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Relativistic band structure and spin-orbit splitting of zinc-blende-type semiconductors
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Zinc-blende-type semiconductors differ from their diamondlike counterparts by the absence of in-
version symmetry. This produces a number of spin splittings and spin-orbit coupling effects which
are absent in the latter. For instance, all states at a general k are split by spin-orbit interaction.
Also, bonding and antibonding p-like states are coupled by the same interaction. Many of these
efFects are calculated here on the basis of the ab initio self-consistent fully relativistic linear-muffin-
tin-orbital method. For a better understanding and interpretation of the results, semiempirical
parametrized 16)(16k p calculations of several types are performed. Particular emphasis is placed
on determining the signs of these splittings in an unambiguous manner. The results are compared
with available experimental data of rather diverse origin.

I. INTRODUCTION

Spin-orbit interaction is known to split orbital degen-
eracies of band states, especially at high-symmetry points
of the Brillouin zone (BZ) of cubic solids. In the
tetrahedral semiconductors of germanium (diamond) and
zinc-blende structure, such splittings appear in the top
valence bands at I, L, and X, and for the p-like conduc-
tion bands at the same points. ' They follow systematic
trends related to the spin-orbit splitting of the valence p
levels of the constituent atoms. In fact, the experimental
observation of such splittings, usually in the form of dou-
blets in optical spectra, has been highly instrumental in
the identification of electronic excitation spectra in terms
of interband transitions. The splittings at I and L ap-
pear both in Ge and zinc-blende-type materials, while the
splitting at X occurs only for those of zinc-blende type,
i.e., compounds with different anion and cation constitu-
ents. All states at I, L, and X, however, remain at least
doubly degenerate. This degeneracy corresponds to the
Kramers degeneracy.

The Kramers degeneracy requires a spin state at a gen-
eral k point to have the same energy as the opposite-spin
state at —k. If the crystal has inversion symmetry (ger-
manium structure), all states at a giuen k are therefore
doubly degenerate. The situation is more subtle for the
zinc-blende structure, which lacks a center of inversion.
In this case, only along (100) (6 direction) do all the
states remain doubly degenerate. The states along (111)
may or may not split, depending on the irreducible repre-
sentation in the double-group symmetry of the states
(states of A4 5 symmetry split, while A6 does not). ' For
other k's inside the Brillouin zone all states become non-
degenerate, the splitting being, of course, the result of
spin-orbit interaction. It is expected to be largest along
the ( 110) directions since they are centrally located with
respect to the ( 100) and ( 111) directions along which
all or most of the splittings vanish. The splittings can be
seen in band calculations which include spin-orbit in-
teraction. ' They amount to less than -0.250 meV.
These values are usually too small to be read with accura-

cy from published dispersion relations. Thus informa-
tion on calculated values of this splitting as a function of
k is rarely available (for exceptions, see Refs. 8 —11).

This lack of theoretical information is even more acute
for the spin splitting around the band extrema which
determine the transport properties. These splittings are
very small, usually of third order in k (the distance in k
space to the extrema), although sometimes a linear term
appears. The coefficients of these cubic and linear terms
manifest themselves experimentally in a number of ways.
We mention, for instance, the spin-relaxation time which
can be measured in optical-pumping experiments by
means of the Hanle effect' ' and other forms of polar-
ized luminescence. ' ' These k terms also affect the
strength of the electric-field-induced spin resonance and,
based on this fact, the coefficient of the k terms (called y
or 5o in the literature) has been determined in InSb, '7 in-
cluding its sign. '

The spin splitting of the bands of the GaAs along [110]
has also been observed in the elegant spin-polarized pho-
toemission experiments of Riechert et a1. ' Moreover, it
should be mentioned that splittings linear in k are often
induced by application of a uniaxial stress. Such split-
tings can also be observed by means of the Hanle effect. '

In this paper we present calculations of the spin-orbit
split tings just mentioned performed with the linear-
muffin-tin-orbitals (LMTO) method. ' These calcula-
tions are to be regarded as ab initio, except for adjust-
ment of gaps related to the use of the local-density func-
tional (the so-called gap problem). In order to under-
stand the mechanisms and interactions which are respon-
sible for the calculated splittings, we have also performed
a k p calculation based on a pararnetrized 16& 16 Hamil-
tonian. We have also analyzed the k.p results by means
of perturbation expansions around k=0. Particular em-
phasis has been placed on a consistent determination of
the sign of the splittings with respect to the double-group
symmetry of the corresponding eigenstates. In Sec. II we
describe the k-p Hamiltonian and the phase choice for
the eigenstates involved. We also discuss the sign of the
matrix elements of p and introduce the off-diagonal spin-
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orbit coupling 5 between p-like valence and conduction
bands (I » and I;s). In Sec. III we present the band
structures of Inp, GaSb, InAs, ZnSe, and CuBr calculat-
ed with the LMTO method. In Sec. IV we compare the
values of b obtained with three different methods:
LMTO, LCAO (linear combination of atomic orbitals),
and k p. In Sec. V we discuss the part of the spin split-
tings along [110]which is proportional to k for small k.
Results are presented for the I &5 and I &5 bands and the
lowest conduction bands at I (I,), as obtained with the
LMTO and k p methods. Emphasis is placed in giving
the sign of these splittings in a unique, meaningful way.
In Sec. VI we present the strain-induced linear splittings
as obtained by k p perturbation theory. In Sec. VII we
discusses linear terms in k found in the I &5 and I &5 bands
in the absence of strain. By means of LMTO calculations
these terms are shown to be due to interactions with the
core levels. Thus they do not appear in the k.p Hamil-
tonian. Their signs are also determined in an unambigu-
ous fashion. The calculations are compared with the few
experimental data available. These results are summa-
rized in Sec. VIII. Finally, the Appendix contains some
details of the k p matrix.

