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We present detailed results of self-consistent-field pseudopotential calculations for the stability,
structural phase transitions, growth, and the electronic properties of strained Si/Ge semiconductor
superlattices and alloys. The metastable structure of (Si),/(Ge), (n < 6) superlattices pseudomorph-
ically restricted to the Si(001) surface are determined through total energy minimization and inter-
atomic force calculations, and their formation energies are calculated. A simple model for the for-
mation energy of superlattices is developed, whereby the energy of the activation barrier to form a
misfit dislocation is estimated. A neostructural phase transition in the strained Si-Ge alloy is stud-
ied, and the order of instability for various possible structures is given. It is found that during
growth the atoms of the topmost grown layer are dimerized, resulting in a possible short-range or-
der in the alloy. The energy gap of all (Si),/(Ge), superlattices is found to be indirect. A more
significant finding, however, is that the energy separation between the direct and indirect gap con-
tinues to decrease with increasing n, and is only 0.07 eV for n=6. Conduction-band states of an ex-
tended nature located below the confined states point to a new feature of the band offset and
quantum-size effect. Localized states lying deep in the valence- and conduction-band continua are

another novel result of this study.

I. INTRODUCTION

Its excellent etching and mechanical properties have
made silicon an indispensable material in microelectronic
technology. However, being an indirect-gap semiconduc-
tor, silicon has been excluded from photonics and op-
toelectronics. Improving electronic properties of this
crystal has been the continuing interest of material scien-
tists. Recent progress in the fabrication of epitaxial semi-
conductor superlattices with multiple quantum-well
structure providing novel two-dimensional (2D) electron-
ic properties has stimulated the idea of increasing carrier
mobility in Si/Ge heterostructures by modulation dop-
ing. In an effort to compensate for the deficiencies of sil-
icon, and to further upgrade this well-established technol-
ogy, the epitaxial growth of the pseudomorphic
Si/Si,_, Ge, heterostructures has been achieved.! = The
lattice misfit of <4% is completely accommodated by
the uniform lattice strain in the commensurate or pseu-
domorphic Si/Si;_, Ge, layers. While the grown layers
are in registry with the epilayer, the lattice constant in
the perpendicular direction expands, leading to a tetrago-
nal distortion. This way the energy increased by the pla-
nar compressive strain is partly relieved by the perpen-
dicular expansive strain. Owing to the high-energy bar-
rier associated with the reordering of atoms, many defect
free, strained layers can grow before the accumulated
strain energy is relaxed by the generation of the misfit
dislocation. Fiory et al.® were able to grow high quality,
commensurate Si,_,Ge, films of ~2500 A thickness
when x <0.5.

Recently, the growth of pure Ge (i.e, x =1) up to six
layers pseudomorphically restricted to Si(001) substrate
has been realized by Pearsall et al.® More importantly,
they observed direct optical transitions in the (Si),/(Ge),
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semiconductor superlattice [grown on the Si(001) sub-
strate], which are found neither in constituent crystals
nor in the Si) sGey 5 alloy. This has been an encouraging
step towards making significant improvements in the
electronic properties of silicon. Concomitantly, novel
electronic structures, especially dramatic lowering of the
direct gap upon superlattice formation, have been pre-
dicted by self-consistent-field pseudopotential calcula-
tions of Ciraci and Batra,’ and Froyen, Wood, and
Zunger.® The observed optical transitions were also in-
vestigated by using the effective-mass approximation,’
and the tight-binding method.'°

The stability of the Si/Ge heterostructures in spite of a
large lattice mismatch is another interesting aspect. This
became the focus of attention by a recent observation
of Ourmazd and Bean,!! who presented evidence for a
neostructural  order-disorder  transition in  the
Si(001)/Si; _,Ge, strained superlattice system. Apart
from its fundamental and academic relevance to the
order-disorder transitions in alloys, this observation had
important technological implications. The questions
have arisen as to why and how the observed transition
occurs, and how the long-range order affects the electron-
ic properties of the superlattice. Theoretical studies”!2
have started to investigate these issues. The band offset
in the strained Si/Ge superlattices has attracted much at-
tention, and is treated in a number of recent publica-
tions.3~2! Raman spectroscopy has shown that the
quantum-well structure and the band lineup are strongly

dependent on the strain induced by the lattice
mismatch.!®
Clearly, the pseudomorphic Si/Ge superlattices

present new conceptual ideas about synthetic semicon-
ductors and novel device applications. A generalized for-
mula for such a superlattice [SilﬁxGex}n,a“/
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{Si,_yGey}m,a“ provides many degrees of freedom for

controlling the electronic properties of this system. The
concentration x and y of Ge in the sublattices and the la-
teral lattice constant a, are variables, which set the band
offset'>!® and provide excellent means to engineer the
quantum-well structure. The superlattice periodicity,
n +m, (n as well as m itself) are also important parame-
ters to control the character and the dimensionality of
the confined states.’»?’ Furthermore, the modulation
doping ranging from low impurity concentration to the
formation of impurity bands brings about additional de-
grees of freedom in characterizing the devices based on
these heterostructures.

In this paper we present our detailed results for the sta-
bility, neostructural phase transitions, growth, and the
electronic properties of the strained Si/Si,Ge;s and
(8i), /(Ge), (1 <n <6) superlattices, which have in-plane
registry with the Si(001) surface. Our results are based on
the total energy, force, and charge-density calculations
performed by using an ab initio pseudopotential method.
Some of our results were reported briefly elsewhere.” The
method and the parameters of the calculations are
presented in the following section. In Sec. III, the
structural parameters are determined, and formation en-
ergies of superlattices are calculated. Based on these cal-
culations the stability of (Si), /(Ge), is discussed, and a
simple model for obtaining the formation energy is pro-
posed. The stability of the Si-Ge alloy, and neostructural
phase transitions are treated in Sec. IV. The benefit of
energy from this order-disorder transition is found to be
too small. The observed phase transition may be initiated
by the short-range order set up during the growth. This
possibility is explored in the microstructure of the
growth. This analysis is presented in Sec. V. Novel
features of the electronic structure, such as the quasi-
direct band gap, confined states near the band edge and
in the band continua, are presented in Sec. VI. Finally,
our conclusions are stated in Sec. VII.

