 eV.
Hence, we obtain a reasonable value of T, for heavy-
fermion materials taking typical values of the parameters.
Additionally, T, grows by more than two orders of magni-
tude when

~ V~ increases toward the value 1 eV. This
rapid increase of T, may, however, be an artifact of the
method of deriving (12b), since for the first set of parame-
ters J=735 K, a value comparable to the width of the
lower hybridized band if the af level is closer to the bot-
tom edge of the bare c band. For a better evaluation of
the weak-coupling approximation one requires a self-
consistent determination of nf for the other specified pa-
rameters.

Summarizing, we have provided a microscopic model of
pairing between hybridized electrons. It is caused by anti-
ferromagnetic interactions between the two sets of elec-
trons, each occupying partially filled orbitals. The hybrid
(interband) pairing may be represented via an effective
BCS Hamiltonian representing paired states in a single
hybridized band. In this manner we provide a framework
for understanding both heavy-fermion and high-T, super-
conductors within the same (exchange-mediated) mecha-
nism of pairing, even though the method of solution of the
effective Hamiltonian (5) may be different for the two sit-
uations. A more complete analysis requires inclusion of
the fourth-order processes, as well as a more detailed dis-
cussion of importance of the Kondo-lattice effects.

(12a)

where P, (kgT, ) and where the integration is carried
out over the lower hybridized band stretching from EL, to
EU. The above is formally a BCS-type equation. There-
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