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A new formulation for the complex index of refraction, N(E)=n(E) —ik(E), as a function of
photon energy E, for crystalline semiconductors and dielectrics is developed based on our previous
derivation of N(E) for amorphous materials. The extinction coefficient k(E) is deduced from a
one-electron model with finite lifetime for the excited electron state. The refractive index n (E) is
then derived from the Kramers-Kronig relation as the Hilbert transform of k(E). It is shown that
n ( 00 ) & 1. Excellent agreement is found between our equations for n (E) and k(E) and published
measured values for crystalline Si, Ge, GaP, GaAs, GaSb, InP, InAs, InSb, SiC, cubic C, and
a-SiO&, over a wide range of energies (-0-20 eV). Far fewer parameters, all of which have physical
significance, are required and they can be determined for a particular material from the position and
strength of the peaks in the k spectrum.

I. INTRODUCTION

Optical properties of any medium can be described by
the complex index of refraction, N=n —ik, or the com-
plex dielectric function, e=e, —ie2. e is related to N by
e=N, so that E'I and e2 can be determined from a
knowledge of n and k: e, =n —k and e2 ——2nk. The
real and imaginary parts of the complex index of refrac-
tion, n and k, are termed the refractive index and the ex-
tinction coefficient, respectively. In addition to k and e2,
which relate to absorption of light, the absorption
coefficient, a=2cok/c, is used to describe absorption. co

represents the photon frequency and c the speed of light.
n and k, E'I and e2, and a are referred to as the optical
constants of the medium. Values of the optical constants
depend on the photon energy, E=Ace, i.e.,
N =N(E) =n (E) ik(E), e=—e(E)=e~(E) i e2(E), a—nd
a=a(E) These fun.ctions are called optical dispersion
relations.

Previous formulations of optical dispersion relations
for crystalline semiconductors and dielectrics are compli-
cated. ' Optical constants are determined in closed
analytical form only for a narrow range of photon ener-
gies just above the energy-band gap, Eg, i.e., for the ab-
sorption edge. In this range it is argued that a as well as
k and e2 (since n is assumed constant for E =Eg ) can be
broken into two parts. For a&ao (where ao represents
some experimentally determined cutoff value), an empiri-
cal exponential dependence on E, referred to as Urbach's
tail, is assumed. For a & ao, a power-1aw dependence on
E is derived, based on a one-electron model with infinite
lifetime for the excited electron state. The value of the
exponent depends on the type of transition: direct, for-
bidden, or indirect.

Beyond the absorption edge, optical constants are not
determined in closed analytical form. Analysis of critical

points in the Brillouin zone plays a major role in their
determination. ' For example, an edge in the ez versus E
spectrum is attributed to a transition corresponding to
fi co= E„(k, , ). ' At a critical point, k=k„;„the function
E,„(k}=E,(k) —E„(k)is an extremum. (k represents
electron wave vector and indices c and v represent con-
duction and valence bands, respectively. ) A peak in ez
versus E is attributed to a transition corresponding to an
accidental pairing of two critical points occurring near
the same energy (sometimes enhanced by exciton interac-
tions). A typical assignment of critical-point transitions
to the major peaks and edges in ez(E) for Ge is given by
Brust, Philip, and Bassani, based on pseudopotential cal-
culations. ' (See Sec. III.}

The principle of causality leads to a fundamental rela-
tion between the real, n(E), and imaginary, k(E), parts
of N(E), the Kramers-Kronig relation. Thus, theoreti-
cally, when k as a function of E is known, n (E}can be
determined. However, except for harmonic-oscillator fits
to the measured data, formulations of n (E}do not relate
it to k(E). Instead, n(E) is determined empirically by
fitting data to various model equations. Commonly used
are Sellmeier-type equations or equations involving a sum
of Sellrneier terms, all valid for a limited range of ener-
gies. The particular equation applied to a given material
is determined by the resulting fit it gives to measured
data. 4

When an oscillator fit is used, n can be related to k
through the Kramers-Kronig relation. However, k can-
not be correctly described at the absorption edge since
the energy-band gap is not incorporated into an oscillator
model. In addition many fitting parameters are required.
For example, 22 parameters are used to describe n and k
for Si in the 0—10-eV range.