II. METHOD AND PARAMETERS
OF CALCULATIONS

Self-consistent-field (SCF) pseudopotential calcula-
tions** were provided within the framework of the local-
density functional theory applied in momentum space.?
Scalar relativistic effects were included via the use of non-
local, norm-conserving ionic pseudopotentials given by
Bachelet et al.?® Ceperley-Alder exchange and correla-
tion potential?’ as parametrized by Perdew and Zunger?®
has been used. Bloch states are expanded with the kinetic
energy cutoff corresponding to | k+G |2=12 Ry, which
leads to a basis set consisting of ~1200 plane waves in
large unit cells. This energy cutoff is raised to 15-18 Ry
to investigate the electronic structure. During the SCF
iterations the valence charge density was sampled by us-
ing nine special points in the reduced zone. That this
sampling is appropriate was tested by comparing total en-
ergies with those calculated with 75k points uniformly
distributed in the tetragonal Brillouin zones (BZ). The
large basis set, a fine BZ sampling, and a strict self-
consistency tolerance of [root-mean-square (rms) devia-
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tion in potential] 5X 10~7 Ry used in this study assure
values for the calculated structures with acceptable accu-
racy. A reliable analysis for the stability of these struc-
tures relative to the constituent crystals can also be pro-
vided by comparing the calculated total energies.

We have carried out total energy, electronic structure,
interatomic, and charge-density calculations on Si, Ge
tetragonally distorted Ge, zinc-blende Si-Ge, and the
strained (Si), /(Ge), superlattices with 1 <n <6. To un-
derstand the origin of the observed neostructural phase
transitions in the Si,_,Ge, alloys, we also investigated
the strained and also strain-free Si-Ge in the rhom-
bohedral structure. We have determined the equilibrium
structures by the method of the total energy minimiza-
tion. Then, we tested these equilibrium structures by cal-
culating the interatomic forces.?’ To obtain accurate
values for interatomic forces®® our self-consistency toler-
ance is reduced to ~ 10~ Ry.

III. ENERGETICS AND STABILITY
ANALYSIS FOR (Si), /(Ge),
SUPERLATTICES

In this section we present results of our geometry op-
timization and energetics for Si, Ge, zinc-blende Si-Ge,
and the strained (Si), /(Ge), superlattices with 1 <n <6.
All these structures are grouped according to the tetrago-
nal unit cells in which they are treated. For example,
tetragonally strained Ge, zinc-blende-SiGe, (Si);/(Ge),,
and (Si),/(Ge), are studied in tetragonal unit cells includ-
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FIG. 1. (a) Tetragonal unit cell of the strained (Si), /(Ge),
superlattice with the solid and open circles denoting the posi-
tion of Si and Ge atoms, respectively. R, =R,=aQ /V2 and
d,=a% /4. R,, d,, and d, are obtained by minimization of the
total energy. In all unit cells the first Si atom starting from the
Si sublattice is located at the corner of the basal square of the
tetragon. (b) Perspective view; (c) cross section through the
horizontal central plane with dashed lines delineating the fcc
BZ; (d) cross section through the vertical plane of the tetragonal
superlattice Brillouin zone. The relation to the fcc BZ points la-
beled by the bar is indicated. (I'X =27/a$ and XL =7/al.)
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ing two atoms from each constituent. While (Si),/(Ge),
is studied in a tetragonal unit cell including four atoms
from each constituent, because of their different repeat
periods (Si); /(Ge); and (Si)s/(Ge)g systems are treated in
a unit cell consisting of six atoms each. The tetragonal
unit cell and the corresponding superlattice Brillouin
zone (SBZ) is illustrated in Fig. 1. To assure commen-
surability in the (001) plane, the lateral lattice constants
of the pseudomorphic Si/Ge superlattices a (in terms of
cubic lattice constants) are taken to be equal to asl This
way a planar compressive strain e =(a2, —a,)/ag, is in-
troduced in the Ge sublattice.

As seen in Fig. 1 the lattice constant perpendicular to
epilayers R; (or @, in terms of cubic lattice parameters)
are determined by three types of interlayer spacings, i.e.,
d,(Si—Si), d,(Si—Ge), and d;(Ge—Ge). The change in
the value of d; upon superlattice formation [restricted to
the Si(001) surface] is, however, negligibly small. So
fixing d, equal to a3, /4, we concentrate on the tetrago-
nally distorted Ge sublattice. The preferential accommo-
dation of strain by Ge layers is consistent with experi-
mental observatlons, and also with higher values of
force constants®! for Si relative to Ge. In the present ful-
ly relaxed calculations, d, is determined by the minimiza-
tion of the total energy of (Si); /(Ge);. The determination
of the perpendicular lattice constant for (Si), /(Ge), with
n >2 has required the optimization of the total energy
with respect to two structural degrees of freedom (i.e.,
optimization with respect to d, and d;). Then, the
values of d, and d; are obtained by the optimization of
total energy through their simultaneous variation in
(Si),/(Ge),. The value of d, was practically unaltered by
going from (Si),/(Ge), to (Si),/(Ge),. Eventually, these
calculated values for d, and d, are used to find the per-
pendicular lattic constant of (Si), /(Ge), with n >3. The
appropriateness of this approximation was tested by the
interlayer force calculations. As seen in Fig. 2, calculated
forces for (Si),/(Ge), vary in the range of 1072-103
mdyn (or 10~ '°-10~!! N), and thus confirm that—within
the accuracy of our calculations—d, and d; remain
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FIG. 2. Calculated interlayer forces for the structure opti-
mized, pseudomorphic (Si),/(Ge), superlattice with the SCF
tolerance (rms deviation in potential) of 1078 Ry. The unit of
force is mdyn/atom (1 mdyn=10"8 N). Based on the force
values the small variation of the interlayer spacings are shown
systematically.
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nearly unaltered in a superlattice with a larger repeat dis-
tance. However, an interesting feature one deduces from
this figure is that Ge—Ge spacing near the interface has
to be slightly larger than that near the middle of the Ge
sublattice. In contrast to this, the Si—Si spacing at the
center of the Si sublattice is larger than that adjacent to
the interface. These small variations of the interlayer
spacings suggest that vertical strains are not uniformly
distributed over the layers. Nevertheless, these variations
are very small in the present geometry, and thus are
neglected.

Calculated equilibrium values for the interlayer spac-
ings are d;=2.56 a.u., d,=2.61 a.u,, and d;=2.70 a.u.
It should be noted that the calculated d, is very close to
the average value for Si and Ge, i.e., (a3 +a%,)/8;
whereas the value of d; implies a tetragonal distortion,
er=(a,— au)/a(-,e of ~5% in the Ge sublattlce For Ge
epitaxially restricted to Si(001), i.e., a =a$; and denoted
as Ge®P, the interlayer spacing a, /4 is found to be nearly
equal to d;. For the sake of comparison, the equilibrium
structure of zinc-blende SiGe is also determined in the
tetragonal unit cell by maintaining the cubic symmetry.
The calculated equilibrium lattice constant is
a(z)inc-blende SiGe = 10.40 a.u.

