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Special points for superlattices and strained bulk semiconductors
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Special k points for performing integrals over the Brillouin zone of [001] and [111]superlattices
are obtained and discussed. If the superlattice period is taken properly, the number of special
points required in order to reach suitable convergence can be greatly reduced. Twelve and ten spe-
cial points will give the same accuracy for NXM [001] and [111]superlattices, respectively, as
Chadi's and Cohen's ten special points for bulk semiconductors, provided we have N +M=4n, with
n an integer. These special points can also be used to calculate the corresponding integrals for
strained bulk semiconductors.

I. INTRODUCTION

In many theoretical investigations involving the elec-
tronic structures of solids, one often needs to calculate in-
tegrals over the first Brillouin zone. Baldereschi' and
Chadi and Cohen suggested that such integrations can
be accurately approximated by summing over a rather
small number of special k points in the Brillouin zone,
with different weights for each point. (Elaborations of
the special point method have been given by Monkhorst,
Pack, Chadi, and Cunningham. ' ) For example, ten spe-
cial points give very satisfactory results for the Green's
functions of bulk cubic semiconductors.

In this paper we extend the special points method to
[001) and [111]lattice-matched N)&M superlattice such
as (GaAs)tv(AIAs)M, determining the special points for
cases such that N+M =4n, where N and M are the num-
bers of two-atom-thick layers of each slab of a superlat-
tice (e.g. , NaL /2 and Mai /2 are the thicknesses of the
GaAs and A1As slabs in a [001] GaAs-A1As superlattice
period, where aL is the lattice constant of either bulk ma-
terial), and n is an integer. The number of special points
needed to obtain reasonable accuracy of such integrals
can be greatly reduced if such a requirement is satisfied.
In this paper we assume that the two components of the
superlattice are perfectly lattice matched. For [001]
super- lattices the three-dimensional lattice translation
vectors can be taken to be the following: (at /2)(1, 1,0),
(at /2)(1, —1,0), and (at /2)(O, O, N +M) for N +M even,
or (aL /2)(1, 1,0), (aL /2)(1, —1,0), and (aL/2)(0, 1,N
+M) for N+M odd. For [111]superlattices the corre-
sponding translation vectors are taken to be
(at /2)(1, —1,0), (aL /2)(0, 1, —1), and (aL /2)(N+M,
N+M, O). We choose the unit of wave vector k and the
reciprocal lattice vectors G as 2~/aL, and k &, k2, and k3
are the three components of the reduced wave vector k in
the x, y, and z directions

k=(k), k2, k3)(2tr/aL ) .

Since the theoretical formalism is the same for any super-
lattice consisting of cubic semiconductors, for simplicity
of presentation, we discuss only zinc-blende GaAs/A1As
superlattices.

II. GENERAL APPROACH

We follow the general approach of Chadi and Cohen
for generating special points. They begin with one or
more wave vectors and, by subjecting these wave vectors
to symmetry operations, generate the special points. For
zinc-blende crystals with a face-centered-cubic Bravais
lattice, they generated ten special points k, based on the
starting points (—,', —,', —,'), ( —,', —,', —,'), and (—,', —,',—,'). We see the
equivalent special points for superlattices composed of
zinc-blende layers.

In generating the special points for zinc-blende materi-
als, Chadi and Cohen actually used three types of symme-
try: (i) time-reversal invariance (k and —k are
equivalent); (ii) point-group symmetry (k and Tk are
equivalent, where T is an element of the point group Td
for zinc-blende structures ); and (iii) translational symme-
try (k and k+G are equivalent, where G is a reciprocal-
lattice vector).

For a superlattice, time-reversal invariance still ap-
plies, but the point-group symmetry is lower (C2„for a
[001] superlattice and C3, for a [111]superlattice, instead
of Td for the bulk), and the translational symmetry is
different: Certainly the reciprocal-lattice vectors in the
direction of growth are different and some reciprocal-
lattice vectors in perpendicular directions might be
changed also for some superlattices.

At first glance, the reduced symmetry appears to great-
ly increase the number of special points needed to obtain
the same accuracy as obtained by the ten special points of
Chadi and Cohen. For example, because of the lower
symmetry of a [001]superlattice, its starting points corre-
sponding to the three bulk generators (—,', —,', —,'), ( —,', —,', —,'),
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and (—,', —,', —,') are (+—,', +—,', +—,
' ), (+—,', +—,', +—,

' ), and

(+—,', +—,', +—,'), and produce, in principle, 8 =512 special

points instead of the ten points of Chadi and Cohen.
Here we show how the number of special points can be
reduced from 512 to 12 for the [001] superlattice and to
10 for the [111] superlattice —provided one restricts
one's attention to superlattices of special periods, namely
N )& M superlattices, such that N +M =4n, with n an in-

teger.