In this paper we present a new formulation for the
complex index of refraction of crystalline semiconductors
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and dielectrics. We deduce an expression for k (E) based
on a one-electron model which includes a finite lifetime of
the excited electron state, extending our recent derivation
for amorphous materials. The need to invoke an acciden-
tal degeneracy of two critical points in order to account
for peaks is eliminated in the present treatment. A peak
in the k-versus-E spectrum can be attributed to a transi-
tion corresponding to fico=E, (k„;,) —E„(k,„;,). We then
derive n (E) from k (E) via the Kramers-Kronig relation.
We deduce that n (E) approaches a value greater than
one in the limit that E approaches infinity, in contrast to
the classical theory of dispersion where n( ao }= 1.

The resulting expressions simultaneously provide ex-
cellent fits to the measured and published n and k values
of a large number of materials (so far eleven) over a wide
range of photon energies in the fundamental region (-0
to 20 eV}, with far fewer parameters (all of which have
physical significance) than other treatments. In the fun-
damental region, the energy ranges from the lowest ab-
sorption edge up to an energy where no more structure is
observable. '

Finally, when other optical constants such as
e& ——n —k and e2 ——2nk, as well as normal-incidence
reflectance,

R= (n —1) +k~
(n + 1)'+k'

are expressed in terms of these new equations for k (E)
and n(E), we show that excellent fits to experimental
data are obtained.

$2y

2ir(E E —fico)—+fi y l4
(3)

Assuming a —,
' power law for the densities of states in the

valence and conduction bands,

(4)

Inserting Eqs. (3) and (4) into (1) and using k =ac/2co,
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Therefore, for amorphous semiconductors and dielec-
trics,
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II. NEW FORMULATION
OF n (E) AND k (E)

This formulation of N(E) for crystalline semiconduc-
tors and dielectrics is based on our previous derivation of
n(E) and k(E) for amorphous semiconductors. We de-
duced an expression for a(co), the absorption coefficient,
for the amorphous case, by considering electron transi-
tions between two energy bands due to photon absorp-
tion. a(co) was defined to be

cea=
Io

where 4(co) is the energy absorbed in the frequency range
co to a+de per unit time, e is the number of possible
transitions per unit volume in a layer of thickness Ax,
and Io is the incident photon intensity.

Assuming that the excited state to which the electron
transfers has a finite lifetime r, 4(co) is given by

B=2(E 4, E), —

$2y 2

C=(E e E)'+— (9)

As mentioned in the Introduction, when k as a func-
tion of E is given, n (E) can be found. The principle of
causality leads to a relation between n (E) and k (E), the
Kramers-Kronig relation. This principle (sometimes re-
ferred to as the principle of limiting distance' ) states that
no signal ever precedes the light cone of its source. When
this principle is satisfied, N(E) will be analytic (regular)
in the lower half plane. (Using the convention N = n + ik,
N is analytic in the upper half plane. } Conversely, if
N(E) is analytic in the lower half plane, causality is
satisfied. As a result, n(E) is determined as the Hilbert
transform of k (E). If k (E) tends toward a constant as
E~ ao, the values of k( 00 ) and n ( ao ) must be subtracted
out from the Hilbert transform, so that

g 2

4(co)= e coI ((b ~x~a) )3Ac
(E} ( )

1 P f k(E } k( ~ ) d yi

E' —E (10)

2ir(Ei, E, %co) +fi y /4— — (2)

where
~

a ) represents the initial state of energy E„~b )
represents the final state of energy Eb, and @=1/~.
From Eq. (2} it is seen that 4(cu) is a maxiinum when
%co=Eb —E

In amorphous semiconductors the valence and conduc-

where P denotes Cauchy's principle value integral. [As
discussed later on, n ( 00 ) & 1.]

The refractive index, n(E), is then found using Eq.
(10):

BOE+ Co
n(E) n(oo )=-

E2—BE+C

where
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(14)

nduction band

These dispersion relations for n (E) and k (E) closely fit
the published data for a wide variety of amorphous ma-
terials, such as a-Si, a-Si:H, a-Si3N4, and a-Ti02, over a
wide range of photon energies.