In order to provide a consistent comparison of the en-
ergetics for the stability analysis, the total energy
differences were calculated by using the same number of
atoms and similar unit cells. For example, the formation
energy (or formation enthalpy at 7'=0) of the pseu-
domorphic (Si), /(Ge), superlattice is calculated,

AE’S((Si), /(Ge),)=E((Si), /(Ge),)
—[EY(Si),,)+EX(Ge)y,)1/2,

where the total energies of the constituent strain-free
crystals E2((Si),,) and E((Ge),,) are calculated in a
unit cell corresponding to that of (Si), /(Ge),, but with
the equilibrium lattice constants (a3 and aQ.) deter-
mined for the (strain-free) bulk crystals. So the total en-
ergies of Si and Ge with the bulk equilibrium lattice con-
stants have been calculated for the tetragonal unit cells
containing 4, 8, and 12 atoms. The formation energy of
the (strain-free) zinc-blende SiGe is defined as

AE’(zinc-blende SiGe)=E%zinc-blende SiGe)
—[E%Si)+E%Ge)]/2,

and calculated to be ~1.05 mRy per atom pair. This is
0.27 mRy smaller than the value reported by Martins and
Zunger.'”” The calculated formation energies of the
strained superlattices are given in Table I, wherefrom we
draw the following conclusions. (i) All superlattice for-
mation energies have }JOSitiVC values. By definition, the
formation energy AE/*> 0 indicates instability. Conse-
quently, the decomposition into constituent crystals (i.e.,
segregation) is favored, as long as permitted by the kinet-
ics of the reaction. Alternatively, the strain energy accu-
mulated in the Ge sublattice can be relieved by the
creation of a misfit dislocation (or by other types of de-
fects). (ii) The value of AE/* increases with increasing n
because the Ge sublattice has more strained layers. Also
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TABLE 1. Calculated formation energies of the pseu-
domorphic (Si), /(Ge), superlattices. The unit of energy is
mRy per (Si), /(Ge), unit.

n=2 n=3

1.46 1.73 5.04 7.03 9.29

for large n, AE /5 /n saturates to a constant value. This is
different from what we find for the lattice matched super-
lattices. For example, in (GaAs), /(AlAs), in the [001]
orientation, AE//n was found®® to be inversely propor-
tional to n. This is a natural consequence of the fact that
in the lattice matched superlattices, AE I is equal to the
interfacial energy, and the strain energy has practically
no contribution. (iii) Although (Si)¢/(Ge)¢ and two for-
mula units (Si);/(Ge); have the same number of atoms in
their unit cell, the former has smaller AE/* than twice
the (Si);/(Ge); formation energy. The same is true for
(Si); /(Ge), and (Si),/(Ge),. This indicates the significant
contribution of the interfacial energy in AE/**. However,
the above trend seems to be invalid between (Si),/(Ge),
and (Si),/(Ge),. Since for n =2 the bulk potentials in the
sublattices are not fully developed, AE/*((Si),/(Ge),)
should not be compared directly with
AE”5((Si),/(Ge),).

The above conclusions suggest that the formation ener-
gy of the superlattices with n >2 has two major com-
ponents. These are interfacial energy and the strain ener-
gy. If the transfer of charge from one sublattice to the
other is confined in a narrow region near the interface
(and thus the resulting redistribution of charge in the
sublattice is insignificant), these two components of the
formation energy AE/* can be dealt with separately. The
interfacial energy is related to the heteropolar (Si—Ge)
bond formation and charge rearrangements across the in-
terface. The strain, on the other hand, changes the equi-
librium structure and the charge distribution in the Ge
sublattice. Redistribution of charge is the primary cause
of the (positive) strain energy. Using the planarly aver-
aged charge density we were able to calculate the amount
of charge between the two planes parallel to the epilayer.
The charge between any two adjacent atomic planes is
found to be 4+0.02 electrons per surface unit cell. The
deviations from the valency of constituent atoms are
within the accuracy of our scheme for integrating charge
density. This analysis shows that the transfer of charge
from one sublattice to the other is negligibly small for
(Si), /(Ge),, which is consistent with the electronegativi-
ty arguments. Calculated total (valence) charge densities
in Fig. 3 indicate that the charge of the heteropolar Si—
Ge bond is simply the combination of the homopolar
bonds!? (i.e., it is asymmetric, and Ge-like near the Ge
atom, and Si-like near the Si atom). The effect of the
tetragonal strain in the epitaxial Ge lattice is to increase
the bond charge in Fig. 3(b). Then the charge distribu-
tion at the interface of a superlattice in Fig. 3(c) is seen to
be a combination of the charge of Si and epitaxial Ge.
The charge between Si and Ge interface layers is found to
be ~4 electrons per unit cell. Contour plots of the total
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FIG. 3. Distribution of valence charge calculated along the
bond. (a) Unstrained Si, Ge, and zinc-blende SiGe; (b) un-
strained Ge and epitaxial Ge [restricted to the Si(001) surface];
(c) interface of (Si)s/(Ge)s, and adjacent Si—Si and Ge—Ge
bonds. The unit for charge density in a.u. is e/bohr?.

charge density illustrated in Fig. 4 suggest that the inter-
face and the bulk regions (Si and Ge®P) are distinguished,
and the character of the interface is indeed unaltered for
n>3. In view of the above analysis we now develop a
simple model to obtain AE/*. To this end, we imagine
the formation of the superlattice in three steps. First, we
impose a tetragonal distortion along the [001] direction in
Ge, and thus introduce the strain energy in the Ge lat-
tice. The strain energy per atom in the Ge sublattice is
defined as

E=[E;((Ge),)—EX(Ge),)1/n ,

in terms of the energy, E+((Ge), ) of the epitaxial Ge?
calculated in a tetragonal unit cell containing n atoms. It
is found to be £=1.46 mRy per epitaxial Ge atom.
Clearly, one could have estimated this number from
known elastic constants for Ge. However, for internal
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Si3G€3
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FIG. 4. Contour plots of the valence charge densities for
(Si), /(Ge), superlattices. Si and Ge atoms are shown by solid
and open circles, respectively. Contour spacings are 0.009
e/bohr?,

consistency we have chosen to calculate this value from
the self-consistent calculations. In the second step, we
create n Si(001) and n Ge(001) slabs in registry, by break-
ing homopolar Si—Si and Ge—Ge bonds. In the third
step, we make Si/Ge interface by forming the heteropolar
Si—Ge bonds. The last step requires the interfacial ener-
gy, which is approximately equal to the difference of en-
ergy between the heteropolar and homopolar average.
By using the calculated AE/*° (zinc-blende SiGe) we esti-
mate the interfacial energy, X=AE”/° (zinc-blende
SiGe)/2, to be ~0.5 mRy per atom. Then, the superlat-
tice formation energy is defined as

AE’3((S1), /(Ge), ) ~2X +né .