II. THE ja.p HAMILTONIAN

The k p method is most commonly used to obtain the
perturbation expansion, quadratic in k, of bands around
high-symmetry points. It can also be used to find the
nonparabolic behavior for larger k by diagonalizing a
truncated k p Hamiltonian matrix. ' ' We use here
the 14X14 Hamiltonian of Ref. 25 enlarged to include
one more s-like (I &) conduction band. The parameters of
this 16)& 16 Hamiltonian appear in the eigenvalues of the
16 states at I (including their spin-orbit splittings), the
matrix elements of p, and the spin-orbit-coupling con-

stant 6 between the I &5 and the I
&& bands. The matrix

elements of p are affected by the choice of the phases of
the orbital wave functions and so is 6 . The latter, and
some of the matrix elements of p, reverse sign if the posi-
tions of the two atoms in the unit cell are interchanged.
Hence, great attention must be paid to a consistent
definition of all these parameters. We discuss it in detail
below. The parameters used for our k p calculations,
performed for GaAs, GaSb, Inp, and InSb, are listed in
Table I. Many of the gaps and the spin-orbit splittings
were obtained directly from experiments, while others
were obtained by fitting experimental data or from some
of our calculations (e.g., 6, as will be presented below).

The following matrix elements of p appear in our
Hamiltonian:

P = l ( I'", „~P„~ I,), P' = '( I", „~P„~ r, &,
(2.1)

We use the definitions of Eq. (2.1) and the choice of
wave-function phases (all real) and atomic origin given in
Fig. 1 (from Ref. 31). Note that the anion has been
chosen to be at the origin, while the cation is at
(ao/4)(1, 1, 1). The opposite convention is often found in
the literature, a fact which results in the sign reversal of
Pl

Within the convention of Fig. 1 it is easy to see, simply
by replacing p„by —i8/B„and making rough sketches of
the wave functions of Fig. 1 and their derivatives, that P,
P', and Q are positive. We have not bothered to fix the
phase of the second s-like conduction state I

&
since this

phase choice does not affect any other parameters of our
Hamiltonian. The calculated bands are thus independent
of the choice of sign of P'". We use for P"' in GaAs the

TABLE I. Parameters used for the 16)& 16 k p Hamiltonian (see the Appendix).

GaAs InP GaSb InSb

Eo (eV)
50 (eV)
Eo (eV)
60 (eV)

(eV)

Eo" (eV)
P (a.u. )
P' (a.u. )
P"' (a.u. )

Q (a.u. )

Ck (a.u. )

Ck (a.u. )

71
r2
y3
ao (A)

r,-r,
I 8-I 7

I 7-I 8

I 8-I 7

off-diagonal
spin-orbit
splitting

r,'-r,
& I is, - I S. I

I i)

«;,,„~p„~ I", )
«;, , ]p„[r"„,)
k-linear term

valence band
k-linear term

upper conduction band
Luttinger parameter
Luttinger parameter
Luttinger parameter
lattice constant

1.519
0.340
4.488
0.171

—0.085

9.18
0.692
0.331
0.695
0.47

—0.000 25

0.000 21

6.85
2.10
2.90
5.65

1.424
0.108
4.6
0.50
0.22

9.66
0.601
0.299
0.243
0.503

—0.0001

—0.00008

5.05
1.6
1.73
5.869

0.813
0.75
3.3
0.33

—0.28

7.27
0.660
0.231
0.556
0.564
0.00003

0.000 79

13.2
4.4
5.7
6.082

0.235
0.803
3.39
0.39

—0.244

6.78
0.661
0.220
0.42
0.571

—0.000 64

0.000 79

40.1

18.1
19.2
6.479
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1 2 1 2 1= 1+2P
m,* Eo Eo+~o

r„) P'
+ p

2

(2.4)

bonding

r"„)

the experimental value m,* of the electron mass at I 6.
[Equation (2.4) is in atomic units, m =e =8=1.] In this
way we avoid the use of the artificial additive parameters
C and C' introduced in Ref. 28. (Note, however, that re-
cent magneto-Raman experiments require a value of
C= —1.7 for GaAs. When more information becomes
available for other materials, it can be simply incorporat-
ed into our k p calculations. } The matrix element Q was
obtained from the Luttinger parameters y, and y2 with
the expression (see the Appendix)

2Q =(|
&

21 ~+ 1)(E +o—6o) (2.5)
FIG. 1. Schematic diagram giving the phases of the I », I &,

and I » wave functions used in this work. A and C represent
cation and anion. For the p-like functions I &'5" the component
of z symmetry (z~~ [111])is depicted.

value P'"=0.66'bohr ' calculated with the pseudopoten-
tial Hamiltonian of Ref. 30. For the other materials we
have slightly reduced P'" so as to obtain spin splittings of
the I ", 5 band along [110]close to the LMTO results (see
below}. The k p matrix elements between I && states have
been written in terms of the Luttinger parameters y „y2,
and y3, related to the P, P', Q, and interactions with
other bands not contained in our basis (Lowdin perturba-
tion theory}. These matrix elements are given in the Ap-
pendix.