In crystalline semiconductors and dielectrics, long-
range order gives rise to structure in k(E) containing
several peaks, in contrast to a single peak in k (E) for the
amorphous case. In order to account for these peaks, we
first note that in the amorphous case the maximum for
4(co), which occurs when Aco=E, E=B/—2, is very

close to the maximum for k (E). Thus we assume a peak
in the k spectrum of crystalline semiconductors and
dielectrics occurs when the energy absorbed in a transi-
tion, 4(co), has a local maximum (approximately); in
which case we assume that the transition corresponds to

Aa) =E,(k„;,) —E„(k„;,) .

When k =k«,
„

then V&E,„(k„;,) =0. This condition is
satisfied, for the most part, at symmetry points, or sym-
metry lines or planes in the Brillouin zone. '" Therefore,
analogous to previous treatments, ' '" symmetry analysis
of the Brillouin zone of these materials should determine
which specific states are involved in transitions which
produce peaks in k(E). In this paper we do not assign
any particular states to these transitions.

Thus, we take 4(co) as a sum of terms, each term hav-
ing the form given by Eq. (3), where the number of terms
is equal to the number of peaks in k(E). The extinction
coefficient for crystalline materials is then given by

E

lence band

q(Ej

FIG. 1. The solid line schematically depicts discontinuities in
the slope of the density of states g„(E)and g, (E) occurring at
critical points. The dashed line shows that a z' power-law be-

havior for g„(E)and g, (E) constitutes a smoothed-out average
of the above.

approximation can only be ascertained from the fit of Eq.
(15) to experimental data. Further remarks will be
presented in a future work.

The refractive index, n (E), determined from
Kramers-Kronig analysis as the Hilbert transform of Eq.
(15), will then be given by

Bo E+Co
n(E)=n(ao )+ g

&
E —8;E+C;

A;
k(E) = g (E Es)—

i E,—8;E+C; where

(q = integer }, (19)

where

(q = integer), (15)
80 ——

82
+E B —E'+C (20)

3, =const X ( (g;„,~ x [ g,"„,) [ ';y;,

8;=2[E,(k„;,) —E,(k„;,)];,
$2y 2

C, =[E,(k„,, ) —E„(k„,, )]', +
4.

(16)

(18)

A; 8;
Co —— ( E + C; ) 2EgC;—

I

Q
~ (4C g 2)1/2

(21)

(22)

In Eq. (16), i)/ „',denotes the electron state in the conduc-
tion or valence band when k=k, „-,.

Taking the total number of possible transitions per unit
volume, e, proportional to (E Eg ) in Eq. (1—5}, implies
that the density of states in valence and conduction
bands, ri„(E)and g, (E), follow a —,

' power law. This ap-
proximation ignores the discontinuities in the slopes of g,
and g, occurring at critical points in the Brillouin zone.
It amounts to taking a smoothed-out average of the true
g s in calculating e. See Fig. 1. The justification of this

In both the amorphous and crystalline case we do not
assume that n( ao ) = 1, in contrast to classical dispersion
theory. In fact, Toll has shown' that mathematics dic-
tates that n( oo ) =1+ca, where c represents the speed of
light and the factor a represents a positive constant, when
the condition of causality as well as the condition
k(E)~0 as E~oo are satisfied. Assuming these two
conditions, and using the convention that
N(E)=n(E)+ik(E) [which gives N(E) analytic in the
upper half plane], he derives the following dispersion re-
lation:
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a(co', )d co'„
N(co„)=1+ca+—lim f z,ir ~ ~0+ 0 co —(co +ico )

(23)

where co„and ~, are the real and imaginary parts of the
complex frequency co=co„+iso; and a is the absol'ption
coefficient.

Substituting for k (E) in the above equation (23) gives

tion, e(E)=e&(E)—iE2(E), as well as normal-incidence
reflectance spectrum,

[n(E)—1] +k (E)
[n (E)+1]'+k'(E}

can be described when n (E) and k (E) are given by Eqs.
(15) and (19).

k ( co'„)d co'„
N(co„)=1+ca+—lim fo+ — co —co~ + & co;

(24) A. The data

which is equivalent to

n(E) =1+ca+ P—f1 ~ k(E')dE'
(25)

Toll interprets the term ca in Eq. (25) as arising from
an absorption line at infinity. ' This term may seem
physically implausible, since the condition that k(E)~0
as E~~ is incorporated; however, as Toll points out,
the term is "logically permitted by the principle of limit-
ing distances. . . . Mathematical deduction does not ex-
clude this term. It has to be explicitly excluded on other
grounds. "

