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Ballistic electron transmission through interfaces
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We report on a new method for calculating ballistic electron transmission through epitaxial inter-

faces and its application to a silicon twist boundary. This method is based on constructing the elec-
tronic states of the infinite system from the generalized Bloch states for each layer in the structure;
these states are matched together at the layer boundaries to construct the composite wave function.
We find that the conduction-band electrons and the degenerate light and heavy holes within thermal

energies of the band gap are strongly scattered by the twist boundary, but that the split-off holes in

the same energy range are not. These results, which are unexpected from naive effective-mass con-

siderations, can be simply understood in terms of Aux patterns of the band-extrema wave functions

on the interface-matching plane.

I. INTRODUCTION

The increasing ability to grow epitaxial interfaces be-
tween semiconductors and between semiconductors and
metals makes it important to understand how structural-
ly perfect interfaces scatter electrons. For example, the
possibility of using ballistic transport in multilayer struc-
tures to make high-speed transistors requires an under-
standing of what happens to electrons at the interfaces of
the proposed devices. We present a new approach, ideal-

ly suited to calculating transmission coeScients for inter-
faces, and demonstrate it by application to a silicon twist
boundary.

This method is based on calculating the electronic
states of the structures of interest, and using these states
to calculate physical properties. Since the states of the
actual infinite structures are calculated rather than those
of supercells, the wave functions of the interface system
contain the transmission and reflection coeScients direct-
ly. Besides these properties of scattering states, the ener-
gies and wave functions of interface states can be found
using this method. The wave functions can be used to
calculate matrix elements to describe processes like opti-
cal transitions. Problems that have been studied by other
theoretical methods based on calculating the electronic
wave functions of infinite systems include stacking-fault
scattering in copper, surface states, heterojunc-
tions, ' ' negative electron-affinity photoemission, ' and
optical matrix elements. '

A silicon twist boundary in a (111)plane is the simplest
system on which we could test the method and still get
nontrivial results; in fact, the results we found were
surprising, particularly from an e8'ective-mass point of
view. We found that near several band extrema the
transmission across the twist boundary goes to zero. The

simple explanation we found for this suggests that this
should be a quite general result, and that such extrema
might be identified from simple standard band calcula-
tions.

The method basically consists of constructing the gen-
eralized Bloch states in each material, and joining them

together by matching them across the interfaces in the
structure. The generalized Bloch states, which include
both the usual propagating Bloch states and the evanes-
cent states, are constructed in each layer by a variationa1
basis-function approach leading to an eigenvaIue problem
for the boundary conditions of the states. The eigenvec-
tors can be used to reconstruct the states. The states are
matched through a self-consistent interface layer which
allows the potential to vary smoothly from one material
to the other. The matching is done using a constrained
least-squares fit which preserves unitarity in the interface
scattering matrix. For maximum generality, our applica-
tion uses linearized augmented plane waves (LAPW's) as
a basis set.

In Sec. II of this paper we discuss the general approach
we have taken and its advantages, particularly in compar-
ison to an interface Green-function approach. We illus-
trate our point with a one-dimensional example. The
general method is presented in Sec. III, leaving specific
application to the LAPW basis set to the Appendix. In
Sec. IV we present the results of applying this method to
electronic states of a silicon twist boundary. Finally, in
Sec. V, we summarize the main points of this paper.

II. GENERAL DISCUSSION

There are straightforward ways to find the wave func-
tions for a composite of two materials given either the
Green functions' or the generalized Bloch states (includ-
ing evanescent states) of both materials. If the potential
permits an exact closed-form solution for the wave func-
tions, the Green function can be constructed exactly and
can be used to solve the composite problem. An example
of such a potential is the pure muSn-tin potential upon
which the layer Korringa-Kohn-Rostoker' (KKR)
theory is based. For an arbitrary potential, there is no
closed form for the wave functions, and a variational cal-
culation in some basis is the only practical way to calcu-
late them. Two possible ways to approach the composite
problem are to use the variationally computed Bloch
states in the spectral representation of the Green func-
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tion, ' or to use a different variational principle to com-
pute the generalized Bloch states from a basis set. In
this section we discuss difficulties in using the spectral
representation for an interface or surface problem, out-
line the variational form we use for the generalized Bloch
states and the joining layer, and compare the approaches
with a one-dimensional example.

Single-electron Green functions are used for finding
solutions of Schrodinger equations with inhomogeneous
terms. An interface system can be viewed as a special
case of this in which the boundary values from one half-
system are the inhomogeneous terms for the other half-
system. In this case an interface Green function is con-
structed from the two half-systems through the bulk
Green functions and their spatial derivatives evaluated at
the matching plane. The bulk Green function satisfies an
inhomogeneous defining equation such that operating on
it by the Hamiltonian minus the energy gives a 5 function
of the two spatial arguments. For interface systems it is
useful to integrate the defining equation by parts giving a
result in terms of derivatives of the bulk Green function
evaluated on the interface plane,

lim
BG(E,r, r')

Bz z=0

—lim
z'-O+

BG(E,r, r')

z=0
=2m5' '(R, R') .

The position of the particle is denoted by r=(R,z),
where the position parallel to the layer is given by R and
the direction normal to the interface is the z direction. '

(Throughout this paper we use the conventions that
three-dimensional vectors are lower-case boldface Roman
letters and two-dimensional vectors parallel to the inter-
face plane are upper-case boldface Roman letters. ) This
discontinuity is used in solving for the interface Green
function' in terms of the Green functions of the subsys-
tems.

The bulk Green function can be constructed from its
spectral representation by a sum over all propagating
states in the bulk,

e '"'u„(k,r)'u„(k,r')e'"'
G(E, r, r')= lim g f„0„(2~)' E E„k+iq—

(2)

the limit that the number of bands kept in the spectral
representation goes to infinity.

The Green function calculated from its spectral repre-
sentation is also susceptible to incorrect behavior at large
distances from the interface if the integration over the
wave vectors is not done sufficiently accurately. For a
constant potential in one dimension, both of these
features are illustrated in Fig. 1, in which we compare an
exact decaying exponential with approximations generat-
ed by the spectral representation and by the variational
construction method we describe below.

In using the spectral representation with a finite set of
variational eigenfunctions, we are implicitly giving an ex-
pansion of the Green function which is analytic
throughout space. The exact solution of the Schrodinger
equation for a smooth potential is, of course, analytic. It
is well known, however that piecewise analytic functions
can often provide better approximations to unknown ana-
lytic functions. Examples are the spline fit, and finite-
element methods. (LAPW basis functions themselves,
in fact, are already only piecewise analytic because of
their augmentation in muffin tins. )

In this spirit, we find that the best way to construct
generalized Bloch states is one layer at a time. Our varia-
tional basis states with a given set of coefficients only
represent a state in one layer; when we move to the next
layer, we use a new set of coefficients. The coefficients
can be chosen to preserve continuity in value and slope
across each interface.

We use a bivariational formalism that includes double-
sided boundary conditions in the variational functional
for one layer to set up an eigenvalue problem for the

OJ
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Q

O

where n is the band index, k is the wave vector, u„(k,r) is
the periodic part of the Bloch state, and the k integral is
over the Brillouin zone. In any numerical construction
based on this equation, the sum over the energy bands
needs to be truncated at some finite number and the in-
tegral over k needs to be approximated. With this trun-
cation, the Green function no longer obeys the inhomo-
geneous defining equation; operating on the Green func-
tion by the Hamiltonian minus the energy gives a result
that is everywhere finite. In particular, the discontinuity
in the interface Green-function equation is zero within
this approximation. The discontinuity will be zero in any
approximation for the Green function that only includes
any finite set of energy bands and is only reproduced in
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FIG. 1. A comparison of computational techniques for one-
dimensional evanescent states. The solid curve is the exact de-
caying evanescent state at an energy ( —8.23 eV) chosen to give
a factor-of-100 decay over a distance (a =5.92a&,h, ) equal to the
(111) layer thickness of si1icon. The dotted curve is the state
produced by a spectral representation of the free-particle Green
function and the dashed curve is the state produced by the
piecewise construction of the evanescent. The curves are shifted
vertically for clarity; the solid and dashed lines are identical to
within the thickness of the line.
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states. This procedure is discussed in greater detail in the
next section. In the one-dimensional example shown in
Fig. 1, a piecewise approximation to an empty-lattice
evanescent state is shown over several layers and com-
pared with the exact results and the spectral representa-
tion. The piecewise approximation used six free-electron
bands and two k points, giving a total of 12 states per lay-
er, and for a consistent comparison the spectral represen-
tation used eight k points and six bands for all space.
Note that the slope of the spectral representation curve is
zero at the origin due to the truncation to a finite number
of bands; the error at large distances is due to the finite k
spacing for small values of k.