The spin-orbit-coupling parameter 6 is real if I &5 and
I &z are chosen as real, following the phase convention of
Fig. 1. We define 6 as

Our parameters thus reproduce the experimental m,* by
construction: The coupling through 6 affects m,* only
negligibly. It affects, however, the corresponding
effective g,* factor through a third-order perturbation
term:""

8 5 PP' 1 2

Eo —Eo Eo Eo+ 5o
(2.6)

This contribution amounts to —1.7 in InSb and plays an
important role in the magnetic field dependence of the
spin splitting. ' We show in Table II the values of hg,'
and the total g,

* calculated for GaAs, GaSb, InP, and
InSb and compare them with experimental results. The
corresponding effective masses m,* are also given for
those materials plus ZnSe and CdTe. We present in
Table III the effective masses of those six semiconduc-
tors.

=3((—', -', )„~8, , ~

( —,
' —', ), ), (2.2)

p 2 p2 0 ocEl El
E' +E' (2.3)

where Eo, represents the I &5-I, gap of the isoelectronic
group-IV material. Typically, P'=0. 35P. The value of P
is then fixed sp as to obtain, with the equation

where (—', —,
'

) represents the angular-momentum-like eigen-
vector of the I &z eigenstates plus spin. The parameters
Ck and Ck represent the splittings of the I &5 and I

&&

bands (I s component) linear in k (see Sec. VII).
The energies of the Eo" gap (I s~I &) were taken from

our LMTO calculations. We note that in the case of
GaAs the calculated value (9.18 eV) is somewhat higher
than the experimental one (8.24 eV). ' The other ener-
gies of I states and the diagonal spin-orbit-splitting ma-
trix elements were taken from experimental data or, in
the case of the latter, from LMTO calculations when the
experimental data did not look convincing. The follow-
ing procedure was used to fix the values of P, P', and Q.
A relationship between P and P' was derived in the
manner indicated in Ref. 26:

GaAs
GaSb
InP
InSb
ZnSe
CdTe

gg+ 8

—0.28
—0.8
+ 0.6
—1.7

0.43
—8.2
—1.8

—52.7

g+b

0.44
—9.1
—1.5

—51.3
—1.7

a, b
C

0.067
0.041
0.078
0.014
0.14
0.090

+ C
C

0 095
0.050
0.101
0.016
0.160
0.099

'Calculated, k.p.
Experimental, from Ref. 33.

'Calculated, LMTO.
The value 0.068 given in Ref. 47 was obtained by using a slight-

ly more optimized set of adjusting potentials.

TABLE II. Values of the electron g factor g,
* obtained with

the k.p method compared with experimental results. The corre-
sponding m, , which agrees with experiment by construction, is
also given and compared with the results of the LMTO calcula-
tion. hg,* represents the contribution of the I »-I » spin-orbit
coupling to g,*. It has been found experimentally to be —1.7
for InSb, in excellent agreement with the calculated values (Ref.
36).
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TABLE III. Effective masses of the I ] and I » bands of GaAs, GaSb, InP, InSb, ZnSe, and CdTe as
obtained with the LMTO and k.p methods (k~~[110]),compared with experimental results, for k~~[110]
and [111]from Ref. 33.

kp
LMTO
Expt.

kp
LMTO
Expt.

kp
LMTO
Expt.

GaAs

0.085
0.096
0.082

0.73
0.61
0.57

0.18
0.20
0.17

GaSb

0.044
0.06
0.042

0.45
0.41
0.37

0.13
0.10
0.13

InP

0.13
0.10
0.12

0.66
0.52
0.60

0.20
0.18
0.12

InSb

0.017
0.019
0.016

0.49
0.49
0.45

0.098
0.15

ZnSe

0.15
0.14

0.88
1.1

0.28

CdTe

0.08
0.11

0.87
0.83

0.26

III. LMTO BAND-STRUCTURE
CALCULATIONS

The electronic band structures of the compound serni-
conductors can efficiently be calculated by means of the
LMTO method, although this method is particularly suit-
ed for close-packed crystal structures. However, by in-
troducing at the interstitial positions in the sphalerite
structure so-called "empty spheres, " i.e., atomic spheres
without nuclear charge, this open structure is converted
into a close-packed one. Consequently, the errors in the
LMTO are minimized. It has been demonstrated ' that if
an ab initio pseudopotential and a LMTO calculation use
the same principles for construction of the potentials,
then the same band structures of the zinc-blende-type
semiconductors are obtained. At first, this may seem
surprising since the pseudopotential method does not, as
the LMTO does, apply spherically symmetrized poten-
tials. It is, however, the introduction of the "empty
spheres" in this "atomic-sphere approximation" (ASA)
that provides an additional variational degree of freedom
which is sufficient to compensate for the omission of the
intra-atomic polarization effects. The close agreement
between the LMTO and pseudopotential semiconductor
band structures is only found, though, when the LMTO
includes the so-called "combined correction term. "
Further, these observations only apply to compounds in
the perfect- (high-symmetry) crystal structures. If accu-
rate LMTO calculations are to be performed for distorted
structures —for example, with the purpose of obtaining
deformation potentials relating to uniaxial strains, or
optical-phonon frequencies —then the ASA form of the
potential is too simplified. Methods that go beyond the
ASA, and thus can treat these more complex problems,
are presented elsewhere.