Toll's derivation for n( ao )= I+ca can trivially be ex-
tended to the case at hand where the principle of limiting
distance is satisfied but k(E)~constant as E~ao. A
subtraction of k( ao ) in the integral of Eq. (25) is all that
is needed so that

1 ~ [k(E')—k( ~ )]dE'
n E =I+ca+—P (26)

III. EXPERIMENTAL VERIFICATION

In this section we will apply Eqs. (15) and (19) to pub-
lished experimental data. It will be shown that these
equations describe, over a wide range of photon energies„
the optical constants of a large number of crystalline
semiconductor and dielectric materials. %e will also
show that the real, ei(E) =n (E}—k (E), and imaginary,
ez(E)=2n(E)k(E), parts of the complex dielectric func-

giving n( oo ) = 1+ca ) 1 in this more general case. Given
that k( ~ }&0,it would seem illogical to exclude the term
ca on physical grounds, since n(00 }=1 implies no in-
teraction for E~~. Thus, n( ~ ) is greater than one be-
cause there is absorption in the limit E~ oo.

Measured values of the optical constants of many ma-
terials, reported by di6'erent investigators, are compiled
in Ref. 4. However, as pointed out by Aspnes and Stud-
na, ' discrepancies of the order of 10—30% are common
in "seemingly equally valid" data.

For the present study, we selected crystalline solids for
which n and k were available in tabulated form, for a rel-
atively wide range of energies, measured in the same lab-
oratory. This provided a measure of consistency. The
selected crystalline solids are group IV semiconductors
(Si and Ge), group III-V semiconductors (GaP, GaAs,
GaSb, InP, InAs, and InSb), group IV-IV semiconductor
(SiC), and crystalline insulators (cubic C and a-Si02).

The optical constants for Si, Ge, GaP, GaAs, GaSb,
InP, InAs, and InSb, in the 1.5-6.0-eV range, are by
Aspnes and Studna. ' Beyond this range (and soinetimes
overlapping at end points) data for some of these materi-
als from other sources were also included. This was
done mainly to include large peaks in k spectrum and
also to elucidate discrepancies.

Experimental data for SiC ( -5 to 13 eV), cubic C ( —5
to 18 eV}, and a-Si02 (-2 to 18 eV} are by Leveque and
Lynch, ' Philipp and Taft, ' and Philipp, ' respectively.

B. The band gap, Eg

The values of E for various materials quoted in the
literature are obtained, usually, by extrapolating the
"linear" portion of the plot of (a%co)'i versus fico, where
m =—,', —,', or 2, depending on the assumed mode of optical
transition (allowed direct, forbidden, or indirect, respec-
tively). The quoted value of Eg (say, at room tempera-
ture) for a given semiconductor may thus vary depending
on the method of extrapolation and mode of transition.
For example, for Ge, Dash and Newman' placed the in-
direct threshold transition at 0.62 eV and the direct tran-

TABLE I. Values of the parameters A;, 8;, C„and n((x ) for crystalline SiC, obtained by least-
square fitting of experimental n and k data to Eqs. (19) and (15), taking the number of terms equal to ei-
ther 1, 2, or 4. The energy-band gap of SiC is also given. The corresponding theoretical plots of n (E)
and k (E) are shown in Fig. 2.

1 term

2 terms

4 terms

0.259 26

0.18028
0.10700

0.001 08
0.190 54
0.006 46
0.053 66

8, (eV)

14.359

14.222
19.397

13.227
14.447
19.335
21.940

C, (eV)

53.747

52.148
99.605

43.798
53.860
94.105

125.443

n(oo )

1.680

1.337

1.353

Eg (eV)

2.50
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sition at 0.81 eV, whereas Eg is given as 0.66 eV in Ref.
18 and 0.67 eV in Ref. 19. For Si, Es is cited to be 1.06
eV, ' 1.08 eV, ' and 1.11 eV. For GaAs, E is cited as
1.39 eV, ' 1.4eV, ' and 1.43 eV.2

In our formulation, Eg specifies the position of absolute
minimum in k spectrum. Experimentally, the absolute
minimum occurs at the onset of the "fundamental" ab-
sorption edge (e.g., see the k spectra for various crystal-
line semiconductors and dielectrics in Ref. 4). Thus we
have taken E (listed in Tables I, II, and III}as such.