III. [001]SUPERLATTICES AND STRAINS

A. Superlattices

For [001] superlattices, the C2„symmetry dictates that
the starting points corresponding to the bulk (—,', —,', —,

'
) gen-

erator be (—,', —,', —,
' ), (—,', —

—,', —,
' ), and (—,', —,', ——,

' ), with weights

—,', —,', and —,', respectively. Combining either ( —,', —,', —,'), or
( —,', —,', —

—,
'

) with (+—,', +—,', +—,') for an arbitrary [001] super-

lattice, using the method of Chadi and Cohen, we find six
special points: Two have weights of —,', and four have

weights of ». Recombining these six points with

(+—,', +—,', +—,') will give 40 points: 24 with weight
+, , and

16 with weight —„',. Repeating this procedure, but start-

ing with (—,', —
—,', —,

' ), yields 64 points, each with weight —„',.
This gives a total of 40+ 64+ 40=144 superlattice spe-
cial points corresponding to the 10 special points of bulk
zinc blende. It is often impractical to use so many special
points.

For [001] superlattices with special periods, the 144
special points can be reduced considerably by invoking
translational symmetry. For example, consider a GaAs-
A1As NG,„,XMA,„,[001] superlattice such that
No, ~, +M~&~, 4n, where——n is an integer. (Here, for ex-
ample, 1VG,~, denotes the number of GaAs molecular lay-
ers per slab of GaAs. Hence a 1X1 superlattice consists
of alternating layers of GaAs and A1As, and a 2X3 su-
perlattice alternates two GaAs layers and three AlAs lay-
ers. ) In this case, the reciprocal-lattice vectors of the su-
perlattice are G& ——(1,1,0), G2 ——( I, —1,0), and

G3 (0,0, 1 /2n) Because o. f the symmetry of this special
period, any two of the 144 special points (k„kz,k3)
that have the same values of k, and k2 coalesce into a
single special point —reducing the number of distinct
points to 20. Examination of the remaining symmetries
reduces this set to 12 special points k, each with weight
a, denoted by (k, a):

B. Strained bulk zinc blende

One can consider bulk GaAs to be a degenerate form
of a GaAs-GaAs [001] superlattice. In this case, the su-

perlattice has D2„symmetry rather than C2, symmetry
(because the former A1As of the GaAs-AIAs superlattice
is now GaAs). Either the first six or the last six of the
special points above (with their weights doubled) could be
used for the Dzd symmetry, leading to results with the
same accuracy as the ten special points of Chadi and
Cohen. Of course, by viewing bulk GaAs as a 2)&2
GaAs-GaAs superlattice, the Hamiltonian matrix is four
times as large as for bulk GaAs, and so evaluating six
special points for sums involving functions of the larger
Hamiltonian will be more laborious than evaluating ten
for bulk GaAs. Therefore it does not make sense to treat
bulk CzaAs as a GaAs-GaAs superlattice, but bu1k GaAs
strained along the j001J direction has D2d symmetry, and
so either the first six or the last six of the above 12 special
points (with their weights doubled) can be used to evalu-
ate integrals over the Brillouin zone for [001]-strained
bulk GaAs.

IV. [111]SUPERLATTICES AND STRAINS

A. Superlattices

For [111]superlattices, the point group is C3„,and the
generators of special points are (—,', —,', —,') and ( ——,', —,', —,'),
with weights of —,

' and —,', respectively. Cotnbining (—,', —,', —,
'

)

with (k —,', +—,', +—,') and then (+—,', +—,', +—,'), we obtain ten

distinct special points, with weights of —,'4, —,'„or»,.
Starting with ( ——,', —,', —,

' ), we obtain 40 special points with

weights of —„',or —,'„,bringing the total number of special

points to 50. This set can be reduced by considering

No, ~, +M~~~, 4n, in w——hich case (1/4n, 1/4n, 1/4n) is a
reciprocal-lattice vector. By adding this reciprocal-
lattice vector, or its negative, to each of the 50 genera1
special points, we reduce the number of distinct points to
20: eight lie in a plane on the superlattice Brillouin-zone
boundary which is perpendicular to the [111]direction
and passing through the point ( —,', —,', —,'), and 12 lie on a

parallel plane within the Brillouin zone. Using transla-
tional symmetry with reciprocal-lattice vectors (1,—1,0),
(0,1,—1), and ( —1,0, 1) together with C3„point-group
symmetry, these 20 points reduce to the following ten dis-
tinct special points k with weights ct, (k;a):

B. Strain

These special points have been used to compute the
Green's functions of superlattices, for energies in the fun-
darnental band gaps.

The GaAs-GaAs [111]superlattice has C3, symmetry,
and so the above ten special points can be used for treat-
ing Brillouin-zone sums for [111]-strained bulk GaAs.
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V. CONCLUSION

Special points for superlattices can be computed using
the method of Chadi and Cohen. By limiting oneself to
special-period superlattices, such as those for which
N~ A +MA]A =4n, one finds that relatively few special
points will provide accurate integrals over the superlat-
tice Brillouin zone. We have presented 12 special points
for N XM [001] superlattices and ten for N)&M [11lj su-
perlattices, valid for N+M =4n, where n is an integer.
However, our general approach can be used for generat-

ing special points that will produce more accuracy or for
superlattices that do not satisfy the condition
N+M =4n. These same special points obtained for
N+M =4n may be used for Brillouin-zone sums for
strained bulk zinc-blende material.
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