III. METHODS

To solve for the wave functions of a composite system,
we calculate the generalized Bloch states of the layers
that make up the semi-infinite bulk regions in the prob-
lem, using the minimum layer thickness consistent with
the bulk periodicity. We then join them together either
directly or through a self-consistent joining layer, whose
potential we generate in a supercell calculation. In this
section we outline this procedure, leaving the details of
the application to a specific basis set, linearized augment-
ed plane waves, to the Appendix.

Electronic-structure methods based on LAPW basis
states have several advantages: they can be used with a
general potential (no shape approximation), they can be
used for any material, self-consistent potentials in suit-
able form are available from existing programs, and
much of the calcu1ation is independent of the energy at

I

which the states are being calculated. We use LAP%'
eigenstates of these potentials for several wave vectors as
the basis states to calculate the generalized Bloch states
for each layer. Other methods that have been applied to
semi-infinite interfaces include augmented plane waves
(APW's), empirical local pseudopotentials, tight-
binding models, '" and the empirical Kane Hamiltoni-
an. ' ' Semi-infinite surfaces have been studied by re-
lated methods based on pseudopotentials, an empirical
potential APW method, and a hybrid LAPW-KKR
method. The KKR method itself has been applied ex-
tensively to muSn-tin models of surfaces in computations
of low-energy electron-diffraction intensities.

The two approximations we make at this point are that
the changes in the potential due to an interface are short
ranged, and that the quasiparticle states which would

correctly describe the transport in these systems can be
approximated by local-density-functional eigen states.
The first approximation is quite reasonable, provided we

include a self-consistently ca1culated interface layer when

joining two very different materials. The second approxi-
mation is justified by the similarity between the quasipar-
ticle states and the local-density-functional eigen-
states. '

In the spirit of the preceding section, we calculate the
generalized Bloch states by considering a layer which can
be repeated periodically to construct the bulk crystal.
The generalized Bloch states are constructed in this layer

by a method similar to that used by Wachutka using a
basis-set expansion and a bivariational expression that
treats both the Schrodinger equation and the layer
boundary conditions variationally, ~

J=f d3r[VX*(r) VP(r)+2m( V(r) —E)X"(r)P(r)]—f do [t'(r)P(r) +X'(r)t(r)]
ce11 F

+—,
' f do I[AX(r)]'P(r)+X*(r)[A&(r)]] . (3)

The wave functions P and X are to be variationally com-
puted, the volume integrals are over a cell defined by the
faces I', the function t is the externally imposed boundary
target value on the surface of the cell, F, A, is an operator
(by convention, the symbols for operators include a caret)
on the wave function at the faces of the cell, and m is the
electron mass. ' For generalized Bloch states the ce11
over which the volume integrals are computed is a
Wigner-Seitz cell, but cells that contain less than a unit
supercell normal to the interface are also considered for
joining bulk regions together. Throughout this paper we
will differentiate between three terms: boundary values
are the values and slopes (or some combination) of wave
functions on the boundaries of a layer, target values are
the inputs to a variational calculation that would be
equaled by some boundary values in the limit that the
solutions become exact, and boundary conditions are the
restrictions, such as continuity, periodicity, or decay, that
are applied to generate certain types of solutions.

For a layer, the wave function will be of the usual
Bloch form parallel to the interface because the potential
is periodic in that direction, in which case the contribu-

tions from the side boundaries of the cell will cancel.
Since the Schrodinger equation is a second-order
differential equation, two target values on one face of the
layer (e.g., value and slope), or one on each face, fully
determine the solution. For the variational calculation,
targeting a linear combination of value and slope, on each
face, yields the best stability and convergence proper-
ties. The variational expression above, Eq. (3), uses a
target value on each face given by

tx(R) =Af(R, zx ) +f„g(R,zz ),
where g(r) is the exact solution we are trying to find, 8„
is symbolic for taking the derivative in the local surface-
normal direction and X, denoting the interface surfaces,
takes the values I., left, and R, right. The layer we are
considering runs from zL to zz. A operates in either

plane parallel to the interface, and is chosen to be
1/2

(5)
BR

with a and Eo arbitrary constants. A is used to treat
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bz(R) =A/(R, zx}+$„$(R,zz) (6)

that approximate the target values, tx(R}. We will also
need to consider the complementary set of boundary

value and slope on equal footing in the boundary condi-
tions. When the momentum parallel to the interface is

large, A is large because the ratio of the normal slope to
the value is expected to be large, as it is for free-space
solutions.

The variational solution P(r) will have boundary values

values,

cz(R }=AP(R, zz }—$„$(R,zz ) .

Both b and c will enter when we construct wave functions
throughout space by joining layers.

For our application, P and X are the same and the
bivariational expression, Eq. (3), reduces to a variational
expression. Furthermore, it can be expressed in a slightly
more intuitive form,

J=-,' r 'r 2m —E r + 2m —E r ' r
cell

+ —,
' g f d R ([(A+i„)P(R,zx)]'(t(R, zz)+P'(R, zz)[(A+5„)P(R,zx)]I

vvsc

—g f d R [tz(R)P(R,zx)+P*(R,zz)tz(R)],
rwsc

(8)

by integrating in by parts in such a way as to keep all of
the terms explicitly Hermitian. The two-dimensional in-

tegrals are done over the interface Wigner-Seitz cell
(IWSC}. In general, the unsymmetrized Hamiltonian ma-
trix is not Hermitian unless the basis states satisfy bound-
ary conditions consistent with the integration volume be-
ing a closed system. The term "closed system" implies ei-
ther infinite potential barriers, periodic boundary condi-
tions, or an infinite system; none of these conditions ap-
ply in our application. By limiting the integration to a
cell that is the product between a single-interface
Wigner-Seitz cell and the layer width normal to the inter-
face, we are required to consider only states with a given
parallel wave vector. (Replacing the interface Wigner-
Seitz cell by the entire layer would have enforced that
constraint automatically. ) The first term of Eq. (8) gives
the variational requirement that the solution satisfy the
Schrodinger equation in the interior of the cell, while the
other two terms give the variational requirement that the
boundary values equal the target values. In the second
term, the boundary values, bx(R), have been written out
explicitly to remind the reader that this term is quadratic
in the solution, unlike the third term.

Given a target value and an energy we find the wave
function in the layer for which the variational quantity is
stationary. This wave function satisfies the Schrodinger
equation in the layer and has the combination of bound-
ary values given in Eq. (6) equal to the target value.
From this wave function we can extract the complemen-
tary set of boundary values given in Eq. (7). By carrying
out this procedure for a complete set of linearly indepen-
dent target values, we can construct an operator that
takes one set of boundary values (the b's) into another set
(the c's). For matching purposes this operator contains
all the essential information about the electronic states
inside the layer. For the interface layer between the two
bulk materials this is all the information necessary. For

the bulk regions we need to apply the boundary condi-
tions that the wave function not diverge at infinity. To
apply these boundary conditions it is useful to construct
the generalized Bloch states for the bulk regions. These
states can be calculated from the boundary-value opera-
tor discussed above and the generalized Bloch condition
discussed below.