C. The curve fitting program

A nonlinear least-square curve-fitting computer pro-
gram was used to obtain the parameters A;, B, , and C, ,

and n(00}, by minimizing the sum of the square of
differences of experimental and theoretical n and k simul-
taneously, subject to the following constraints:

A;, B;, C;, n(~), and4C; —B;)0.
Reasonable initial guesses of the parameters are needed

in running a nonlinear least-squares curve-fitting pro-
gram. Since k is close to a local maximum when

fito= [E,(k,„;,) —E„(k,„,}];
the position of the ith peak in k spectrum, EP'", provides
an initial guess for 8, :

B;=2E,P"" (i =1, . . . , q) .

It can then be shown that

C;=(EP""} (i =1, . . . , q) .

3

C

ta} sic
An approximate value for A; can be obtained by the

knowledge of the magnitude of the peaks. The initial
guess for n(~ ) for all materials studied was chosen as
unity.

D. Results

Figures 2-9 demonstrate that Eqs. (15) and (19) de-
scribe optical properties of a large number of materials.

0- 1. The number of terms

SiC

3

C

0-

(c) SiC

3

C

I

10
0 I I I i I I

0 2 4 6 8 l2 14

Energy (eV)

FIG. 2. The solid lines are the theoretical plots of n (E) and
k (E) given by Eqs. (19) and (15) with the parameters specified in
Table I for crystalline SiC, taking the number of terms equal to
1, 2, and 4 in (a), (b), and (c), respectively. In (a) only experi-
mental data in the 5-8.5-eV range are considered. n: 6 and k:
~ experimental data are by I,eveque and Lynch (Ref. 14).

Each term in the sum for k in Eq. (15) contributes a
peak to the k spectrum and a corresponding peak to n.
In principle, the number of terms in our formulation, i.e.,
the integer q, thus equals the number of peaks in k. In
practice, however, n and k are known for a limited range
of energies, in which case q is taken as the number of
peaks discernable in that range. In addition, shoulders
and doublets contribute to the number of terms. As an
example, consider the experimentally determined optical
constants of SiC in the 5-8.5-eV range as depicted in
Fig. 2(a). In this range, one dominant peak in k, at 7.6
eV, is present. Taking the number of terms equal to one
(q = 1) and Es ——2. 5 eV, the parameters specified in Table
I are obtained. Thus, as seen in Fig. 2(a), the optical con-
stants of SiC in the 5-8.5-eV range are described quite
well by only five parameters.

Now, consider the 5-13-eV range, as depicted in Fig.
2(b}. Two prominent peaks in k at 7.6 and 9.5 eV are
present. Taking the number of terms equal to two, we
then obtain the parameters specified in Table I. The cor-
responding theoretical plots of n (E) and k (E) are shown
in Fig. 2(b}. As seen in this figure, although eight param-
eters give essentially a)1 the notable features of n and k
for cyrstalline SiC in the 5—13-eV range, a still better fit
can be obtained by taking into account the shoulders at
approximately 6 and 11 eV, i.e., taking q=4. This is
shown in Fig. 2(c). Therefore, as the number of terms de-
creases, the smaller peaks disappear apd eventually only
the main peak remains, resembling the amorphous state
of the semiconductor.

It is seen in Table I that as the number of terms
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TABLE II. Values of the parameters A;, B;, C;, and n( ~ ) for different crystalline materials, ob-

tained by least-square fitting of experimental n and k data to Eqs. (19) and (15), taking the number of
terms equal to 4. The energy-band gaps of these materials are also given. The corresponding theoreti-

cal plots of n (E) and k (E) are shown in Figs. 3—5. The theoretical plots of e2(E) for Ge, and e&(E) and

e2(E) for Si, are shown in Figs. 6(a) and 7.