An important advantage of the LMTO method over
some of the other first-principles schemes is that it re-
quires only a small set of basis functions. It applies a
partial-wave representation. The version which we use
here needs, in order to ensure a sufficient angular-
momentum convergence, the inclusion of s, p, and d corn-
ponents. Although not strictly necessary on the empty
spheres, we include these on all sites. The fact that we

have to include the d partial waves in any case also im-
plies that we, without any additional computational
effort, can include the outer cation d states as fully re-
laxed band states. The d states affect the band structure
also at the top of the valence band. Even in GaAs, where
the Ga 3d states are relatively low, their influence is non-
negligible. In ZnSe, where the cation d states are consid-
erably higher in energy, the influence on the valence-band
structure becomes much more pronounced; they cause
the VBM to shift upwards by =0.6 eV, as compared to a
calculation where the Zn 3d states are treated as

, ("frozen, " renormalized) corelike states. The band struc-
ture of CuBr, where the Cu 3d band intersects the Br
bonding p bands, is even qualitatively erroneously de-
scribed if these d states are not included.

Some of the band-structure features which we wish to
describe in the present work, the k-linear splittings, are,
in part, determined by the hybridization between the cat-
ion d states and the valence states. Thus, it is essential
that these states are properly included in the LMTO
scheme. The splittings are also influenced by the anion
corelike states. These are, however, lying so low in ener-

gy that they can safely be treated as atomiclike. Their
effect is still felt by the valence bands since, in the
LMTO, the valence states satisfy the requirement of be-
ing orthogonal to all core states.

The splittings of the bands in the zinc-blende-type crys-
tals are caused by the spin-orbit (s.o.) interaction. There-
fore, this is included in the LMTO scheme. It may be
done either by adding a s.o. part formally as a perturba-
tion to the "scalar"-relativistic Hamiltonian, or by using,
as we prefer here, a fully Dirac-relativistic formula-
tion. ' In both cases, this implies that all matrices
(Hamiltonian, overlap, etc.) are doubled in size. With s,
p, and d partial waves included in the basis set on all
sites, the matrix dimensions are 72)&72 (four "atoms" in
the basis). The crystal potentials are calculated by iterat-
ing the one-electron wave equation to self-consistency
with an effective potential where exchange correlation is
treated in the local-density approximation (LDA) plus
additional potentials (see below). For the LDA we use
the form constructed by Ceperley and Alder as
pararnetrized by Perdew and Zunger. The relativistic
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rp
V„(r)= Vo exp[ —(r /ro )'], (3.1)

in the atomic sphere considered. These potentials are
added on the real-atom sites as well as on those of the
empty spheres. The parameters Vp and rp are different
on the various sites. The range parameters, rp, are
chosen so small that mainly the s-like states are affected.
With these extra terms added to the LDA effective poten-
tial, the LMTO calculations are iterated to self-
consistency. The valence states and the ground-state
properties (theoretical equilibrium volume, etc. ) are only
slightly affected by the extra, 5-function-like potentials.
It is interesting to note that, since they are included self-
consistently, they do not only affect the lowest s-like con-
duction band, but also the higher states. The optical
spectra derived from such "adjusted" band structures
agree well with experiments. There is, for a given semi-
conductor, no unique set of (Vo, ro) parameters. Usually
the rp values are chosen rather arbitrarily, and keeping
them fixed the four Vp parameters are varied until the
gaps are sufficiently well reproduced, either by "trial and
error" or by a simple self-consistency scheme. The pa-
rameters we have used for the compounds considered
here are given in Table IV.

The band structures of GaAs, GaSb, InP, InSb, CdTe,

corrections suggested by McDonald and Vosko are in-

cluded.
It is well known that the band structures which formal-

ly are obtained from the one-particle energies of the wave
equation in the LDA for semiconductors and insulators
have gaps that are far too small (see, e.g. , Ref. 38). In the
present work, where we wish to calculate spin splittings,
such errors are not acceptable since they produce in-
correct values of the splittings in the conduction bands.
The band structures that we use must therefore have con-
duction bands that are correctly located in energy with
respect to the valence bands. It is not sufficient to shift
them rigidly so as to adjust the minimum gap: this
correction would preserve the wrong dispersion. A sim-

ple ad hoc procedure that simultaneously corrects the

gaps and the dispersion was applied earlier, and consists
of adjusting the gaps at three symmetry points, I, X, and
L, by introducing "false Darwin shifts. " This is done by
adding to the effective potentials an additional external
potential, V„(r), that is sharply peaked at the atomic
sites. We take this potential to be of the form

ZnSe, and CuBr as calculated according to the descrip-
tion above are shown in Figs. 2 —8. The spin-orbit split-
tings calculated for the I », L3, and I » states, respec-
tively, are listed in Table V. (See also Fig. 2 for the
definitions. ) These values differ only slightly from the
splittings obtained without the potentials of Eq. (3.1).
The pure LDA calculations give for GaAs, InP, and
CdTe the following values of Ap: 0.363, 0.123, and 0.931
eV, respectively.

