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Asymptotic localization of plasmons in a periodic array of stripes
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The plasmonic bands of a periodic array of stripes are investigated for a class of continuous equi-

librium density profiles within the frictionless and dispersionless hydrodynamical model. The atten-
tion has been focused on the behavior of the frequencies at large values of parallel wave vector. In
this range we have found a strong localization of plasmons at the point of minimum density in the
cell. The effect of a vanishing minimum density is also studied.

I. INTRODUCTION

In the last ten years the study of the plasma excitations
of a homogeneous two-dimensional (2D) electron gas in
metal-oxide-semiconductor (MOS) structures or in het-
erostructures (GaAs-Al„Ga& „As) has attracted consid-
erable attention both experimentally' and theoretically.

More recently the role of spatial periodic modulation
of the equilibrium density of a two-dimensional electron
gas (2D EG) has been studied in artificial structures as
well as in high-Miller-index surfaces of semiconductors.
In the case of artificial structures, with the use of litho-
graphic and etching techniques it is possible to modulate
the electron gas in order to produce a 2D periodic array
of stripes with a periodicity, L, from 300 to 1200 nm.
The width as well as the equilibrium density of a strip de-
pend on the voltage, V, applied between the substrate
and a grating deposited on the top of the heterostructure.
Some accurate self-consistent calculations of the equilib-
rium density have been reported showing how the
effective potential acting on the electrons depends on V:
the shape and the width of the electron density can be
strongly different compared with the grating structure.

Far-infrared transmission spectroscopy has been ap-
plied in order to study the excitations of these electronic
systems. The radiation impinges on the heterostructures,
lying in the x-y plane and modulated along x, perpendic-
ularly to the 2D EG, along the z direction. When the ra-
diation emerges from the structure, due to the grating
periodicity, it acquires all x components of the wave vec-
tors which are integer multiples of 2n/L The relative.
change of transmission bT/T=[T(n, ) —T(0)]/T(0),
where T(n, ) is the transmission in presence of 2D EG
equilibrium density n„shows pairs of peaks which corre-
sponds to the edges of plasmonic bands at the center of
the Brillouin zone.

These plasmonic bands have been calculated within the
frictionless and dispersionless linearized hydrodynamic
theory by using an approximate method, a perturbative
technique, and a numerical analysis of the associate ei-
genvalue problem.

Our aim, here, is to discuss systematically, in the same
hydrodynamic theoretical framework proposed in the

II. THE MODEL

Within the electrostatic approximation the collective
modes of the 2D periodic EG (PEG) are obtained by solv-

ing the Laplace equation for the electrostatic potential 4
in the two semispaces surrounding the plane containing
the electron gas, and then matching the solutions accord-
ing to Maxwell's condition:

ae ae
=4men (x,y) .

Z p+ Z p—

The gas lies in the plane (x,yj, z is the direction normal
to it, and n (x,y) is the areal induced electron density in

the plane. The consistency of the equation for electron's
motion,

i prov = —eV24, (2)

with the continuity equation for the induced density gives

previous works, how the plasmonic spectrum depends on
a continuous equilibrium density profile. We also point
out some peculiar features of these 2D systems.

The main results obtained are as follows.
(a) As the profile becomes more squared, the plasmonic

bands become narrower and the frequencies lower. The
effect is qualitatively relevant when the relative variation
with respect to the mean value of density profile is large.

(b) In the large-k limit (that is the y component of the
wave vector associated with the plasmons) the induced
density is localized around the point of minimum density
and the associated frequencies are equal to those of a
homogeneous 2D EG with the minimum density.

(c) If the equilibrium density vanishes in some point,
the system is no longer able to support plasmons. This
result, which is in contrast with what has been found for
a discontinuous density profile, ' has been verified for a
class of continuous profiles. The question arises of what
is the effect of discontinuities in the equilibrium density
on the plasmonic bands. In our opinion the presence of
finite regions of zero density allows for accumulation of
the induced charge at the edges with far-reaching conse-
quences on dispersion relations.
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for the time Fourier transform of 4 the following equa-

tion:
M

no(x)=vo+ g n cos
m=1

2&mx
L

4me
, ('t)'2no ~2+no~v)~'

I o
pcs

(3)

where no is the equilibrium density for the ground state, U

is the velocity, p is the effective electronic mass, e is the
electronic charge, co is the frequency, and V2 is the gra-
dient in the plane. We note that no is a function of the
position in the plane. We note that this equation can be
obtained in the limit of high frequencies at the lowest or-
der from the microscopic linear-response theory of the
system. " In this way we are choosing a classical and
macroscopic approach.