We expand the solution P in a basis set g;(r),

P(r)= ga;P;(r) .

In general, the basis set could be arbitrary functions con-
sistent with parallel Bloch periodicity. In our work, the
index i includes a three-dimensional Bloch wave-vector
index and a band index. Using the LAPW eigenstates as
bases rather than the LAPW's themselves has the advan-

tage that the basis can be truncated in a way that leaves
the important band states well converged. In terms of
the basis set, we compute the overlap matrix,

0;.= r,* r . r (10)
cell

the Hamiltonian matrix

H,j ,' f d——r—If,*. (r)[HQJ(r)]+[8/, (r)] 1(.(r) I,

and a boundary-term matrix,

8J= —,
' g f d R [[(A+5„)g;(R,zz)]*gj(R,zx)

IWSC

+1(j;.(R,z~)[(A+5„)f~(R,zx)]j .

(12)

To construct these matrices we need some quantities that
are not used in the usual LAPW method —we need the
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overlap and Hamiltonian matrix elements over a single
cell between states with hk, &0, and we need the value
and slope of the wave functions on the endplanes. In the
Appendix we describe how these are calculated.

To find the states that minimize the functional J, we
define an inverse Green matrix

Gp '(E.) =2mH; +B;j 2m—EO; (13)

which differs from the usual definition of the Green ma-
trix by the inclusion of the boundary matrix. We expand
the boundary values of the basis states and the target
values in interface reciprocal-lattice vectors,

(R )
K'R y G'Rq (14)

(R) KR y GR& (15)

y (tx, G Pj,x,Gaj + j Oj X,G x,G)
j X G

(16)

where A is the area of the interface Wigner-Seitz cell.
Minimizing this with respect to a;* gives a set of inhomo-
geneous linear equations for the basis-function expansion
coefficients of the variational state with the external tar-
get values tx G. With the expansion coefficients, the vari-
ational wave function can be calculated and both sets of
boundary values mentioned above, the bxG's and cxG's,
can be computed from the value and slope of the basis
functions on the endplanes. These boundary values can
be expressed as matrices operating on the original target
values,

CX,G g g SX,G,X',G'tx' G (17)
X' G'

~X,G rf r TX,G, X', G' x', G'
X' G'

where

SX,Q, X', Q' g g [(AG Pi, x,G ~g Pi, X,G)]

(18)

&& [GiJ «)1 g ej',X,G

The normalization of the states, 0 ', where 0 is the
volume of the Wigner-Seitz cell, has been factored out of
the reciprocal-lattice expansion of the states. Combining
all of these expressions gives a matrix variational expres-
sion

J= g ga G,j '(E)aj

X,G,X', G' X X l(AGPi, x,G+~nfi, x, G)1

X (Gj(E)) ~ Pg, x,G (20)

where k, +ix is the unknown complex wave vector nor-
mal to the interface, K is the (conserved) wave vector
parallel to the interface, and Ro is a parallel translation
such that Rp+z(zL zg) is a lattice vector of the bulk
material. For the bulk regions, the cell over which the
volume integrals are done in Eq. (8) is a Wigner-Seitz cell,
and the potential between zL and zR can be repeated
periodically to generate the bulk potential. We obtain
from Eq. (21) an additional 2NG equations for the bound-
ary values, which can be written

—i(k +is)(zL —z& ) iG Ro
&R G=e e CLG,

—i(k +is)(z& —z& ) iG Ro
RG e "e bLG.

(22)

(23)

There are now 6NG homogeneous equations in 6NG+1
unknowns where the additional unknown is the complex
wave vector. Equations (17), (18), (22), and (23) can be
manipulated into the form of a generalized complex
linear eigenvalue problem,

If the calculation could be done with a complete basis set,
TxG x G would be a unit matrix; Wachutka implicitly
treats it as such by equating txG and bxG. In our formu-
lation of the layer problem, the input target values and
the output boundary values are of the same form, both
sides are treated equally, and the value and slope are
treated on the same footing.

In the above discussion, we have treated the target
values as given. In practice, we do not know what sets of
tx G's will yield the physical states we want. This must be
determined once all the layers in the problem are joined
together as with spline fits. Equations (17) and (18) can
be regarded as providing 4NG constraints among 6NG
unknowns txG, bxG, and cxG. The remaining con-
straints are supplied by the boundary conditions, value
and slope matching across the interfaces of the joined lay-
ers.

Matching through bulk regions, where all layers are
identical, can be systematized in terms of generalized
Bloch functions, introducing the physical boundary con-
ditions of asymptotic behavior at ~. These functions
satisfy

(21)

SR,G, R,G' SR,G, L,G'

R,G, R,G' R,G, L,G' L, G'

i G.RO
&G,G-e

0

TL,G",R,G' TL,G",L,G'

L,G",R,G' L,G",L,G'GRO s, -, , s tL, G
(24)

—i(k, + i~)(zz —zR )
where k =e ' . Straightforward algorithms
exist for solving such eigenvalue problems. The eigen-
vectors from this equation can be used to reconstruct the
generalized Bloch states in the layer in question, and the

I

boundary values for these states. The boundary values
can be used, in turn, to compute the flux carried by each
of the states through the layer boundaries. Since these
states are stationary solutions of a Schrodinger equation,
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the net flux through any plane is the same as it is for any
parallel plane, particularly a plane infinitely far from the
interface. Generalized Bloch states that decay in either
direction do not carry any net current for this reason.

The complex wave vectors as a function of the electron
energy make up the complex band structure. ' Advan-35, 36

tages of the method we have described over other
methods that have been used to calculate complex band
structures are that it gives all the eigenvalues at a partic-
ular energy in one calculation, it only gives each eigenval-
ue once, and the matrices used depend on energy only ex-
plicitly through the matrix inversion of Eq. (13) to get the
Green function used in Eqs. (19) and (20). Since the ei-
genvalue problem is based on the boundary conditions, it
gives the appropriate number of eigenstates needed to
join a set of bulk layers to other layers.

In contrast, complex band-structure methods based on
searching for complex wave vectors that yield real ener-
gies give just one state at a time. APW- and KKR-based
methods have additional implicit nonlinear energy depen-
dencies in the matrices for boundary-based eigenvalue
problems. Finally, plane-wave-specific methods
(defined for local pseudopotentials only) give many
redundant eigenvectors which must be sorted in some
way to identify the correct subset.

To solve for the electronic states of an interface be-
tween two semi-infinite materials, we first calculate all of
the generalized Bloch states for each of the materials.
These states enable us to translate the physical boundary
conditions we understand (incident, transmitted, and
reflected propagating states far from the interface) into
detailed numerical boundary conditions at the interface.
Then we calculate the S matrix and T matrix defined in
Eqs. (19) and (20) for a joining layer. In particular, we
use a part of a supercell between a plane on which the po-
tential is essentially that of the bulk on the left, and a
plane on which the potential is essentially that of the bulk
on the right. It is useful to use such joining layers be-
cause they minimize the spurious reflection and transmis-
sion due to the large discontinuities in the potential that
occur in general when two bulk potentials are joined to-
gether. In principle, to have no potential discontinuity,
an arbitrarily large supercell is required, but, in practice,
the potentials are screened so rapidly that just a few lay-
ers is enough to do a good job.