In Fig. 5 the formation energies estimated from this sim-
ple model are compared with our ab initio results,
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FIG. 5. Comparison of the calculated formation energies
(solid circles) with those estimated from a simple linear relation
developed in the text. The width of Si and Ge sublattices is n.

displaying an almost perfect match for n >3. Owing to
the small superlattice periodicity, (Si);/(Ge),; (epitaxial
zinc-blende SiGe) and (Si),/(Ge), deviate from this sim-
ple model. The above model can be further improved to
include structures with n =1 and n =2. The strained Ge
layers adjacent to the interface are distinguished from
those lying near the center, and thus two types of strain
energy are defined. The strain energy for the layers adja-
cent to the interface are estimated from
AE’5((Si),/(Ge);). Within this simple approach, the
formation energy of (Si);/(Ge), is predicted to be ~11.3
mRy. As revealed from earlier experimental work,® only
six epitaxial Ge layers can grow on Si(001), and beyond
that thickness misfit dislocations are generated. The
above model thus yields an estimate for the formation-
energy barrier to form a misfit dislocation to be
9.8 <AQ < 11.3 mRy/cell.

IV. PHASE TRANSITIONS IN Si-Ge ALLOYS

Having discussed the stability of superlattices, we next
consider the stability issues related to Si-Ge alloy, which
has also positive energy of formation (AE/*>0). There-
fore, a phase transition to a different structure, or decom-
position into constituent crystals (i.e., segregation) is ex-
pected. Such a segregation has not been observed so far,
due perhaps to the relatively small kinetic energy of
atoms to overcome the activation barrier at low tempera-
ture. This situation at low temperature, however, may be
different beyond some critical temperature T, where the
Si-Ge alloy may be stabilized by the entropy of disorder.

Since the neostructural phase transition is observed'!
in the Si-Ge alloy grown on the Si(001) surface, its origin
has to be sought in the strain energy introduced by the
lattice mismatch. Ourmazd and Bean!! proposed two
variants for the ordered phase, both being in the rhom-
bohedral structure. These structures can be viewed as
the bilayer segregation along the offset [111] direction in
the strained Si-Ge alloy. In the first structure, denoted
RS1, Si(Ge) has three heteropolar (i.e., Si—Ge) and one
homopolar bond (i.e., Si—Si or Ge—Ge). The widely
spaced planes along the [111] direction are formed by
atoms of the same kind. In the second structure, RS2,
Si(Ge) has one heteropolar, and three homopolar bonds,
and pairs of widely spaced planes are formed by atoms of
the opposite kind (see Fig. 6).

To find the cause of the neostructural phase transition
in the strained Si, s;Geg 5 alloy we proceed by comparing
the total energy of the alloy with other ordered structures
including those of the constituent Si and Ge crystals.
This has, however, two crucial aspects. One is the well-
known convergence problem with respect to the size of
the plane-wave basis set used in the calculation of the to-
tal energy. The absolute convergence in total energies re-
quires very large basis sets, which cannot be handled easi-
ly for supercells. Not being able to achieve this, a realis-
tic comparison can be provided, however, among the to-
tal energies nearly converged, but calculated for the unit
cell having the same Bravais lattice symmetry, and
comprising of the same number of atoms. Secondly, since
the proposed ordered structures are not in the equilibri-



1840 S. CIRACI AND INDER P. BATRA 38

um state, but are distorted under the lattice strain, their
structural parameters (i.e., the interlayer spacings, and
atomic positions in the cell, etc.) have to be consistent
with the observed strain.> The supercell shown in Fig. 6,
which contains eight Si and eight Ge atoms, satisfies
these constraints. In addition it is expedient for the study
of the totally segregated (Si),/(Ge), system, the epitaxial
zinc-blende SiGe, and to some extent also the ‘“quasi”
disordered Si, sGe s alloy.

The disorder in the Sij sGe, s alloy is simulated by our
creating supercells with altered coordination sequence of
atoms and averaging the total energies. As discussed in
Sec. III, the strain is introduced by the use of a2 for the
lattice parameters parallel to the epilayer in all supercells.
The spacing between Si and the strained Ge(001) layer,
and the spacing of adjacent Ge layers are obtained by
total-energy minimization. The spacing of the Si, ;Geg s
layers is obtained by scaling the x-ray-measured vertical
(expansive) strain® with respect to the calculated equilib-
rium lattice constants. The work by Van de Walle and
Martin!® has justified this approach.

Our total energy calculations yield that the strained
RS1 structure has slightly lower energy (1 mRy/cell) rela-
tive to the “averaged” disordered structure representing
Sip s/Gegy s alloy. This explains why the order-disorder
transition can occur. The equilibrium structure of the
strain-free RS1 is optimized in the primitive (four-atom)
unit cell. The calculated total energy is found to be 0.75
mRy (atom pair) higher than the average of the bulk Si
and Ge in their equilibrium structure. According to this
result, the ordered, strain-free RS1 structure is stable rel-
ative to the strained alloy, but is unstable relative to the
decomposition into Si and Ge. It becomes even more un-
stable under the strain introduced by lateral epitaxy.
Since we find the total energy of the ordered phase RS2
to be higher than that of RS1 (both being under the strain
of the lattice), we conclude that RS2 is unfavorable as far
as the order-disorder transition is concerned. An impor-
tant result we find is that forming a strained (Si),/(Ge),
superlattice as described in Fig. 6(d) is even more favor-
able than the strained RS1 phase, with an energy benefit
of ~0.5 mRy (atom pair). The degree of instability of
these phases in terms of their formation energies relative
to the average energy of equilibrium Si and Ge is ordered
as

a b oapn

$[001]

(c)

FIG. 6. The unit cell consisting of eight (001)-(2X 1) layers
with eight Si and eight Ge atoms used in the stability analysis of
the Si-Ge alloy. Numerals identify the layers. For clarity, the
first and second sets of four layers are shown separately. (a)
Strained rhombohedral structure RS1; (b) strained RS2; (c)
strained zinc-blende SiGe; and (d) segregated structures. The
ordering of layers is shown along the offset [111] direction (for
RS1 and RS2), and along the [001] direction (for zinc-blende
and segregated structures).

AE/5(Si, sGey s) > AE/*(RS2) > AE/(zinc-blende SiGe)
> AETS(RS1)> AE/5((Si),/(Ge),) > AE/(RS1) >0 .

Martins and Zunger'? have studied the stability of the ep-
itaxial RS1 phase relative to the epitaxial zinc-blende
SiGe and the average of Si and epitaxial Ge. The forma-
tion energies they calculated for the strain-free zinc-
blende SiGe and RS1 are in fair agreement with the
present results. They found the strained RS1 has lower
energy relative to the average energy of Si and epitaxial
Ge. Our result AE/$(RS1)> AE/*((Si),/(Ge),), howev-
er, indicates the epitaxial RS1 phase considered in Fig.
6(a) has higher lattice strain. Accordingly, the experi-

[
mental observation that the ordering is reduced during
prolonged annealing may be due to the onset of segrega-
tion.