Si

GaP

GaAs

GaSb

InP

InAs

InSb

Cubic C

a-Si02

A,

0.00405
0.01427
0.068 30
0.174 88

0.085 56
0.218 82
0.025 63
0.077 54

0.006 52
0.14427
0.13969
0.005 48

0.00041
0.20049
0.096 88
0.01008

0.002 68
0.34046
0.086 11
0.026 92

0.202 42
0.023 39
0.03073
0.04404

0.184 63
0.00941
0.052 42
0.03467

0.002 96
0.221 74
0.060 76
0.045 37

0.105 25
0.08604
0.14945
0.04472

0.008 67
0.029 48
0.01908
0.017 11

B; {eV)

6.885
7.401
8.634

10.652

4.589
6.505
8.712

10.982

7.469
7.684

10.237
13.775

5.871
6.154
9.679

13.232

4.127
4.664
8.162

11.146

6.311
9.662

10.726
13.604

5.277
9.130
9.865

13.956

3.741
4.429
7.881

10.765

15.027
18.506
23.736
31.468

20.729
23.273
28.163
34.301

C; (eV)
11.864
13.754
18.812
29.841

5.382
11.486
19.126
31.620

13.958
15.041
26.567
47.612

8.619
9.784

23.803
44.119

4.267
5.983

17.031
31.691

10.357
23.472
29.360
47.602

7.504
20.934
25.172
50.062

3.510
5.447

15.887
30.119

56.859
87.212

142.794
253.515

107.499
136.132
199.876
297.062

n(00)

1.950

2.046

2.070

2.156

1.914

1.766

1.691

1.803

1.419

1.226

Eg (eV)

1.06

0.60

2.17

1.35

0.65

1.27

0.30

0.12

6.00

7.00

TABLE III. Values of the parameters A;, B;, C;, and n( 00 ) for crystalline Ge, obtained by least-
squares fitting of experimental n and k data to Eqs. (19) and (15), taking the number of terms equal to 5.
The energy band gap of Ge is also given. The corresponding theoretical plots of n (E), k(E), and R (E)
are shown in Figs. 8 and 9(b).

Ge
(5 terms)

A;

0.00103
0.11637
0.10968
0.034 79
0.077 11

B; (eV)

4.313
4.677
6.728
8.704

11.056

C, (eV)
4.654
5.639

11.858
19.119
31.879

2.161

E, (eV)

0.60
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changes, the values of the parameters are slightly
modified, as expected. However, the modifications of
and C are surprisingly small, and it is only the parameter

(which determines the strength of each term) that
significantly changes.

As will be shown in the following subsection, generally
four terms are sufficient to describe n and k over a wide
spectral range, indicating four dominant critical point

transitions. Nevertheless, in some cases more than four
terms may be required to bring out the details of the
spectra.

2. Examples

Taking the number of terms equal to 4, corresponding
to 4 "easil " discernible peaks, Table II contains t e pa-

6- (b) Ge

0
0 3

0
C03

GOP GaAs

0 3

GOSb

7 I I

5-

O

0 3
C

0
C03
C

(g) InAs

7 I

6- InSb

0
C0 3
C

3 4 5
Energy (eV)

3 4 5
E n e rgy (eV)

theoretical lots of n (E) and k (E) given by Eqs. (19) and (15) with the parameters specified in Table
dk ~ ' ld fo A dS dII for crystalline Si, Ge, GaP, GaAs, GaSb, InP, InAs, and InSb. n: 6 and: ~ experimen a

(Ref. 13). n: ')7 and k: X experimental data are from Ref.ef. 4.
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shown in Fig. 7, depicting the excellent agreement be-
tween the present formulation and the experimental e,
and e2 of Si.

It appears that the reflectance spectrum provides a
better guidance for determining the number of terms be-
cause structure is more readily discernable in measured
R (E) than in measured k(E), since k is found experi-
mentally from information contained in the reflected
beam. For instance, in the 0-27-eV range, the measured
R for Ge by Philipp and Ehrenreich ' contains a dou-
blet (at -2. 1 and 2.3 eV), a shoulder (at -3.5 eV), and
two well-defined peaks (at -4.5 and 5.5 eV). See Fig.
9(a). Thus, taking the number of terms equal to 5 (in-

FIG. 4. The solid lines are the theoretical plots of n (E) and
k (E) given by Eqs. (19) and (15) with the parameters specified in

Table II for crystalline cubic C. n: 6 and k: ~ experimental
data are by Philipp and Taft (Ref. 15).