To match the interfacial wave functions we divide
space into three regions, the bulk region A extending to-
ward infinity to the left, bulk region B extending toward
infinity to the right, and the center region C. In each of
the bulk regions, we find the possible incident states from
the set of generalized Bloch states computed in Eq. (24);
these are states that are propagating toward the interface
and are labeled with the superscript "in." The outgoing
states in each bulk are both the generalized Bloch states
that propagate away from the interface, and the evanes-
cent states that decay away from the interface. There is
an outgoing state in each bulk region for each interfacial
reciprocal-lattice vector included in the description of the
states. For a state incoming from the left, the full state in
region A is expanded in terms of the generalized Bloch
states with arbitrary coefficients for the outgoing states,

P "(r)=P,"'"(r)+ g x,"P,"'"'(r) .
J

(25)

AX=B,
where

(26)

x'X=
X

'S c A out bA out
L.I.Cg S C Bout

L gCI

(27)

A= SC CAout
I.Cg

S LI.C~ —bZ
'"

SC Ain
I.Cg

S C CB out bB out
gg CL —I

(2&)

(29)

The renormalized S matrix, S, is the matrix relating the
boundary values, b& & and c& 6, to each other in region C
given by

S=ST (30)

The dimensions of the matrix A are 2NG )&N'"', X is an
N'"' element vector, and 8 a 2NG element vector. Simi-
lar equations are satisfied if the incident state is from the
right in the material 8; the inhomogeneous term B
changes to resemble the right half of matrix A with the
"out" matrices replaced by the "in" vectors. Our pro-
cedures give exactly NG outgoing generalized Bloch
states for each material, so, in principle, the set of linear
inhomogeneous equations represented by Eq. (25) has one
unique solution. In practice, as discussed below, some of
our variational evanescent states are not well converged.
They may have nonzero current densities on the match-
ing plane, or other unphysical characteristics. If we dis-
card these states, it is necessary to solve these equations
in a least-squares sense as there are more equations than
unknowns.

In fact, we find it useful to solve this set of equations in
a least-squares sense with an additional constraint. It is
best to force the error out of the quantities of principle
interest, provided it is possible to estimate the error in-
volved. In particular, we impose a unitarity constraint;
the total outgoing flux must equal the incoming flux.
This leads to some mismatch in the value and slope at the
interface because of the unconverged evanescent states.
We can quantify the mismatch by the residual of the
least-squares matching, and we have found that enforcing

There is a similar expansion for the state in region B
without an incoming state, and there are a total of 2NG
boundary values to be matched.

The S matrix in the center region relates all the bound-
ary values on the center region to each other. The
boundary values on the center region are related to the
boundary values on the bulks to either side by the trans-
formations L ~R and b~c because of the change in
direction of the interface normal. The result is a set of
equations for the coefficients of the outgoing states, x, in
terms of the boundary values of the incoming eigenstate,
b'" and c'", the boundary values of the outgoing eigen-
states, 1 "' and c "', and the renormalized S matrix of the
joining layer, S
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the constraint makes very small contributions. To set up
the system of constrained equations we minimize the
squared matching error minus a Lagrange multiplier y
times the Aux error,

( AX —B) W(AX —B)—y(X FX—fo), (31)

and

(A WA —y" 'F)XO ——A WB

( A WA —y" 'F)Y"=FX"

(34)

(35)

enables us to express X"as

X"=Xo+(y"—y" ')Y", (36)

where y" is to be determined. Substituting Eq. (36) in the
flux-conservation constraint, we find terms of order 0, 1,
and 2 in y"—y" '. Dropping the second-order terms as
above yields

Xo FXO —fo
y y + X.tFY.+Y.tPX. .

0 0
(37)

We start the iteration with y =0, find Xo from Eq. (34),
and use X =Xo in Eq. (35).

Having computed the amplitudes of the generalized
Bloch states, x" and xj. , we compute the transmission
coefficient by an incoherent sum of the fluxes carried by
each of the propagating generalized Bloch states

T= g /x
/ f

0 j
(38)

where %' is a diagonal weighting matrix for the interface
reciprocal-lattice vectors, fo is the incoming flux, and F
is a diagonal matrix of the flux in each of the outgoing
propagating states. In this calculation we use the identity
matrix for W, but we expect that in less-well-converged
calculations it will be useful to deemphasize the large G
contributions to the matching. Varying Eq. (31) with
respect to X' gives

A WAX —yFX= A~VVS, (32)

which, with the flux constraint, gives N'"' +1 equations
in the unknowns y, X. Unfortunately, these are no longer
linear equations, and they cannot be solved by conven-
tional methods. We have developed an iterative method
to solve them, which converges whenever the constraint
is not violated too badly by the unconstrained y =0 solu-
tion. This condition is certainly achieved for any reason-
ably complete wave-function basis set.

Our iterative procedure is motivated as follows. Sup-
pose we have a good approximation y" ', X" ' to the
solution of Eq (32). With algebraic manipulation, we find

( AtWA —y" 'F)X= A WB+(y —y" ')FX"

+(y —y" ')F(X—X" ') . (33)

The right-hand side has terms of order 0, 1, and 2 in the
error of the approximate solution. We drop the term of
order 2 and regard the remainder as an equation deter-
mining an improved approximation y",X". Solving the
two inhomogeneous linear equations

where f is the flux in each of the transmitted states.
There is a similar expression for the reflection coefficient
in terms of amplitudes and fluxes in the other bulk region
of space.

Most interface or surface problems have been solved
using simple matching of value and slope, but two other
approaches have been used. One (which is based on gen-
eralized Bloch states found by a search rather than a vari-
ational calculation) uses a variational calculation of the
scattering-theory S matrix to compute the transmission
and reflection coefficients. Given variationally calculat-
ed states, however, this method entails far more work
than is required. An alternative method, the assembly of
boundary-controlled monolayers (ABCM's), 4 is based on
layer doubling, extending the intermediate region far
enough so that it is only necessary to use the propagating
outgoing states in the matching. This method does not
explicitly control the amplitudes of any evanescent states,
so it is not clear how errors related to poorly converged
evanescents affect the resu1ts.

There are technical differences between our calculation
of the generalized Bloch functions and that of Wachutka
that affect how these wave functions are joined to make a
composite wave function. These differences are related to
the diff'erence between the target values, t, and the
boundary values, 1, and the difference between the matrix
that relates these two quantities, T, and the unit matrix.
If t and b are taken to be the same, the resulting wave
functions have discontinuous values and slopes across the
interface between two layers, but are the best variational
approximation in each layer to the exact solution. If they
are not taken to be the same, which entails using the ma-
trix T, the resulting wave functions are constrained to
have continuous values and slopes, but are not as good
approximations to the exact solution within each layer
because there is less variational freedom in the layer
when the constraint is included. Neither of these ap-
proaches produces the absolute best variational approxi-
mation to the wave function over several layers. That
solution would have continuous value, since a discon-
tinuity would contribute an infinite energy, but would
have a discontinuous slope at the layer boundaries, be-
cause such a discontinuity only has a finite energy cost,
and the additional variational freedom would allow a
better solution over the whole range. Finding this best
variational solution is a much more difficult calculation
because a11 layers must be treated together.

We have carried out numerical calculations for a one-
dimensional free particle and for bulk silicon both using
the numerically calculated T, and replacing it by its fully
converged form, a unit matrix. For the silicon calcula-
tions reported here, T is very close to a unit matrix, the
average absolute value of an off-diagona1 component be-
ing less than 10 and the average absolute deviation of
the diagonal elements from 1 was less than 10 . As an-
ticipated above, the unit-matrix approximation gives
more accurate decay constants for a given basis size, at
the hidden cost of in6nite interlayer energies.

Our approach can be generalized from single interfaces
to complex structures, such as multiple quantum wells in
compound semiconductor superlattices, which are often
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too large to treat by direct supercell methods. Using the
coefficients of appropriate generalized Bloch functions in
each inequivalent bulklike layer as variables, the rnatch-
ing error at all interfaces can be minimized simultaneous-
ly. For sufficiently thick bulk regions, we can simply as-
semble our single-interface results for the scattering ma-
trices of the propagating states.

Finally we note that for energies in the band gap of
both materials, there are no propagating states and the
matching equation, Eq. (24), becomes homogeneous.
Solutions exist only at special energies where the deter-
minant of A vanishes. For least-squares matching with a
subset of evanescents, these energies correspond to sharp
minima in the matching residual.