V. GROWTH OF Ge ON A Si(001) SURFACE

From the above discussion it emerges that the ordered
RS1 structure is favorable relative to the alloy. However,
the benefit of energy is found to be too small to induce
such a phase transition. To understand the origin of this



38 STRAINED Si/Ge SUPERLATTICES: STRUCTURAL ... 1841

dilemma, we focus our attention on the microscopic as-
pects of the growth process on the Si(001) substrate. As-
suming a layer-by-layer growth of the adatoms (Si or Ge),
the important question we explore is the atomic structure
of the topmost grown layer. This has relevance to the
quality of the heterostructures and to the phase transi-
tions, as well.

Several studies in the past decade have established
that the free Si(001) surface undergoes a (2 1) recon-
struction. Two surface atoms in the adjacent cells, each
having two dangling bonds, are tilted so that an interac-
tion between them leads to a dimer bond (o), and an an-
tibonding bond (0*). Remaining dangling bonds, one at
each surface atom, form 7 and 7* surface states in the
gap. Since the benefit of energy by forming the dimer
bond is much larger than the energy lost through lattice
distortion, the (2 X 1) reconstruction is stable by an ener-
gy gain® of ~0.75 eV per surface Si. Recent studies*~%°
have indicated also extended defects (missing rows etc.),
which enhance the stability of the dimer structure. Since
the grown Si layers are strain free, the same atomic
configuration is expected to occur in the topmost grown
Si layer. Accordingly, the last Si layer has to grow subse-
quent to the breaking of dimer bonds in the subsurface
layer, but it itself forms dimer bonds eventually. Since
the dimer bonds are broken upon the growth of a new
layer, the extended defects may also be removed under
normal growth conditions.

A similar (2X 1) reconstruction together with local
¢(2X2) and p(4X2) symmetry has been observed on the
Ge(001) surfaces.’® Consequently, the dimer bond is also
the essential feature of this surface. Owing to the lattice
strain, the situation, whether the dimer bond does occur
in the pseudomorphic Ge layers grown on the Si(001) sur-
face, is not so obvious. The structure of the topmost
grown Ge layer is explored by the total energy calcula-
tions. We have optimized the position of Ge atoms ad-
sorbed on the Si(001) surface as if they continue the bulk
structure. The geometry optimization gave the Si-Ge in-
terlayer distance close to that of the average of Si and un-
strained Ge. This has also been found earlier by Batra®’
for Al adsorbed on the Ge(001) surface. In the second
step, the (2X1) reconstruction geometry with the
Ge—Ge dimer bonds above the Si surface is constructed.
The total energy of this reconstructed surface is found to
be ~0.5 eV (per surface Ge atom) lower than that of the
ideal structure. This clearly indicates that the ideal
structure undergoes a reconstruction, and may form di-
mer bonds (if there is no other structure with even lower
energy). Unfortunately, the extended defects cannot be
considered by the present method. Following the above
arguments, it is anticipated that each Ge layer grows by
breaking the existing dimer bonds, and forming new ones
in the latest grown layer.

In view of the energetics, the reconstruction becomes
important in the growth of the Si;_, Ge, layer. Since
Si—Si and Ge—Ge dimer bonds form, the Si—Ge dimer
bond can also form. However, as found in the previous
section, the Si—Ge heteropolar bond is energetically un-
favorable as compared to the homopolar average, imply-
ing a preferential adsorption and a selective dimerization.

32,33

Also note that upon Si—Si dimerization ~0.5 eV more
energy is released as compared to the Ge—Ge dimeriza-
tion. The selective dimerization, on the other hand, is ex-
pected to induce short-range order, or domain structure
in each grown layer. As seen in Fig. 6, the ordered RS1
structure can be easily constructed by short-ranged rear-
rangements of Si and Ge in the grown layer. Taking the
high mobility (and thus sizeable kinetic energy) of the
adatoms during the growth, this seems to be likely.

VI. ELECTRONIC STRUCTURE

It is known that the SCF pseudopotential method
within the local-density approach is suitable for ground-
state properties, but underestimates the conduction-band
energies, and thus yields smaller band gaps. This
shortcoming of the theory may lead to serious difficulties
in heterostructures if the errors in the conduction-band
energies of the sublattices are different. As pointed out
earlier!” this is fortunately not the case for the Si/Ge sys-
tem (provided the Bloch states are represented by an ap-
propriate number of plane waves). In Table II we com-
pare the calculated conduction-band energies with the ex-
perimental values.’®3 It is seen that after the spin-orbit
splitting is taken into account, the average error in the
conduction-band energies relevant to our study (L, X,
and A, points of the fcc BZ) is ~0.5 eV. As a result
the present study can reliably be extended to explore the
electronic structure by applying a constant upward shift
of 0.5 eV to the conduction-band energies. In such a
scheme the error bar in the calculated-band energies is es-
timated to be +0.05 eV.

A. Band structure

Silicon substrate has six minima along the A directions
of the fcc BZ, A, (with transverse effective mass
mr*=0.19m,, and longitudinal effective mass
m*=0.98m), which give rise to an indirect band gap of
~1.1 eV. The direct band gap is large, and the energy
difference between the direct and indirect band gap,
BEngéd’-Eé”, is 2.3 eV. Germanium is also an in-
direct band-gap semiconductor, except that the

TABLE II. Experimental and calculated values (in eV) of the
selected conduction-band states relative to the maximum of the
valence band. E, denotes experimental values obtained from
Refs. 38 and 39. E; and Ey are band energies calculated with

cutoffs  |k+G|? of 12 and 15 Ry, respectively.
AE, yy=E, —En)
E, E, AE; Ey AEy
_ Silicon
Ly 3.37 2.56 0.81 2.56 0.81
X, 1.30 0.67 0.63 0.65 0.65
L, 2.10 1.62 0.48 1.51 0.59
A 1.11 0.52 0.59 0.51 0.60
_ Germanium
Iy 0.89 0.69 0.20 0.36 0.53
X, 1.30 0.69 0.61 0.69 0.61
L, 0.74 0.39 0.35 0.29 0.45
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FIG. 7. Energy-band structure of (Si)s, (Ge)s, and zinc-blende SiGe calculated in the tetragonal unit cell. Folded bands are shown
by dashed lines. Splitting and shifts of major states of tetragonally strained (Ge), are denoted by bars. The zero of energy is set to the

maximum of the valence band.