We study a system in which no is periodic along x,
with period L, and is represented by the sum

Given an arbitrary periodic profile no, at most piecewise
continuous, it can be expanded in Fourier series. In gen-
eral, therefore, M stands for co, and the n coincide with
the Fourier coefficients. In the following we shall make
a different choice, that should be, in our opinion, suitable
to represent a periodic step function, if a truncation of
the sum is needed to perform numerical calculations.

The periodicity of no suggests that one take a solution
of the Laplace equation in the form

ikx ik y +k z

n

if we want solutions decaying both for z ~ ao (+ ) and for
z ~—ao ( —). Substituting (5) in (3) we obtain the eigen-
value equation for the plasmon frequencies:

z —(p —n )zy +zy2 2

2 2 Xy „H(p n) —0 5—„A =0, H(l)=0 for
I
I

I
yM, H(l)=1 for

I
I

I
&M,'z +zy'

(6)

where

k]'L n j)
z, = (i =x,y, n)„To=1, X =

2m
' ' ' ' ' 2vo

2 2
8&e vo

Eliasson et al. used Eq. (6) for a squared equilibrium
profile approximated with the first seven terms of Fourier
series. Because one of the aims of this paper is to point
out the role of the minimum density on the plasmonic
band structure, we fix the value of 7 in a different way.
Indeed the truncation of Fourier series originates the
Gibbs phenomenon which does not allow one to reach
the zero minimum density without having regions of un-

physical negative equilibrium density. In order to over-
come this problem we choose the X in such a way the
first M —1 derivatives vanish at x=0 and x =L/2. This
procedure gives an alternative succession of non-negative
functions approximating the step with a minimum value
that can be taken as small as we want.

The effect of a dielectric substrate, due to the frequen-
cy range of the studied collective excitations, can be de-
scribed through a frequency-independent dielectric con-
stant e, whose only consequence is to redefine co, :

16m e vo

pL (e, +1)

This is true only in the electrostatic approximation and in
a plane geometry.

III. THE CASE OF A COSINE PROFILE

We begin our analysis by taking M=1 in Eq. (4).
Equation (6) now has the form

M,
—

A, , + (M, —0') A, +M,+ A, +, —0,
where

y (j +z„)(j +z„+1)+z'I*=-
[(I +z )2+ 2]i/2

M, =[(j+z„)+z ]'y /2

in which j goes from —(x) to (x) and 7 stands for 7&. For
a numerical evaluation we approximate Eq. (7) with the
homogeneous system of 2N + 1 equations:

(M iv
—0 )A iv+M ivA iv+i ——0,

MN Aiv i+(Miv —0 )Aiv ——0,
in which

I j I
&M —1, that can be solved by taking

z ——1 and calculating for recurrence the other
coefficien so that the last equation becomes the eigen-
value equation.

Figures 1 and 2 show the plasmonic bands for two
different values ofJ. We note that for the lowest value of
7 our results are very similar to those obtained by Eilas-
son et al. for a square equilibrium profile represented by
the first seven Fourier components. Of course, increasing
7 the effect of the other Fourier components modifies the
spectrum, even if the change is not dramatic.

One of the aims of this work is to discuss the asymptot-
ic behavior for large values of z„. We note that the nu-
merical technique we have used allows this analysis. Fig-
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FIG. 3. The asymptotic behavior of the first two bands at
7=0.05. The dashed lines give the linear asymptotic depen-
dence of 0' on z~.