IU. RESULTS

A. Si complex band structure
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In the preceding section we describe how we calculate
the generalized Bloch states for a particular material; in
Figs. 2 and 3 we show a subset of the complex wave vec-
tors for such states in silicon, those in (111) directions
relevant for a (111) interface. Such plots are called com-
plex band-structure plots in analogy to the usual band-
structure plots. In general, there are an infinite number
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FIG. 2. The complex band structure of silicon in the [111]
direction through I . The solid lines in the center panel show
the dispersion of the propagating Bloch states. The solid lines
in the outer two panels show the imaginary part of the wave
vector (decay constant) for those generalized Bloch states with a
real part at the zone boundary. The dashed curves in the outer
panels show the imaginary parts of those generalized Bloch
states with a zero real part, and the dashed curves in the middle
panel show that real part. The dotted curves in the middle and
outer panels show the real and imaginary parts, respectively, of
the wave vectors that have a general real part. For clarity only
the wave vectors having the smallest imaginary parts are shown.
The labels for the lowest conduction bands (propagating states)
are referred to in Fig. 5.

Re (kz )

FIG. 3. The complex band structure of silicon in the [Ill]
direction through the conduction-band minimum. The solid
lines in the center panel show the dispersion of the propagating
Bloch states. The dotted curves in the middle and outer panels
show the real apd imaginary parts, respectively, of the wave
vectors for the generalized Bloch states. For clarity, only the
wave vectors having the smallest imaginary parts are shown.
The labels for the lowest conduction bands (propagating states)
are referred to in Fig. 6.

of such states at any energy, but we only calculate a finite
subset and show only those whose wave vectors have the
smallest decay constants.

The real parts of the wave vectors are plotted in the
center panel of each figure and the imaginary parts that
are greater than and less than zero are plotted in the
right- and left-hand panels, respectively. We rely on the
reader to be able to identify which real part goes with
which imaginary part, bearing in mind that states evolve
continuously with increasing energy and states with com-
plex wave vectors are always paired. When the imagi-
nary parts of a pair of evanescents go to zero, the real
part of the wave vector splits and becomes two propaga-
ting states; at band maxima two propagating states merge
and become a pair of evanescent states.

Figure 2 shows the complex band structure along the A
line in the Brillouin zone; these states have a parallel
wave vector equal to zero. Two consequences of the A
line being a symmetry line of the silicon Brillouin zone
are that ~any of the states are degenerate and most of
the complex wave vectors have real parts either at the
zone center or the zone boundary. In this calculation we
have neglected spin-orbit coupling so that the light-hole
and heavy-hole bands are degenerate along the entire A
line in Fig. 2, and the split-off hole band is degenerate
with the other two at the zone center I .

Figure 3 shows the complex band structure in the [111]
direction passing through the minimum in the conduc-
tion band, which is 0.85 of the way toward the X point
along the 5 line. There are two values of the real part of
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the perpendicular wave vector that intersect symmetry.
lines of the Brillouin zone, but the rest of the points are
at general points in Brillouin zone. Due to the lack of
symmetry, the real parts of the complex wave vectors
have general values and none of the states are degenerate.

Sufficiently near band extrema, the energies of states
are quadratic functions of the wave vector (ignoring
spin-orbit coupling). The effective-mass approximation
uses the curvature of the dispersion to predict the decay
constants of the evanescent states. This works well close
enough to the band extrema, but eventually breaks down;
particularly in midgap regions the decay constants are
not well described by the quadratic form from either ex-
tremum. A particularly interesting case where the
effective-mass approximation has a very limited range of
validity is in the region near the conduction-band
minimum. An examination of the states' wave functions
shows that those near this minimum are similar to those
in the next-higher band, but not to those in the conduc-
tion band at energies above the "glitch" where there is a
rapid change in the slope of the band. This behavior is
consistent with an interpretation of these bands as an
avoided crossing between a free-electron-like parabola
with a small mass and one with a larger mass and a
slightly higher minimum displaced toward higher k, .
This interpretation also explains the behavior of the
evanescent state coupled to the next-higher band, At en-
ergies well below the conduction-band minimum, it
behaves as if it were coupled to the larger-mass free-
electron-like parabola. At the curve crossing, it veers to-
ward the actual minimum it is coupled to. In a matching
problem, treating these two bands in an effective-mass ap-
proximation would give unreliable results.

An advantage of using a complex band-structure
method based on an existing real band-structure pro-
cedure is that the band structure calculated by the exist-
ing method can be used to test the convergence of the
complex band structure by comparing the propagating
states. To carry out this test, we fitted the LAPW bands
with a cubic spline, and computed interpolated LAPW
energies for each of the real wave vectors found using the
complex band-structure program. For the split-off hole
valence band in Fig. 2, the root-mean-square error be-
tween the complex band-structure and the LAPW ener-
gies was 10 meV, for the light- and heavy-hole bands it
was 5 meV, and for the conduction band in Fig. 3 it was 3
meV.

Most of the states computed for the complex band
structure are not as accurate as the propagating states
discussed above. These states and the evanescent states
that also have a small mean planar kinetic energy are well
represented, but states with mean planar kinetic energies
comparable to the cutoff are not. In a conventional
LAPW calculation of real bands, states that have a kinet-
ic energy comparable to the cutoff are not well con-
verged, but they lie above the other states in energy so
they can be easily sorted out. . In the complex band struc-
ture the poorly converged states are not separated by
having a larger decay constant normal to the interface.
A guide to the convergence of a state is the proximity of
its mean planar kinetic energy to the cutoff.

Another indication of a poorly converged state is the
current of that state on the boundary planes, since
evanescent states which are exact solutions of a time-
independent Schrodinger equation have zero net current.
The current in the poorly converged states is not a time-
independent current that propagates to infinity away
from the interface, but rather it is a consequence of the
actual time dependence of the approximate description of
the state and decreases as the amplitude of the state de-
creases. The current density of a poorly converged state
is most usefully discussed in terms of a Aux ratio, the ra-
tio of the normal current density integrated over the
boundary plane to the probability density integrated over
the boundary plane; for a propagating state away from a
band extremum this number is typically of order 1 in
atomic units (rn, ao) ' Sta.tes with different parallel
wave vectors behave differently depending on the symme-
try of the basis set; the states in Fig. 2 have a special
parallel wave vector, and a symmetric basis set and the
states in Fig. 3 have a general parallel wave vector and an
asymmetric basis set. Most of the states calculated with
the symmetric basis set as in Fig. 2 have a flux ratio of
less than 10;some of these are well converged and oth-
ers are not. For these states the term "well converged" is
not well defined operationally, but those that are not well
converged have decay constants that are smaller than
they should be. A subset of the well-converged states
with the smallest planar kinetic energies are shown in
Fig. 2. There are other states with this parallel wave vec-
tor that have flux ratios of up to 0.015; these states are
clearly not well converged and have large mean planar ki-
netic energies. The states shown in Fig. 3 (a well-
converged subset of the states calculated at that parallel
wave vector) all have flux ratios of less than 0.001 and
have small mean planar kinetic energies. The other states
with this wave vector have Aux ratios of up to 0.007
which are strongly correlated with their mean planar ki-
netic energies. Below we discuss what effect the poorly
converged evanescents play in the matching.

In this calculation, we found that using cylindrical
rather than spherical cutoffs for the LAPW basis greatly
reduced the current densities of the poorly converged
states and increased their decay constants. We found
that a planar kinetic-energy cutoff of 4 hartrees and a
normal kinetic energy cutoff of 4 hartrees were the small-
est that produced sufficiently converged states. The best
results were achieved using two k, points symmetric
about k, =0 for each parallel wave vector K. A larger
sample leads to numerical instabilities in the inversion of
the Green matrix, Eq. (13). We found that truncating the
basis used in the complex band-structure program by cut-
ting off the number band states computed by the LAPW
program made matters worse in all cases and was not
used here. There are ways to minimize the impact of
such a truncation on the matching, and in cases with
larger unit cells the speed-up in computation time will

justify a slight loss in accuracy.