conduction-band minima occur at the eight L points. Su-
perlattice formation has three major effects on the elec-
tronic structure. These are zone folding*® owing to the
symmetry lowering along the superlattice direction, the
strain in the Ge sublattice, and the band lineup. First we
consider the effect of the zone folding. Once the O, sym-
metry of the diamond structure is broken by the superlat-
tice formation, say along the [001] direction, the bands
with k||[001] are folded along the I"'Z direction of the su-
perlattice BZ (see Fig. 1). In general the zone folding
along [001] lowers 8E, in Si, but has no effect on Ge
(since in the conduction band of Ge, EX1 > Erz.) because

the minimum gap is at L. This effect is described in Fig.
7(a), where the energy bands of Si in a lower symmetry
(i.e., calculated for Si, in the tetragonal cell) are present-
ed. In this symmetry four M points of the SBZ are
equivalent to four (k) X points of the fcc BZ lying in the
(001) plane. The remaining two (k,) X along [001] are
folded to I'. Eight R points are also equivalent to eight L
points. However, upon the breaking of the fourfold
rotary-inversion symmetry, S,, R points are separated
into two groups, R and R’, in a superlattice. Similarly,
bands along A experience a single zone folding, and occur
along the I'Z direction. As a consequence, 8E, becomes
equal to the difference of energy, EX] —Exmm. Increasing

the superlattice periodicity n increases the number of
folding. For example, while (Si), has single folding, bands
in (Si)g experience double folding, and L . X. However,
it should be noted that in the (Si), superlattice the folded,
lowest conduction-band state cannot be lower than the
minimum indirect band gap. Similar band foldings are
seen for (Ge), in Fig. 7(b). In Fig. 7(c) the electronic
structure of zinc-blende SiGe in the same tetragonal cell
is considered to evolve from those of (Si), and (Ge),. At
the I" point, the folded bands are split, and the third con-
duction band at ~2.6 eV is evolved from I', of Si and
Ge. Because of two different (001) planes (Si and Ge), the

fourfold degenerate states at M also split. These folding
arguments presented for one type of sublattice will guide
us in understanding the electronic structure of the super-
lattice heterostructure (Si), /(Ge), comprised of two
different sublattices.

The effect of the epitaxial (tetragonal) strain on the
electronic structure of Ge is shown in Fig. 7(b). The
threefold degenerate I',s states (in the absence of the
spin-orbit coupling) at the top of the valence band are
split by 0.41 eV. The deformation potential calculated
from this splitting is —2.78 eV, in good agreement with
the experimental value*' —2.86+0.15 eV. In addition to
the strain splitting, the spin-orbit coupling'® raises the
maximum of the valence band relative to the average en-
ergy by 0.1 eV. In the conduction band, the states at the
R point (L), and T, (or Ty ) and the doubly degenerate
folded states, I',. ;5 (or X’m with k) are raised, whereas
the conduction-band states at M (or X, with k) and
A, are lowered. As seen in Fig. 7(b) the net effect is
that the minimum of the conduction band changed from
R to A, and the direct band gap is reduced.

The third effect, i.e., superlattice formation, combines
the previous effects with the band alignment. The energy
of the valence-band maximum relative to the average
crystal potential changes in going from one sublattice to
the next one. This difference is one of the primary factors
which set the band discontinuity. Normally, to attain a
common Fermi level, charge is transferred from one sub-
lattice to the next one, if their Fermi energies are
different. Charge transfer (due also to different electrone-
gativities of atoms at the interface) shifts the average
crystal potentials. Eventually, bands are aligned to yitld
a common Fermi level and a minimum total energy for
the given heterostructure (although it can be a metastable
structure, and thus the system may undergo a structural
change). Certainly, the band alignment is a macroscopic
concept,?>? and is conceivable only for large superlattice
periodicities, for which the effective-mass approximation
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FIG. 8. Energy-band structure of (Si), /(Ge), superlattices for n =1, 2, and 4. The zero of energy is set to the average energy of

the topmost three valence-band states.

is perhaps applicable at the band minima.**~** By per-
forming SCF calculations on the optimized structures, all
these effects are taken into account, and the band lineup
is obtained directly. Nevertheless, the superlattice effect
for (Si),/(Ge), (3<n <6) can be deduced by shifting’
the bands of (Ge), relative to (Si), by the offset of the
valence bands.

To establish a connection between the calculated band
structure and quantum-well states, we consider two sub-
lattices separately. A state in one sublattice, \I’(E,ku )y
can match to the state in the other sublattice, ¢>(E’,kﬁ ),
as long as their momentums and energies are conserved.
If Vy=E —E’ differs from zero near a band minimum in
the k plane, the higher-energy state will be a barrier for
the lower-energy state. Then the lower-energy state may
be confined in its sublattice, forming a subband,

lf(k”,kl)Z(f'l’lo/rl’lﬁ= )k‘zl—’rE(kl) ,

in this new quantum regime. In a single quantum well
with the large barrier sublattices on both sides, one gets
at least one confined state, whose energy depends on ¥V,
m?¥ /myg, and the width of the well. In a multiple, period-
ic quantum well generated from a superlattice, subbands,
in a sense, are extended states. Bound solutions yield
states localized in one sublattice. The energy of these
bound states is also a function of V,, the width of sublat-
tice n, and (m} /mg). The smaller are n and (m} /m),
the higher is €(k ;). This is a size effect, or a quantum
size effect.*’ =% The dispersion of e(k,) is in general
small, and is a measure of the coupling between sublat-
tices.** For large superlattice periodicity (i.e., large n),
localized bound states turn into the confined states, much
like a metal-insulator transition. With a proper account
of hole energy and effective mass, the same discussion can
also be applied for the hole states. Away from the band
minimum, ¥ and & states can form bonding and anti-
bonding combinations if their energies do not differ
significantly. Their splitting will depend on their charge
distribution in the cell. Since the bond arrangement still

follows the broken S, symmetry, the superlattice periodi-
cities which are not divisible by 4 result in large split-
tings.8 If Vo=E —E'’ is large, they can also be localized
individually in the sublattice. Such a situation may arise,
for example, when one of the states has energy falling in
the stomach gap of the other sublattice. We emphasize
again that this simple description of the electronic struc-
ture does not persist for ultrasmall superlattice periodici-
ties. As a matter of fact, the structures with ultrathin
sublattice alterations cannot even be considered as a mul-
tiple quantum-well structure, but more appropriately a
new crystal. As will be seen, (Si), /(Ge), is such a crystal.
But (Si),/(Ge), is at the border line. We get clear
quantum-well structure only for n > 3.