In order to illustrate the range of validity in k space of
the k p perturbation calculation, we have plotted in Fig.
9 the LMTO as well as the k p bands of GaSb (the Ga 3d
bands are not included in this figure).

Since the sphalerite structure does not have inversion
symmetry, several bands split due to the spin-orbit cou-
pling as mentioned in the Introduction. Only few bands
along particular symmetry lines ([ill] and [100]) can
maintain the twofold degeneracy. Some of the splittings
are small, though, and therefore not easy to discern in the
band-structure plots, Figs. 2 —8. Therefore we show, on
enlarged scales, a few examples of bands where the split-
tings can be seen more clearly. First, Fig. 10 shows for
ZnSe the valence-band maximum and a part of the
heavy-hole (hh), light-hole (lh), and split-off hole (sh)
bands (for notation, see Fig. 6) along the X ([110]) line.
In Fig. 11 the lowest conduction band, as well as the I »-
derived heavy-electron (he), light-electron (le), and split-
off electron (se) bands are shown along the same symme-
try line. As required by symmetry, the splittings vanish
at I and X. The band structure becomes very complex in
the k regime where the (he), (le), and (se) bands tend to
cross, and therefore a consistent assignment of the split-
tings to specific bands, e.g. , he, along the entire line from
I to X is not possible. The quantities we shall derive and
use here, however, will be obtained only from the k re-
gions near I, and there the bands can be unambiguously
identified. Such complications do not occur for the
lowest conduction band, e, in ZnSe. Considering now the
same bands, Figs. 12 and 13, along the A line ([111]),it is
seen that only the hh and he bands split (the splitting of
he can hardly be seen in Fig. 13). The lh, sh, le, and se
states are doubly degenerate along this line. This is also
the case for the lowest conduction band (not shown in
these figures).

The splittings of the hh, lh, he, and le as well as the
split-off bands of CuBr are illustrated in Figs. 14(a), 14(b),
and 15 for k at the X line, and in Figs. 16 and 17 these
bands are shown for k along the [111]direction. It fol-

TABLE IV. Parameters of the external potentials, Vo (in hartrees) and ro (in bohrs), used with Eq.
(3.1). E& and E2 label the empty" spheres, E& being the one surrounded by cations.

GaAs
GaSb
InP
InSb
CdTe
ZnSe
CuBr

Vp

280.0
295.0
200.0
145.0
275.0
355.0
750.0

Cation

0.015
0.015
0.015
0.015
0.015
0.015
0.015

Vo

190.0
245.0
180.0
145.0
275.0
355.0
750.0

Anion

0.015
0.015
0.015
0.015
0.015
0.015
0.015

Vo

5.0
5.0
6.6

50.0
5.4
7.3
7.3

El

0.55
0.45
0.55
0.48
0.45
0.45
0.45

Vo

6.0
5.7
5.7

90.0
5.4
7.8
7.3

E

0.55
0.55
0.55
0.58
0.45
0.45
0.45
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FIG. 2. Band structure of GaAs along symmetry lines as cal-
culated in the local-density approximation (LDA), but with the
adjusting potentials included self-consistently. Energies are
given in rydbergs on the natural ASA energy scale; see, for ex-
ample, Ref. 49. For details of spin splittings, see Fig. 22.

FIG. 4. Band structure of InP along symmetry lines as calcu-
lated in the LDA, but with the adjusting potentials included
self-consistently. For details of spin splittings, see Figs. 24 and
29.
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FIG. 3. Band structure of GaSb along symmetry lines as cal-
culated in the LDA, but with the adjusting potentials included
self-consistently. For details of spin splittings, see Figs. 23 and
28.

FIG. 5. Band structure of InSb along symmetry lines as caltN

culated in the LDA, but with the adjusting potentials included
self-consistently. For more details on spin splittings, see Fig. 25.
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FIG. 6. Band structure of CdTe along symmetry lines as cal-
culated in the LDA, but with the adjusting potentials included
self-consistently. The labels, sh (split-off-hole), lh (light-hole),
hh (heavy-hole), e (I'6-conduction-electron), le (light-electron),
and he (heavy-electron) band, refer to the notation used in Sec.
V. For details of spin splittings, see Fig. 27.

FIG. 8. Band structure of CuBr along symmetry lines as cal-
culated in the LDA, but with the adjusting potentials included
self-consistently. For details, see Figs. 15-17.
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lows from Fig. 16 that the hh and lh bands cross even
near I', and that a calculation of the k-linear terms there-
fore must be made with some care. The cases shown here
are not the only ones where such difficulties were encoun-
tered [note also similar difficulties for the valence bands,
Figs. 14(a) and 14(b)], and therefore it is often necessary
to use a very dense k mesh to ensure that the coefficients
of splittings are properly determined. We use up to 900
intervals on the I -L and I -K segments.

IV. ESTIMATES OF 5

A. k-p estimates

-05

lZ

c9

LU
Z -10-
Ill

~ I ~ I
::. ::: Z

~I I~

The spin-orbit Hamiltonian couples the I'",s and I »
states of a zinc-blende-type semiconductor since they are
mainly p-like and have the same symmetry. This cou-

TABLE V. Spin-orbit splittings at the valence-band max-
imum at I, 50, at L, 5&, and of the conduction state I », 50, as
calculated by the LMTO method.