B. Twist boundary transmission

We have calculated electron transmission probabilities
for scattering from a silicon (111) twist boundary. This
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structure, which is shown in Fig. 4, can be constructed by
cutting a silicon crystal on a (111)plane through the mid-
dle of the bonds perpendicular to that plane, then rotat-
ing one half of the crystal 180 around the surface nor-
mal, and then reconnecting the crystal so that all cut
bonds from one half-crystal are joined with bonds from
the other half-crystal. Two adjacent twist boundaries
form a stacking fault. This structure is as weak a pertur-
bation of the silicon crystal as is imaginable; no near-
neighbor or next-near-neighbor distances have changed,
no bonds are broken or even bent, and the cut is in the
plane where the potential is weakest. In fact, the poten-
tial that results from joining two bulk potentials is con-
tinuous because the plane is (screw) symmetric. Along
the bonds, where the potential is the strongest, the nor-
mal derivative of the potential is also continuous. Thus
we should be able to use the joined bulk potentials rather
than the self-consistent potential to calculate transmis-
sion probabilities without worrying about spurious con-
tributions due to potential discontinuities.

Figure 5 shows the transmission coefficient for
conduction-band electron states with zero parallel-wave-
vector scattering from the twist boundary described
above. Figure 6 shows the transmission coefficient for
the states that have the same parallel wave vector as the
states at the conduction-band minimum. These states are
shown in Figs. 2 and 3 respectively. At energies where
more than one propagating transmitted state exists, we
sum the magnitude of the transmission probabilities. The
transmission calculation is normalized so that unity cor-
responds to perfect transmission, or zero reflection. A
common feature in both plots is that at band extrema the
transmission coefficient drops rapidly and in at least some
cases goes to zero. We discuss the reason for this drop in
greater detail below. The main difference between the
two plots is that many of the bands that are used in corn-
puting Fig. 5 are degenerate because the A line is a sym-
metry line of the silicon Brillouin zone, while none of the
bands that are used in Fig. 6 are. The matching problem
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FIG. 5. The transmission coefficient for silicon conduction-
band electrons scattering from a (111) twist boundary.
Incident-electron states have a parallel wave vector at the I
point in the interface Brillouin zone. The transmission
coefficient curves are labeled in correspondence with the labels
on the dispersion curves of the incident states in Fig. 2. Note
that the transmission coefficients for the two parts of the second
conduction band (labeled b and c) are equal. No effort has been
made in this plot to precisely explore the behavior of the
transmission coefficient near band extrema, where it is usual
that the transmission coefficients go to zero.
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FIG. 4. Ball-and-stick model of a silicon (111) twist bound-

ary. The shaded area in the center of the figure is the matching
plane used in the calculation.

FIG. 6. The transmission coefficient for conduction-band
electrons scattering from a (111) twist boundary. Incident-
electron states have a parallel wave vector equal to that of an
electron at the conduction-band minimum along the 6 line.
The transmission coefficient curves are labeled in correspon-
dence with the labels on the dispersion curves of the incident
states in Fig. 3. No effort has been made in this plot to precisely
explore the behavior of the transmission coefficient near band
extrema, where it is usual that the transmission coefficients go
to zero (see Fig. 7).
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FIG. 7. A detail of the transmission coefficient for electron
states near the conduction-band minimum. Over the room-
temperature energy range, the electrons are very strongly scat-
tered by the twist boundary.

that needs to be solved to construct Fig. 5 breaks into
several subproblems, one for each possible symmetry.

Figure 7 shows a detail of the transmission coefficient
for the electron states near the minimum of the conduc-
tion band. At the band minimum, the transmission
coefficient is zero, and it increases linearly and becomes
nearly unity until the next band becomes allowed. On the
energy scale that is important for devices, within thermal
energies of the band minimum, transmission is very poor.
This result is contrary to a naive effective-mass-
approxirnation prediction, in which only band discon-
tinuities or changes in effective mass would cause
reflection. The breakdown of the naive effective-mass ap-
proximation is due to considering only the envelope wave
function and neglecting details of the rapidly varying part
when matching the wave functions. The avoided cross-
inglike behavior at 0.5 eV discussed above manifests itself
in the small dip in the transmission coefficient in this
plot.

Some of the hole states at the valence-band maximum
show similar behavior; the transmission coefficients for
these states with zero parallel wave vector are shown in
Fig. 8. Over a thermal energy range, there is essentially
perfect transmission for the split-off holes but poor
transmission for the light and heavy holes. The split-off
holes behave as is expected in an effective-mass approxi-
mation. Again, the difference in behavior is due to the
details of the wave functions and their derivatives. In-
clusion of spin-orbit coupling will complicate this behav-
ior because these bands are mixed together and shifted in
energy, but the decoupling of the different orbital sym-
rnetries in the matching will still hold. The split-off hole
band will end at a lower energy and will not completely
transmit, and there will be some finite transmission for
the light and heavy holes at their band maximum.

A more quantitative analysis of the effect of spin-orbit
coupling could be achieved by setting up a k p perturba-
tion description of the band structure that fits the LAPW
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FIG. 8. A detail of the transmission coefficients for hole
states near the valence-band maximum. Over the room-
temperature energy range, the light- and heavy-hole transmis-
sions (solid curve) show strong scattering by the twist boundary,
but the split-off hole transmission (dotted curve) does not.

bands near the valence-band maximum. The mixing of
the k p eigenstates by the spin-orbit coupling could then
be computed. Since the LAPW bands all have different
syrnrnetries, the transmission coefficient for the spin-
orbit-split bands would be an average of the transmis-
sions for each of the LAPW bands weighted by the con-
tribution of each nonrelativistic band to the spin-orbit-
split band at that wave vector.

Matching the wave functions of the propagating
conduction-band states without the inclusion of evanes-
cent states gives the results in Fig. 9. Unlike the previous
plots, the net flux in this problem was not constrained to
be 1, so we show both the transmission coefficient and the
reflection coefficient. Near the band minimum, the
transmission is zero for a large range of energies, which
implies that the reflected state is a better match for the
incident state than the transmitted state is. The top panel
of that figure shows the residual of the matching; it is
zero at the band minimum, implying that the reflected
state is a perfect match for the incident state at that ener-

gy. As the energy increases from the minimum, the
evanescent states play a more important role and under-
standing the matching purely in terms of the propagating
states becomes impossible.

Matching involves the real and imaginary parts of both
the wave functions and their normal derivatives; to un-
derstand the states and aspects of the matching process,
the probability density and the three flux densities of each
state contain the same information, but are real and ob-
servable. The probability density and the normal flux
density for the three relevant propagating states at an en-
ergy close to the conduction-band minimum are shown in
Fig. 10.

The probability densities for the state in Fig. 10 are
nearly the same, as would be expected near a band
minimum. However, the flux density is not simply that
of the effective-mass envelope function modulated by
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FIG. 9. The transmission coefficient (solid curve) and
reflection coefficient (dashed curve) for electron states near the
conduction-band rninimurn computed without evanescent states
or flux constraint. The top panel shows the squared residual
from the matching. These panels show that perfect reflection at
the band minimum results from a perfect match between the in-

cident and reflected states.