We now examine the calculated electronic structure.
In Fig. 8 the band structures for n =1, 2, and 4 show how
the superlattice energy structure evolves with increasing
n. To guide the eye, bands of important states are joined
without a complete analysis of the band crossings. As ex-
pected, the electronic structure of (Si);/(Ge), is only a
slightly modified form of that of the zinc-blende SiGe.
The threefold-degenerate bands at the maximum of the
valence band are split due to the tetragonal strain. Ap-
parently, the n =1 structure does not provide any
quantum-well structure with localized states. In
(Si),/(Ge), the superlattice features start to appear along
the I'Z direction, where the first and second conduction-
band states are separated from the extended-state bands,
and have relatively small dispersion. As will be seen
shortly, the n =2 structure provides features which go
beyond the trends obtained in the others. For example,
among the structures we studied here (1<n <6),
(Si),/(Ge), has the lowest indirect gap and largest 8E,.
Moreover, the minimum of the conduction band occurs
at M, and not in A. It has also relatively smaller superlat-
tice formation energy. The band structure of (Si),/(Ge),
presented in Fig. 8(c) clearly shows that the quantum-
well structure has set in. The two lowest folded bands
with k, (parallel to the superlattice direction) are flat-
tened out, and form the subband structure. The disper-
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FIG. 9. Energy-level diagram of valence- and conduction-
band states of (Si),/(Ge), at major symmetry points. The
direct (I',;—T.;) and indirect (I',;—A.,) band gaps, and
some direct transitions are indicated by arrows. The dispersion
of the first conduction band of (Si),/(Ge), along I'Z is shown by
the cross-hatched area.

sion of the third and fourth bands are significantly re-
duced. At the center of the SBZ, and in the plane paral-
lel to the epilayer, these bands have a parabolic disper-
sion (i.e., E 2kﬁ ). This is the well-known behavior of the
confined states with 2D character. Another interesting
aspect of this superlattice is that the states deep in the
valence and conduction bands are localized in certain re-
gions of the SBZ. We consider these states as localized or
resonance states, because they cannot find a matching
partner.

The states of (Si), /(Ge), structures relevant to our dis-
cussion are presented in an energy-level diagram shown
in Fig. 9. For n>2, the energy of the lowest
conduction-band states at ', E{?, decreases gradually
with increasing n. The dispersion (width) of the corre-
sponding band in I'Z also decreases with the increasing
superlattice periodicity. It is 0.3 eV for n =2, but be-
comes only 0.026 eV for n =6. Whereas the same band
in (Si);/(Ge), has large dispersion. The energy of the
lowest conduction-band state, which occurs along 'M,
decreases also by going from (Si);/(Ge); to (Si)g/(Ge)s,
but at a relatively smaller rate. This behavior is partly re-
lated to the splitting of the states at the M point of the
SBZ due to the S, symmetry breaking along the [001]
direction. The splitting of states at M is smallest for
n =4 and largest for n =2, but the average energy is
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FIG. 10. Variation of the direct band gap (Eé"’), indirect
(E;") band gap, the difference between direct and indirect band
gap (8E,), and the width of the band along the I'Z direction
(AEr) as a function of the sublattice periodicity (n).

nearly constant. The splitting of the highest valence-
band states, as well as the conduction-band states at R (or
X for n =4) also exhibit the same trend, (Si),/(Ge), al-
ways having the maximum splitting value. The difference
of energy between the A, and M , states varies with n,
and decreases in going from n =4 to n =6. Since the
splitting at M is expected to be small for n =8 (and the
I'Z dispersion is also negligibly small), the (Si)g/(Ge); su-
perlattice is likely to have a zero energy difference be-
tween the direct and indirect gaps. Of course, its
preparation may require the interposition of spacer lay-
ers. Furthermore, the issues connected with cross section
or the oscillator strength for the direct transition may
still render that superlattice unusable for optoelectronic
devices. The direct transition energies from the highest
valence-band state to the first, third, and fifth
conduction-band states of (Si),/(Ge), at I are 0.98, 1.55,
and 2.37 eV, respectively. These calculated energies
(with a constant shift of 0.5 eV) are in fair agreement
with the observed direct optical transition® (0.76 F0.13,
1.25+0.13,and 2.31F+0.12 eV).

The variations of the direct and indirect gaps of
(S1), /(Ge), are summarized in Fig. 10. Since the lowest
conduction-band state at I" is a confined state, its energy
has an inverse proportionality with n (the width of the
sublattice), the exponent being between 1 and 2. This is
the manifestation of the quantum size effect discussed
above. It is seen that this trend breaks down for n <2,
where the multiple quantum-well structure is destroyed,
and the lowest band has significant dispersion. An in-
teresting feature we note in this figure is the energy
difference between the direct and indirect gap, 8E,. All
structures we studied are found to be indirect band-gap
semiconductors. However, 8E, continues to decrease
with increasing n, and is only 0.07 eV for n =6.
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FIG. 11. Charge densities of the first conduction-band state
of (Si),/(Ge), (n=2, 3, and 4) along 'Z. Upper and lower
numerals at each panel are the values of maximum charge den-
sity and contour spacing in 10~ * a.u., respectively.

B. Charge-density analysis

We now focus on the important individual states at
certain symmetry points of the SBZ, and examine their
charge distribution. First we address the question of how
the multiple quantum-well structure with confined states
is developed. A pictorial demonstration of the
confinement (or localization) of the lowest conduction-
band states along I'Z is presented by showing the charge
distribution of states in Fig. 11. The lowest state for
(Si),/(Ge), is an interface state, which is localized be-
tween the adjacent Si and Ge layers. By going to
(Si);/(Ge); the charge distribution of this state shifts to-
wards the Si sublattice, but still has significant weight at
the interface. In the (Si),/(Ge), structure, the
confinement of electrons in the Si sublattice is, however,
nearly complete. Concomitant with the confinement, the
corresponding band becomes flat. The contour plots of
the states at I" are presented in Fig. 12 for (Si),/(Ge),.
The top three states of the valence band have relatively
high weight in the Ge sublattice. Clearly, these states
cannot be considered as highly localized confined states.
Since the calculated band offset for the valence band was
reported'® to be 0.84 eV (the average value being 0.54
eV), the character of these three states can be explained
by the quantum size effect.*~** The smaller the width of
the quantum well, the lower the energy of the highest
hole state. It means that states confined in a small re-
gion have to increase their kinetic energies. Since the
effective masses of the states at the maximum of the Ge
valence band are 0.34m,, 0.043m,, and 0.08m,, they
yield significant size effect even if the full width of the Ge
sublattice is considered to be a quantum well. This effect
becomes even more significant when the graded interface
is taken into account. Therefore, in view of the calculat-
ed value for the valence-band offset, the confinement of
the states near the maximum of the valence band is not
expected for n $12. Of course, in (Si),, /(Si,_,G,),, for
large n and m the hole states become easily confined.