Zy

FIG. 1. The first two plasmonic bands for the cosine profile.
+=0.05. On the right-hand side we report the units of Ref. 8
for comparison.

ure 3 exhibits the first two bands at 7=0.05 for large
values of z . Increasing z the bands become narrower
and narrower around the value of z„=0, and the squared
frequencies lean on straight lines so that

0 —( —,
' —X)zy+a; (zy~ ee ) . (9)

Here the index i' labels the different bands at the increas-
ing of the frequency, and the dependence of the
coefficients a, on P is shown in Fig. 4. Equation (9) im-

plies that the asymptotic behavior is that of a uniform
density at the minimum value of n p ~ When the minimum
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FIG. 2. The same as Fig. 1 with g =0.375.

FIG. 4. The dependence of a, [Eq. (9}]on X for the first seven
bands. The solid (dashed) lines refer to the even (odd) modes at
z„=0.
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density is zero (X=—,
'

) all the bands collapse towards zero

frequency. However, this happens not only at a large
value of z but at any value of the y component of the
wave vector. We will return later to this point, and, for
the moment, we focus our attention on the asymptotic re-
gion. We note that the gaps for large z are all equal and
they are of the same order of magnitude or even greater
than those appearing in the z =0 spectrum.

When z„=0 the A; solution of the system (8) can be
classified in even A, =A, or odd A;= —A;. Using
this property of symmetry we build up two recurrence re-
lations for the succession of determinants D& obtained by
(8). For the even modes we get

Dp=z /2 0
D, =(M, —0 )Do 2X a,—M, Mo,

D„=(M„—0 )D„, Xa„—M„M„,D„2,
where

[n(n —1)+z ja„= M. =
[(n —1) +z~](n +z )

" 2

(10)

The corresponding relation for the odd modes is obtained
by simply changing the initial conditions for the
difference equation (10):

Di ——Mi —0
D2 ——(M2 —0 )D, Xa2M2M, . —

Redefining D„as

D„

is large at low values of n, Eq. (12) coincides with the suc-
cession of polynomials

Pp=y,

P( =y —2

P~ —yP~ —i P~ —z

where

(15)

1 20y= —1—
X z,

In other words for large z Eq. (12) reduces to Eqs. (15),
while low values of n Eq. (12) reduces to Eqs. (13) for
large n. Going with n to infinity the roots of polynomials
(15) converge to y =2, —2, accumulating towards these
limit points. We note that y=2 gives the frequency cor-
responding to the minimum density of Eq. (9), while

y = —2 gives the frequency corresponding to the max-
imum density. There is strong evidence from the numeri-
cal calculations that only y =2 is the unique correct solu-
tion at the highest order in z of Eqs. (12), while y = —2
is a spurious one that arises from extending the low-n ap-
proximation (15) to infinity. For odd modes the initial
conditions P, =y and P2 ——y —1 have to be substituted in

Eq. (15), but the above conclusions are still valid.
This asymptotic behavior implies that the plasmonic

modes are localized around the point of minimum equi-
librium density. In fact, when the eigenfrequencies have
been calculated, we can obtain the corresponding electro-
static potential, and from it the induced density, sum-
ming up the Fourier series (5). In Fig. 5 the potential is

X"+' g M;

the difference equation (10) becomes

1
n

0
1 — 2)„,—a„2)„

n

(12)

For a fixed value of z and for any value of fL an n exists
such that M„»Q for any n &n; furthermore, for z
large enough we can take a„-1. In other words the
asymptotic form of Eq. (12) is

2)„=—S„,—2)„2 (n &n),1
(13)

whose solution is

1+(1—4X')'"
X/„=R+ with R+ ——

2X
(14)

As we want 2)„=0we have the unique solution R" . We
note that when X=—,', Eq. (13) does not have vanishing
solutions for n going to infinity.