FIG. 10. The probability, p, and flux, j„densities for states
5.4 meV above the conduction-band minimum. The plotting
area is an interface unit cell on the matching plane with the
bonds at the corners. Density and flux contours are linearly
spaced from 2)& 10 " to 16&(10 a.u. and —1)& 10 to
1&(10 a.u. , respectively, dashed contours being negative. The
states are normalized to unity over a Wigner-Seitz cell of
volume 270ao. While the probability densities are similar for all
three states and the incident flux density is similar to the
reflected flux density, it is not similar to the transmitted flux

density, leading to the calculated poor transmission.

these probabilities. The band-minimum flux density is
not zero, but consists of regions of positive and of nega-
tive flux that cancel each other when integrated over the
plane. Moving away from the band minimum partially
breaks this cancellation, resulting in a net current that is
much less than the current in either direction. The flux
densities of the incident and the reflected states are simi-
lar, while those of the incident state and the transmitted
states are nearly opposite. This mismatch, which is con-
trary to naive effective-mass assumptions, leads to the
vanishing band-edge transmission coefficients. The flux
mismatch is a nontrivial effect of the 180' rotation. Fig-
ure 9 shows that the transmission remains poor, when
only the propagating states are included, up to the energy
of the band "glitch" discussed above, where one state
changes character. What is more difficult to understand
in any simple terms is how the evanescents fix up the
mismatch, so that the accurately computed transmission,
Fig. 7, recovers to unity in =0. 1 eV.

The electrons in the light- and heavy-hole bands shown
in Fig. 11 behave the same way, with one additional
complication —these two bands are degenerate. It is not
enough just to consider the probability density and the
normal flux density to reach the same conclusions we

INCIDENT REFLECTED TRANSMI TTED

FIG. 11. The probability, p, and flux, j„densities for light-
or heavy-hole states 5.4 meV below the valence-band maximum.
Density and flux contours are linearly spaced from 2&(10 ' to
14)(10 a.u. and —1.6X 10 to 1.6&(10 a.u. , respectively,
dashed contours being negative.
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reached in the previous case. There are transmitted
states that match the incident states perfectly with
respect to these two quantities, but do not couple at all
because they are orthogonal partners of the A2 represen-
tation of the small group of the A line. This is manifest
in their complex phases, which are suppressed in the plot-
ted quantities.

The electrons in the split-off —hole bands shown in Fig.
12 behave differently. The flux densities are roughly pro-
portional to the probability densities, as in a naive
effective-mass picture, and do not consist of canceling re-
gions of flux. Thus the transmitted state is a better match
for the incident state than the reflected state, and the
transmission coefficient is close to 1.

The result that the transmission coefficient goes to zero
near band extrema for certain bands should be very gen-
eral, being intrinsic to the material and probably indepen-
dent of the details of the interface.

In addition to the transmission coefficient, we have
searched for interface states at the two parallel wave vec-
tors we have considered. We found a degenerate pair
0.019 eV above the valence-band maximum at I and one
0.09 eV below the conduction-band minimum at I . We
found no interface states with a parallel wave vector
equal to that of the conduction-band minimum. Howev-
er, there is a surface resonance at 0.026 eV above the
conduction-band minimum. The large reflectivity at
band extrema and the existence of interface states and
resonances seem to be related. The energies for transmis-
sion recovery scale roughly with their energies. One way
to view the relationship is that the interface-region densi-
ty of states lost due to destructive interference between

incident and reflected states is compensated for by the in-
terface state. This is borne out by the behavior of the
valence states, which have an interface state for the
reflected light- and heavy-hole bands, but not for the
transmitted split-off —hole band.

The decay constants of the least decaying evanescents
at the energies of the interface states we found were quite
small, and corresponded to decays in amplitude af 0.85
per layer for the state near the valence band and of 0.65
per layer for the state near the conduction band. It
would be extremely difficult to isolate these states in a su-

percell calculation. In addition, these energies would
change significantly if we were calculating the interface-
state energies for a stacking fault made of two adjacent
twist boundaries or if the atomic positions at the inter-
face were allowed to relax.

The use of constrained least-squares matching makes it
easy to monitor the convergence of the results, and, in
particular, the effect of the poorly converged "current-
carrying" evanescent states in the matching. We found
that unconstrained matching with all of the evanescent
states leads to an average error of less than 1% in uncon-
strained total current conservation, which we reduced to
less than one-hundredth of a percent by iterating the con-
straint. Since there were as many outgoing states as
parallel wave vectors, the residuals in the unconstrained
match were zero, but only increased to the parts-per-
million level by imposing the constraint. With or without
the constraints, the current of evanescent states, comput-
ed by summing magnitude of the current in each sepa-
rately, was less than one part per thousand. In this case,
we found no advantage in discarding the poorly con-
verged evanescents.

V. CONCLUSIONS

INCIDENT REFLECTED TRANSMITTED

FIG. 12. The probability, p, and flux, j„densities for split-
off—hole states 5.4 meV below the valence-band maximum.
Density and flux contours are linearly spaced from 2)&10 ' to
12X10 ' a.u. and —8&(10 ' to 8&10 ' a.u. , respectively,
dashed contours being negative. The incident flux density is
similar to the transmitted flux density and not the reflected flux
density, leading to good transmission.

There are two main purposes for this paper, to outline
the method we developed and to present some results for
electron scattering from a twist boundary.

The method is very powerful and flexible; we are able
to calculate the electronic structure of almost any system
with two-dimensional periodicity. It is stable because the
generalized Bloch states of the system are calculated lay-
er by layer using a variational formalism with a basis set.
The matching is done directly at the interface using these
states, which allows control of possible errors, and is con-
strained to force the error away from quantities of in-
terest. By using a joining layer with a self-consistent in-
terface potential that matches the bulk potentials on both
its interfaces, potential discontinuities that can lead to
spurious results are removed. Our application of this
method makes use of an existing electronic-structure pro-
grarn which allows direct interfacing with potentials and
matrix elements from that program. That LAP W
method uses a basis set that is applicable to any material
and to genera1 potentials and simplifies computation
dramatically compared to nonlinear methods.

The conclusions from the twist-boundary calculation
are twofold: that it is important to do these relatively
large calculations because simpler calculations can lead
you astray, and that near many band extrema transmis-
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sion coefficients go to zero. Only considering the en-
velope function near these extrema, as is often done in
effective-mass approximations, would lead to unreliable
predictions. Because the poor transmission is a property
of the bulk material, caused by the canceling currents
flowing in both directions for some Bloch states at band
extrema, it should be a very general effect.

We demonstrated this new method on a relatively sirn-
ple interface, the silicon twist boundary. Future applica-
tions of much greater intrinsic interest will include epit-
axial silicon-silicide interfaces, and interfaces between
semiconductors, both elemental and compound. Other
possible applications might be electron scattering by or-
dered surfaces and bound states in periodic heterostruc-
tures.
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APPENDIX

In this appendix we describe the use of the LAPW
basis set for variational layer calculations. Such a use is
complicated by the different form of the wave function in
different parts of space.

We have tried to follow the notation of Ref. 3S as
closely as possible; that reference describes the speci6c
implementation of the LAPW method upon which this
calculation is based. The LAPW basis function is

1(;(r)=e ' 6 (r),&2 g gs;e's'+ +6"(r}e ' " g QL, YI (8,$)$1",(
l

r —a„l
) . (Al)

Ov —Ov+ Q OIJ (A2)

We discuss the contribution from the muffin tins below.
The contribution from the interstitial region is related to
the contribution in the usual LAPW overlap matrix, ex-
cept that the transformed step function depends on the
difference in the z component of the wave vectors as well
as the difference in reciprocal-lattice vectors,

O,', = y y y;, 6, ,.(k„.—k„)y,.,
8 8

(A3)

The interstitial step function, 6 (r}, is 1 in the interstitial
region and 0 in the muffin tins around each atom. Each
muffin-tin step function, 6"(r), is 1 around the nth muffin
tin centered at a„and 0 elsewhere. In the interstitial re-
gion, the wave functions are expanded in plane waves,
and in each muffin-tin region they are expanded in spheri-
cal harmonics times numerical radial wave functions. By
construction, the basis functions are continuous and
differentiable across the muffin-tin boundaries up to the
highest-angular-momentum component included in the
muffin-tin expansion.