-1.5-

L X X K

FIG. 7. Band structure of ZnSe along symmetry lines as cal-
culated in the LDA, but with the adjusting potentials included
self-consistently. For details, see Fig. 10.

GaAs
GaSb
InP
InSb
CdTe
ZnSe
CUB1

0.351
0.727
0.120
0.799
0.871
0.401
0.044

0.213
0.415
0.126
0.497
0.530
0.237
0.073

0.178
0.256
0.499
0.497
0.375
0.158
0.111
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FIG. 9. LMTO {dots) and k p (lines) band structures of
GaSb. (Ga 3d bands not shown. ) For details of spin splittings,
see Fig. 23.

pling vanishes for diamond-type crystals: the state which
corresponds to I » (I 25) is even (bonding), and that cor-
responding to I &5 is odd ( I &z, antibonding). Several
methods can be used to estimate this coupling. Early es-
timates were published in Ref. 24 for GaAs, GaP, InP,
and A1Sb. Results for GaSb, InAs, InSb, ZnSe, and ZnTe
can be found in Ref. 50. They were obtained through fits
of various experimental spin-orbit split tings with a
30X 30 k.p Hamiltonian. They are thus related to exper-
imental data in a nontransparent manner. We reproduce
the values for GaAs, GaSb, InP, and InSb in Table VI,
where the sign of the coupling has been taken to conform
with the choice of phases and atomic origin described
above.

B. Tight-binding estimates

FIG. 10. ZnSe, relativistic LMTO band structure near the
valence-band maximum for k along [110]. For more details, see
Fig. 26.

Another possible way of estimating 6 is based on a
minimum-basis tight-binding method. ' We assume that
the 1"&5 and I

&& wave functions are obtained as bonding
and antibonding linear combinations of p-like orbitals of
the cation (~ III )) and the anion (~ V)):
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FIG. 11. ZnSe, like Fig. 10, but conduction bands along
[110].

FIG. 13. ZnSe, like Fig. 12, but I »-connected bands along
[111].
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FIG. 16. CuBr, relativistic LMTO band structure near the
valence-band maximum for k along [111].

CuBr
k ll 3110)

l-v
)
I "„)=a

) V)+p [ III),
i
I', ) =P

i
V ) —a

i
III), (4.1)

IX

c5
K
LLI
X
uJ

4
~

~ . Z3
4 (4.2a)=ap(hv —~rrr )

~o=a'~v+ p'~rrr

~o=p'~v+a'~m

pV
(4.2b)-0213

(4.2c)

where hz and A~~~ are the atomic spin-orbit splittings,
properly renormalized to take into account the compres-
sion of the atomic wave function in the core. Equations
(4.2b) and (4.2c) are known to give reasonable values for
ho and b,o.

' Equation (4.2a) can also be used to estimate
from the atomic splittings hz and 5&,&

and the admix-

FIG. 14. CuBr, relativistic QMTO band structure near the
valence-band maximum for k along [110]. Panel (b) shows a

blow-up near the valence-band maximum.
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FIG. 17. CuBr, like Fig. 16, but I »-connected bands along
[111].

FIG. 15. CuBr, like Fig. 14, but I »-connected bands along

[110].

where we use for the
~
I "r's') wave functions the phases of

Fig. 1 and
~

& ) and
~
III ) both chosen to have the positive

lobe to the right. Under these conditions a & 0 and p g0.
Taking on- and off-diagonal matrix elements of the spin-
orbit Hamiltonian, we And
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TABLE VI. Values of the spin-orbit parameter 5 which
couples the I » and I » bands as obtained by the LCAO, k p,
and LMTO methods (see text). The sign of 6 is found with the
two former methods but not with the latter method. %'e have
assumed that the sign in this case is that obtained consistently
with the k p and LCAO methods.

bands should split into J=—', and —,
' (I s and I 7) com-

ponents, the shifts with respect to the scalar-relativistic
value being in the ratio 2:1. The 6 coupling changes
this ratio. In second-order perturbation theory we have
for these shifts in the case of I'» (see Fig. 18)

k.p
LCAO
LMTO

GaAs

—0.07
—0.085
—0.11

GaSb

—0.4
—0.28
—0.32

InP

+ 0.4
+ 0.16
+ 0.226

InSb

—0.014
—0.20
—0.244

5( —', )= 60

250
5( —,')=—

3

2

2h
3

'2 (4.6)

ture parameters a and P obtained with standard prescrip-
tions. ' It is also possible to express b as a function
of ~oa ~0:

(4.3}

where '
a —2H „rl=

~pm &pv+ [«—pv ~pm)'+4H. '.]'" (4.4)

» Eq (4.4), &~tn and Ezv, both negative, are the diagonal
elements of the tight-binding Hamiltonian (atomic-term
values) and H„„ the overlap integral of bond length d
with the expression

H„=1.28d (4.5)

C. LMTO estimates

For the materials under consideration here we find g to
be around —2.4 (GaAs, —2.42; GaSb, —2. 13; InP,
—2.77; InSb, —2.46). Using experimental values of b,z
and ho given in Table I, we obtain the values of 5
shown in Table VI.