30-

(a) Ge
(P resent Formulation)

rameters A, , B;, C;, and n(~ ) for difFerent materials,
determined by the least-square fitting program. In agree-
ment with the discussion in Sec. II, n ( ao ) was found to be
greater than one, the actual value depending on the ma-
terial. Notice that 8 s are very close to 2E,P"". For in-
stance, for a-Si02, experimentally the peaks in k occur at
10.45, 11.7, 14.3, and 17.25 eV, ' which are very close to
the B;/2 values in Table II at 10.36, 11.64, 14.08, and
17.15 eV.

If the formulas for n and k are given, then the real and
imaginary parts of the complex dielectric constant are
known. For example, Fig. 6(a) shows a plot of ez ——2nk
for Ge, with the parameters specified in Table II. As seen
in this figure, a much better correspondence exists be-
tween the experimental data and our formulation than
the previous gseudopotential approach of Brust, Phillips,
and Bassani ' ' shown in Fig. 6(b). Another example is

20

10-

0 . . . xic

(b)

30—

3 20—
CV

10-

I I

~4 ~1
Ge

Exp t.

1.5 2.5 3.5 4.5 5.5 6.5

C
0

2 4 6 8 10 1 14 16 18 20
Energy (eV

FIG. 5. The solid lines are the theoretical plots of n (E) and
k (E) given by Eqs. (19) and (15) with the parameters specified in
Table II for crystalline a-SiO&. n: A and k: experimental
data are by Philipp (Ref. 16).

E(eV)

FIG. 6. (a) The solid line is the theoretical plot of
ez(E) =2n(E)k(E), where n (E) and k(E) are given by Eqs. (19)
and (15) with the parameters specified in Table II for crystalline
Ge. The experimental e& data ~ and )( are from Aspnes and
Studna (Ref. 13) and Ref. 4, respectively. (b) Pseudopotential
calculation of e2 for Ge by Brust, Phillips, and Bassani (Refs. 20
and 21). A typical assignment of critical-point transitions to the
major peaks and edges is shown. The 4.5-eV peak is attributed
to the accidental degeneracy of an M, edge due to the X4~X&
transition and an M2 edge due to the X4~X& transition. The
2.1-eV edge is attributed to an M& critical point due to the
A3~A& transition. Excitonlike effects (electron-hole interac-
tions), causing line narrowing, are attributed to these transi-
tions. The edge at 0.8 eV (argued to be a direct threshold) is at-
tributed to an Mo edge due to the I » ~I 2 transition. The no-
tation for the edges MO, M&,M2 is detailed in Refs. 1 and 3,
while the notation for the states of X,X,I, is detailed in Refs. 1

and 11.
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FIG. 7. The solid lines are the theoretical plots of
e&(E)=n (E)—k (E) and e2(E)=2n(E)k(E), where n(E) and
k(E) are given by Eqs. (19) and (15) with the parameters
specified in Table II for crystalline Si. e&. 6 and e2. ~ experi-
mental data are from Aspnes and Studna (Ref. 13).

60

~ 40

Ge
(Present Formulation)

stead of 4) should result in a better fit, bringing out the
details of n and k at around 2 eV. This is seen in Fig. 8.
The parameters so determined by the nonlinear curve-
fitting to n and k are given in Table III. The correspond-
ing theoretical R spectrum is plotted in Fig. 9(b), and can
be compared with the measured spectrum shown in Fig.
9(a).

In Fig. 9, however, notice the poor fit between the
theoretical and experimental reflectance spectra in the
vacuum uv range (E R 7 eV). We believe the reason for
this is, in accordance with Philipp and Taft and
Aspnes, the presence of a thin "native oxide" overlayer.
This is because a thin oxide, exhibiting strong absorption

20

0
0

I I

10 15
Energy (eV)

I

20
I

25

FIG. 9. (a) Experimental reflectance spectrum of crystalline
Ge taken from Ref. 22. (b) Theoretical reflectance spectrum,
R(E)=[[n(E)—1] +k (E)j/[[n(E)+1] +k (E)}, where
n (E) and k (E) are given by Eqs. (19) and (15) with the parame-
ters specified in Table III for crystalline Ge.

in the vuv range, inevitably forms on the surface of most
semiconductor materials upon exposure to atmo-
sphere, ' which in turn affects accurate reflectance
measurements.

The dispersion relations developed in this paper, there-
fore, not only describe optical constants of crystalline
semiconductors and dielectrics, but may also guide their
accurate experimental determination.
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