The overlap matrix consists of contributions from the
interstitial region and each muffin-tin region,

related to the Fourier transform of the step function,

r)= ~ 6Ie's'
8

8

by

(A4)

gz

tt

Q z

(A5)

The sum over g,
" converges much faster in practice than

would be expected by the algebraic falloff in the magni-
tude of the terms. To evaluate Eq. (A5), it is necessary to
compute the Fourier-transformed step function over a
much larger set of reciprocal-lattice vectors than is used
in the usual LAPW method. The new grid of reciprocal-
lattice vectors is long in the direction of the interface nor-
mal, which is not, in general, a direction of one of the
primitive reciprocal-lattice vectors used in the LAPW
program, and requires a new indexing scheme.

The Harniltonian matrix can also be split into an inter-
stitial contribution and a contribution from each muffin
tin,

This situation does not arise in the usual LAPW method,
since Bloch functions with different k's integrated over all
space are orthogonal. This form of the step function is

K;, =H; + gH, ,
" .

The interstitial contribution is

(A6)

X X4,*;( ll;+g I'+ lk, +g'I'}6.—.(k., —k;)&, + 2 2&* v.'- (".—k»& '
g g 8 8

(A7)

using the same transformed step function that is used in
the overlap in the symmetrized kinetic-energy term. The
potential contribution is related to the overlap contribu-
tion in that it involves the projected potential,

V (r)=6 (r) V(r) = g Vse's', (AS)
8

transformed in the same way as the interstitial step func-
tion,
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R
II

I G g I Q z~

(A9)

Computing the Fourier transform of the projected poten-
tial requires knowing the Four&er transform of the inter-
stitial step function on yet a larger grid of reciprocal-
lattice vectors to do the convolution of the Faurier trans-
form of the unprojected potential and the interstitial step
function.

The calculation of the rest of the required quantities
depends on whether or not the matching planes cut
through any muffin tins. First, we discuss the boundary
terms and then the muffin-tin contributions to the overlap
and Hamiltonian matrices.

J d2g e iK—Re —iGRy (R z )
IWSC

(A 10)

The part of the phase factor due to the normal com-
'si~X

ponent of the wave vector, e *', is included in the
Fourier transform of the state, f;xG. The real-space
values are found from a fast Fourier transform for the in-
terstitial region and by direct evaluation for the muffin
tins,

If the matching plane does not cut through any muffin
tins, the Fourier transform of the value and slope of the
wave functions on the matching planes can be found easi-
ly from the expansion of the states in interstitial plane
waves. If the matching plane does cut through muSn
tins, the Fourier transforms are found by fast Fourier
transforms of the wave function or derivative in real
space,

I

f (Rz )=e'K' g e' '
e ' lii;e (Rzz)

8

+pe"«»x)e ' "+PL;[Yi (8 4»4(,(Ir—a. I)]1.=(R, )

n L
(Al 1)

8,1I;(R,z) I, , =e' ' g e' e' i'(k, +g,), P;e (R,zz)
X 2 g]/2 gl

8

+ + e(R,z z)e' ' '"
ggL;rz V[Y i(8 (t))(t)i (

I

r —a
I )]] I =(R, ) ~

n L
(A12)

The gradient in radial coordinates is evaluated using the expression

V[Yi (8,$)f(r)]=r Yi~(8, $)+8 [(I+m +1)' (I —m)' Yi +)(8,(t))e
dT 2p

—(I —m +1)' (I +m)' 'Yi, (8,(t))e'~]

+(() I2m sin8Yi (8,$)—cos8[(1+m +1)'~ (I m)'~ Yi—+)(8,$)e
I (r)

+(I —m +1)' (I +m)' Yi ~ (8,)t)ei')~] j, (A13)

which requires no potentially unstable divisions and uses
stable recursion relations for the derivatives of Legendre
polynomials.

If the matching planes do not intersect any muffin tins,
the overlap and Hamiltonian matrix elements are
straightforward to calculate. The overlap matrix

o,,"=y y y,",'e,",,y,",j
L L'

(A14)

is given in terms of a diagonal matrix of the normaliza-
tions of the radial functions since the wave-vector depen-
dence of the state is absorbed into the matching
coefficients or| the muffig-tin spheres,

Hij X X YL HL,L'4L'j'
L L'

(A16)

is given in terms of the Hamiltonian matrix already used
in the LAP' program scaled by a phase factor,

n
—i(k, —k. ) an

(A17)

These expressions are valid for any muffin tins that are
not cut by the matching plane even if some others are.

If one of the matching planes does cut through a
muffin tin, and the layer contains an entire unit cell as
used in the LAPW program, there will be a contribution
from each section of the muffin tin with a different phase,

n i 1 n
—i(k. —k ).a

(A15)

The Hamiltonian matrix, (A18)
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The muffin-tin centers b„zare those that place the ap-
propriate part of the muffin tin in the layer under con-
sideration. If the two wave vectors are the same, the left-
and right-hand contributions add to become the diagonal

form given in Eq. (A15). If the layer under consideration
is a partial layer, the contribution from the left, right, or
both may be zero because that piece is outside the layer.
The step function for a partial sphere is

e,"",, = y fdQ[Y; (8,$)Y,. (8,$)Y,- (8,$)]R' ~ (z, u) f drr $,",(r)$,",(r)e,",(r),
Ill tr

(A19)

which consists of three factors. There is a Gaunt
coefficient of the two angular-momentum states and the
spherical harmonic frotn the expansion of the cut muffin-

tin step function. A rotation matrix, R, aligns the direc-
tion with which the spherical harmonics are defined, u,
with the interface normal, z. Finally there is the integral
of the two radial functions and the radial part of the cut
muffin-tin step function e". The radial part of the step
function is given by an integral over the angular coordi-
nate of a step function that depends both on the angular
coordinate and the radius,

el(r)= f dp

1/2
2l+1

P((P, )e ltt-
4m

n
2R

(A20)

where zlt is the signed distance from the muffin-tin center
to the closest approach of the matching plane. This in-
tegration can be evaluated by an indefinite integral for
the Legendre polynomials,

l f did Pl(P )=Pl+1(P) PPl(12) . — (A21)

If r & —zlt this expression reduces to (4m )
' 5l 11. Sitni-

lar expressions to these hold for the contributions from

the left-hand sections of each muffin tin.
The Hamiltonian matrix is also split up into contribu-

tions from both parts of a muffin tin that is cut,

(A22)

nR nR+ ,fi„e„-,, +v„,. (A23)

The first contribution is proportional to the muffin-tin
step function discussed above the symmetrized radial ei-
genvalues. The second and third terms in Eq. (A23) arise
because the energy-derivative radial functions satisfy an
inhomogeneous Schrodinger equation. The contribution
from the nonspherical parts of the potential can be cast in
a form similar to that for the cut muffin-tin step function,

For each section there is a contribution from the kinetic
energy and the spherically averaged potential, and a con-
tribution from the nonspherical parts of the potential,

n n

nR I i nR i nR0 L,L'
2

eL,L'+ Tfir, 2elmr 1,L'—

VL L ——g f dQ[Yim(8, &)Y1 m(8, &) Yl. -(8&)]f "dr r ttlt",(r)ttlt &(r) V t".. .(r),
III II 0

7

(A24)

in which the radial part of the cut muffin-tin potential has replaced the radial part of the cut muffin-tin step function.
The radial part of the cut muffin-tin potential can be calculated in terms of Gaunt coefficients, the uncut radial parts of
the potential, and the radial part of the cut muffin-tin step function,

V l (r)= g g Vt" (r)el"-(r) y f dQ[Yl (8,$)Yt. (8,$)Y1-:(8,$)]R'„o(z,u) (A25)
I') 0 I"
m'

m"

The cut muffin-tin potential is stored in a symmetrized
fashion similar to the storage of the full muffin-tin poten-
tial in the existing LAPW program, except with re-
duced symmetry due to the cutting plane. In principle,
the cut potential must be calculated for all I's up to twice

the cutoff used for the wave functions, but, in practice,
this is not necessary. The l" sum runs from zero to the I
cutoff used for the full muffin-tin potential plus that used
for the cut muffin-tin potential.
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