The explicit calculation of the asymptotic dependence
of 0 on z implies both the limit z ~~ and the limit
n ~~. We have to find the values of 0 for which the
initial conditions on the first values of.B allow matching
with the unique vanishing asymptotic solution. When z

FIG. 5. The electrostatic potential 4 vs the position within
the cell x/L at zy 5 Thc culvcs alc normallzcd 1n such a way
that their area is equal to 2~, and they are labeled by the value
of 7.
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C)

1.125
1.172
1.196
1.211

C3

—0.125
—0.195
—0.239
—0.269

Cg

0.023
0.048
0.069

C7

—0.005
—0.012

C9

0.010

For the sake of completeness we report in the following
table the coefficients c; which multiplied for g give the 7;.

plore the neighborhood of 7=0.5, extending the previous
calculations. Although we have avoided the Gibbs phe-
nomena the convergence of the roots of the finite secular
equation obtained truncating Eq. (6) gets slower and
slower when 7~0.5. The potential associated with the
eigenmodes shows large changes calculating the frequen-

(a)

When we increase the value of M, keeping constant the
value of the minimum equilibrium density, the bands
show a general tendency to lower in frequency and to be-
come narrower. This behavior has been tested going with
M from 1 to 9, and the results are shown in Fig. 9. In
some sense the results of calculations with only one com-
ponent with a pure cosine profile give an upper bound for
the frequencies of a more squared density. We remember
that the calculations for M= 1 give vanishing frequencies
for 7~0.5 at any z . Hence we expect that the same
happens with a more squared profile. Really the spec-
trum with five components exhibited in Fig. 10 confirms
without a shadow of a doubt that the system is not able
to support modes when the minimum density is zero. We
note that [Fig. 10(a)] the numerical values are in corn-
plete agreement with those of Eliasson et al. We em-
phasize that our choice for the 7; makes it easy to ex-
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FIG. 9. The first three plasmonic bands increasing the num-

ber M of components in Eq. (4}.
FIG. 10. We show the first plasmonic bands as a function of

X at z, =0(M=5).
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cies with an increasing accuracy, and it is difficult to ob-
tain satisfactory results. In other words the Fourier
series for the potential has a very slow convergence, and
we need a large number of terms to stabilize it. However,
the qualitative results convince us that the connection be-
tween vanishing frequencies and localization at minimum
density is still present.

We emphasize that this result, which we believe to be
the main result of this work, for a continuous profile, is in
contrast with those obtained with a single stripe or a
periodic array of stripes' where there are infinite or finite
regions of zero density. In our opinion the induced po-
tential tends to localize around the minimum of no in
such a way that the induced density tries to balance the
spatial variation of no. On the other hand, if there are
forbidden regions for the electrons (which implies discon-
tinuities on no } this has serious consequences on their dy-
namics, frustrating the basic tendency which we have
found in the model studied. The possibility of accumulat-
ing charge against the boundaries dramatically changes
the dispersion relation. It would be interesting to investi-
gate what happens when, starting with a continuous
profile that vanishes at one point, we move to a discon-
tinuous one with a zero-density region of increasing
width. The question remains open of what kind of profile
(continuous or discontinuous) is the best one to use for
applying the hydrodynamical model to the physical sys-
tems discussed in Sec. I.

V. CONCLUSIONS

tential (3).
We start with a cosine profile and by adding new odd

components we approach a periodic step profile. The
plasmonic bands of cosine profile narrow when z ~ oo in
such a way that the squared frequencies grow linearly in
z with a slope given by the minimum density while all
the gaps become equal to each other. When the
minimum density goes to zero the system does not sup-
port plasmons and this happens not only in the asymptot-
ic region but even when z =0. The reasons for this be-
havior have been found in the localization of potential
and density fluctuations on the point of minimum densi-
ty. When the regions of zero density have a finite width
the edges act as rigid barriers for the density fluctuations.
This gives rise to dispersion relations which can be very
different. This explains why our results are in contrast
with those of Refs. 9 and 10.

The passage to more squared profiles lowers and nar-
rows the bands and also in this more general case when
the minimum density vanishes all the frequencies go to-
ward zero. For the physical systems studied in the litera-
ture the external radiation couples only with nonradiative
plasmons of zero z . On the other hand the localization
property discussed could be of some interest for techno-
logical applications such as a truly microscopic
waveguide. However, the introduction of a suitable
periodicity also in the y direction could be used in order
to overcome the difficulty of exciting the localized
plasmons of large z, through the folding of the bands
with respect to zy.

We have studied the plasmonic bands of an array of
2D stripes, trying to stress the effect of the shape of the
equilibrium profile assumed as a given continuous period-
ic function. We note that this is the only equilibrium
property which enters in the equation for the induced po-
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