The band offset at the conduction band!® is ~0.28 eV,
for the A_ ;. At this minimum the transverse effective

mass of the Si, m* is small and is only 0.19m,. Given a
small superlattice periodicity, the small effective mass im-
poses a large size effect. Consequently, the states around
this minimum cannot be confined (in spite of the fact that
they have the lowest energy in the conduction band).
The contour plots of this state show clearly the extended
nature of this particular state, and thus supports our ar-
guments based on simple quantum-well picture. We also
examined the states with k A, y+k,, and found significant

dispersion and delocalized charge density. The lowest
two states at I' (but above A_,) are strongly localized
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FIG. 12. Charge-density contour plots of the valence- and
conduction-band states of (Si),/(Ge), at I'. Upper and lower
numerals indicate the value of the maximum charge density and
contour spacing, respectively.
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(confined) in the Si sublattice. These are the states pro-
ducing the flat bands along I'Z shown in Fig. 8. Since
upon the zone folding the longitudinal effective mass of Si
(at A_,), which is close to m,, enters into the effective-
mass Hamiltonian, the quantum size effect is much small-
er than that for the extended, lowest conduction-band
state discussed above. Depending on the alignment of
particular bands, the localization of the higher-lying
states alternates between two sublattices. Excepting I, s,
which derives from the T,,, other states shown in Fig. 12
are evolved from the folding of bulk bands along A. The
contour plots of the states at I' for (Si)s/(Ge)s are
presented in Fig. 13. Owing to the increased sublattice
width, and thus decreased quantum size effect, the locali-
zation of the hole states, and the degree of confinement of
the conduction-band states are slightly increased. For
(Si)g/(Ge)¢ the bands along A experience more folding
than those in (Si),/(Ge),. Therefore, we see more folding
states below the I, ; state of (Si)¢/(Ge)g as compared to
the equivalent I'_ s state of (Si);/(Ge), in Fig. 12. In-
terestingly, the character and the charge distribution of

FIG. 13. Charge-density contour plots of the valence- and
conduction-band states of (Si),/(Ge), at I'. Upper and lower
numerals indicate the value of the maximum charge density and
contour spacing, respectively.

these states are reminiscent of those shown in Fig. 12.
This suggests that the alignment of the bands does not
change significantly by increasing n from 4 to 6. Howev-
er, at least the order of localization is strongly affected in
the superlattice (Si), /(Ge),, with ns=m.

The important conclusion we draw from Figs. 12 and
13 is that a single quantum-well structure within the
effective-mass approximation cannot be applied for the
superlattices with thin sublattice alternation. In this case
each band should be considered individually. Or else the
result has to be obtained from a complete SCF band cal-
culation. It is seen that localized states can be found even
far above the well (whose depth is obtained from the band
offset). A pictorial demonstration of this emerges from
the flat bands seen deep in the valence and conduction
bands of (Si),/(Ge), (see Fig. 8). Contour plots of these
states are presented in Fig. 14. While the highest
valence-band state along the ZR direction (but in a small
region of the SBZ) is strongly localized in the Ge sublat-
tice, the lowest conduction-band state is confined in Si.
In contrast to that, the lowest conduction-band along the
'R direction (again in a small region of the SBZ) is local-
ized in the Ge sublattice. Certainly, in the superlattices
with large sublattice alternations (where the bands ex-
perience frequent foldings, and thus the number of
confined states are decreased), the lowest confined states
can be obtained from the multiple quantum-well model.

VII. CONCLUSION

We have provided SCF total energy and force calcula-
tions to determine the minimum energy structure of pseu-
domorphic Si/Ge superlattices and alloys. Important re-
sults obtained from this study are summarized.

(i) The strained (Si), /(Ge), superlattices are unstable
relative to the decomposition into unstrained constituent
crystals. In contrast to the lattice-matched heterostruc-
tures, the positive formation energy (per formula unit)
linearly increases with the increasing superlattice periodi-
city. It is shown that for n >3, the strain and interface
contribution to the formation energy can be treated sepa-
rately and linearly. The energy barrier to destroy the epi-
taxy by a defect (misfit dislocation) is estimated to be
~ 10 mRy cell.

FIG. 14. Charge-density contour plots of the valence- and
conduction-band states of (Si),/(Ge)4 along 'R and ZR.
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(ii) The strained Si-Ge alloy, which also has positive
enthalpy of formation, lowers energy by transforming
into the strained rhombohedral structure. This is also
only a metastable structure. The origin of this
neostructural phase transition, in spite of the small
amount of energy lowering, is sought in the short-range
order involving rearrangements of Si and Ge atoms in the
grown layer. The selective dimerization of the atoms in
the topmost grown layer is proposed to induce the short-
range order.

(iii) Confinement (or localization of states) indicates a
type-II staggered band lineup. Lowest conduction-band
states at " are localized at the interface of (Si),/(Ge),,
but become confined in Si for n > 3. Because of the quan-
tum size effect, the highest valence-band states are not
fully localized in Ge. The same effect (due mainly to
small electron effective mass) causes the lowest
conduction-band states at A_;, (which are located below
the confined electron states) to have an extended nature.
This is a new aspect of the band offset and quantum-well
structure. Furthermore, localized states deep in the con-
duction and valence bands suggest that the electronic
structure of the superlattices we investigated in the
present study cannot be treated with a single quantum-

well structure.

(iv) Among all structures (1 <n <b), (Si),/(Ge), has
displayed unusual properties which are not found in oth-
ers. It has the lowest indirect band gap at M, and small
formation energy.

(v) All (Si), /(Ge), superlattices are found to be in-
direct band-gap semiconductors. The energy separation
between the direct-indirect gap continues to decrease
with increasing n, and is only 0.07 eV for n =6. As a
consequence, the superlattice has a quasidirect band-gap
character. As can be seen from Fig. 10, 8E, approaches
zero for n > 6. Since the strain in the Ge sublattice is a
crucial factor'>! in the indirect-direct-gap transition, an
optimum value for a; has to be determined. In this situa-
tion both Si and Ge have to be strained. The variation of
the sublattice thickness, for example
(8i),, /(Ge),(Si),(Ge),, or similar combinations in the al-
loy sublattice, may promote a direct gap. In an effort to
improve the properties of Si an alternative way may be
the growth of a dilute donor, and/or acceptor layers in
the Si and Ge sublattices. The impurity bands obtainable
from this doping may produce an extremum at I' and
modulate the band offset. The difficulty is, however, the
diffusion of dopants into the sublattices.*’

*Permanent address: Department of Physics, Bilkent Universi-
ty, Ankara, Turkey.
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(b)

(d)

FIG. 1. (a) Tetragonal unit cell of the strained (Si), /(Ge),
superlattice with the solid and open circles denoting the posi-
tion of Si and Ge atoms, respectively. R,=R, :agi/\/f and
d,=a% /4. Rs,d,, and d; are obtained by minimization of the
total energy. In all unit cells the first Si atom starting from the
Si sublattice is located at the corner of the basal square of the
tetragon. (b) Perspective view; (c) cross section through the
horizontal central plane with dashed lines delineating the fcc
BZ; (d) cross section through the vertical plane of the tetragonal
superlattice Brillouin zone. The relation to the fcc BZ points la-
beled by the bar is indicated. (I'X =27/a% and XL =n/a3;.)