In spite of the agreement, in sign and magnitude, of
these estimates of b with the other estimates of Table
VI, a word of caution is due. While Eq. (4.2a) gives
b, =0 for the diamond structure (replace b,v=6, ,» since
both atoms are equal), Eq. (4.3) does not. In Ge, for in-
stance, 60——0.29 and 50=0.21. This difference is mainly
due to the fact that the I » state has a considerable ad-
mixture of d-like orbitals (more so than I ») which con-
tribute little to the spin-orbit splitting. These orbitals
have not been included in our tight-binding basis and
thus will lead to errors in the estimate of 5 . We have
tried to include them, however, and found no large
changes in the estimate of 6 . We thus prefer to use Eq.
(4.3) as it is, because of its simplicity and because of the
agreement of the results obtained with those found by
other methods (Table VI). Equation (4.3) shows that, for
our choice of basis, 6 &0 if 6o» b,o (GaAs, GaSb, InSb)
and b, & 0 otherwise (InP).

V

6—/3
E2J

~ ~Il
4I

~ ~

3~O

intraban

(2) i,

2b,

interband

Thus, from the computed values of 5( —', ) and 5( —,
' ), we can

determine both bo and b, with Eq. (4.6). b,o is only
slightly changed from the value 5 —5' which would
obtain for 5 =0. In Table V we have actually listed for
60 the directly computed values 5( —', ) —5( —,

' ). We list the
values of b obtained in this manner in Table VI. The
agreement in magnitude with the values obtained with
the k.p and tight-binding methods is rather satisfactory.
The LMTO procedure does not fix the sign of 5 . We
have taken it to be that found with the other two
methods.

In principle, 6 could also be determined from a rela-
tionship similar to Eq. (4.6) for the I » band (60 replaced
by b,o, Eo by Eo ). Suc—h procedure yields values of 6
smaller than those found from I ». We believe that the
reason is the coupling of I » to higher conduction bands,
which tends to decrease the effect of 5 . In particular,
the I s component of I » couples via H, , to the I »-
orbital band (I s in double-group notation, d-like) which
is -5.5 eV above I ». Both I 8 and I 7 components of
I » couple to the next-higher I » conduction bands,
which are about 8 eV above I ». In view of this, we have
discarded the results obtained for 6 from I ». The
values of 6 in Table I represent a compromise among
those of Table VI which give a reasonable results for the
effects of 5 to be discussed below.

In order to estimate 5, we have calculated the I »
and I » states both with the scalar-relativistic LMTO
(i.e., s.o. coupling omitted) method and with its fully rela-
tivistic version. In the absence of 6 coupling, the I »

FIG. 18. Schematic diagram of the spin-orbit splitting of the
I &5 bands. The intraband terms (first-order perturbation
theory) and their interband counterpart (second order) due to
interaction with I » are illustrated.
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V. SPIN SPLITTING OF BANDS
ALONG ( 110)

A. Symmetries of the split bands

While in the diamond structure, as a result of the in-

version symmetry, all states at a given k are doubly de-
generate, this degeneracy is split in the zinc-blende struc-
ture at a general k point. Only along (100) do all states
remain doubly degenerate. ' Along ( 111) the double

group has three representations: A6, which is doubly de-

generate, and A4, A5, which are complex conjugates of
each other and may split. This splitting will be discussed
in Sec. VII. Along (110) all states split. They belong to
either of the two nondegenerate representations X3 and

X4 (point group C, ). The double-group —character table

ofC, is

bands. For k along [001] and also [111] they split via
quadratic terms in k (effective mass) into their J, =+—,'
and +—,

' components. Their spin-split eigenstates can be

easily recognized by the fact that they are invariant upon
the reflection R. They are, for (—,', +—,

' },

—,'[(X'+iY')[+i(X' iY—') J, ], symmetry X4
(5.3)

—,
' [(x'+i Y')1 —i(x' i—Y') $], symmetry x3

where the axis of quantization z' is taken along k. The
X4 X3 symmetry identification given in Eq. (5.3) is that
with respect to the (110) plane, the symmetry element
common to the [001], [ill], and also [110] directions.
Since the states of Eq. (5.3) are degenerate for k along
[111] and [001], the X notation provides a convenient
way of labeling them. The corresponding functions de-
rived from the (—,', +—,

' } components of I s are

—[(—,', —,
'

) + i( —'„——,
'

)], symmetry X3

[(—,', —,
'

) —i ( —,', —
—,
' )], symmetry X4

where (5.4)

where R represents, for k along [110],a reflection about
the (110) plane. It is our purpose to give enough informa-
tion to identify which of the two bands, that belonging to
X3 or that belonging to X4, splits up in energy due to the
spin-orbit interaction so as to attribute an unambiguous
meaning to the sign of the splitting. Let us first consider
the I

&
spin-up and -down states. They split for k~~[110].

It is easy to check that the split eigenstates correspond to
spin up and down with respect to the [110]direction. Let
us determine which of these two states corresponds to X3
and which to X4 as defined in Eq. (5.1). We take [110]~~z

'

as the quantization axis, together with [001]~~x' and
[110]~~y'. The reflection, R multiplies the spin-up state
along [110](ty ') by i and the spin—-down state ($y') by
i Hence, . ty' belongs to X4 and J,y' to X3 according to
Eq. (5.1). In the literature one usually finds the energy
splitting given as positive when fy' is above ly'. We
keep this convention and extend it to the I » states in the
following way: the splitting will be thus designated as
positive if the X4 state is above the X3 partner. We must
now investigate the symmetry of the I » states.

The simplest I » set of states to consider is that with
J= —,

' (I 7). These states have the form, referred to the y
'

axis as axis of quantization,

(-,', —,') = [(X'+iY')l —2Z'1],

(-'„-,')= [(X' iY')1—+2Z'l] .

For k~~[110] the symmetry is lower and the J,=k —,
' and

+—, components mix with increasing k: the eigenstates
are no longer determined by symmetry, but by the solu-
tion of the k p secular equation. In the case of I 8, how-
ever, the k p interaction with I

&
via the matrix element P

dominates. This interaction is isotropic, i.e., independent
of the direction of k. Hence, to a good approximation,
the [110]wave functions are still (—'„+—,') and (—,', +—,') with

[110] (z ') the direction of quantization. This is
equivalent to saying that the set of the bands (—,', k —,') is

still heavy-hole-like, while the other is light-hole-like.
This simple separation does not hold for the I 8 bands: in
this case the isotropic k p interactions with matrix ele-
ments P' and P'", have opposite signs and the resulting
bands are strongly anisotropic. The nearly isotropic case
corresponds actually to (y2 —y3)/y, «1, where y, , y2,
and y3 are the Luttinger parameters.

Let us consider the (—,', +—,
'

) bands in the nearly isotro-

pic case. They can be written as

( —,', —,
' ),= —[(Z'+i X') 1+Y' I ],

( —,', ——,
' ),= —[(Z' —iX')1 —Y'1],

belongs to X3

(5.2)

belongs to X4 .

( —'„—,') = (X'+i Y')1,

( —,', —
—,')= ~ (X' iY')l . —

(5.5)

By applying the 8 reflection to the wave functions of Eq.
(5.2), it is easy to see that they belong to the representa-
tions given above. Hence their splitting will be given as
positive when (—,', ——,

'
) have a higher energy than (—,', —,

' ).
We discuss next the sign convention for the I s (J= —', )

Although for I's and k~~[110] the eigenstates are not well

described by Eqs. (5.4) and (5.5), still one set has predom-
inantly (—,', +—,

'
) and the other (—,', +—,

'
) character. We shall

determine the signs of the splittings by calculating analyt-
ically by perturbation theory the splittings for small k
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(proportional to k ). They will be checked by evaluating
the y components of the spin in the LMTO calculations
below. Agreement is found in all cases.

B. Perturbation expansions
of the spin splittings

l. 1
& band along(110/

All bands along [110] are split by spin-orbit interac-
tion. We write the splitting for small k as ' '

Qo

k p

"so
03

O
k p

k

k

03

SO

k. p

so

5E=yk3, (5.6) (a) (bj (c)

where the sign of y corresponds to the convention in Sec.
V A (positive if the X4 is above the X3 state). We shall use

y with subscripts y„ysh, yhh, y~h, y~, y&„and yh, to
represent the splittings of the I 6 conduction band, and
the I s, l 7 and I s, I 7 bands (see Fig. 6). The y's can be
obtained either by third-order (in k p} perturbation
theory from states which include exactly b,o, ho, and 5
or by fourth-order perturbation theory (3 times k p and
once H, , ; see Fig. 19) from the orbital states. The form-
er is more accurate since it treats H, , to all orders,
while the latter would lead to errors if the 5's are not
much smaller than all energy denominators (e.g., for
InSb, b,p

——0.8, Ep ——0.23). In all expressions given here
the b,p splitting [term (a) of Fig. 19] has been treated to
all orders.

We first discuss the four terms contributing to y, (Fig.
19) which, in atomic units, are

y, =A+X+ C'+2),4, ~o
A =—PP'Q

3 3Ep(Ep+Ap) (Ep Ep+ bp)—
2+

Eo —Eo

FIG. 19. Diagrams of the four terms which contribute to the
coefficient y of the I t, valence bands [Eq. (5.7)].

y, =82 (=A }+6(=%)+29 (=C)+1 (=2))

=+118 a.u. . (5.8)

In order to convert from atomic units (hartrees bohrs ) to
eVA, one must multiply by 4.05. The values of y, ob-
tained with Eq. (5.7) for the four materials discussed here
are listed in Table VII, together with values obtained by
diagonalization of the full 16)(16 k p Hamiltonian and
the LMTO values to be discussed below. The results of
Eqs. (5.7) are in rather good agreement with those ob-
tained from the full k p Hamiltonian but, in the cases of
GaAs and InSb, considerably higher than the LMTO
ones. The experimental ones (obtained for GaAs, GaSb,
and InP from the Hanle effect' and for InSb from
electric-field-induced spin resonance' ' ) agree better
with the k p values for the Ga compounds, but with the
LMTO values for the In compounds. In the case of InSb
the sign has been determined experimentally. ' It agrees
with that found here.

4 ~o 1PP'Q
(Ep Ep)(Ep+6@ Ep) Ep+~p

2
+E

4 PQE
3 E (E' E )

4 P'Qb
3 Ep(E p Ep)—

(5.7)

4PP'Q
V 3E E/

4PQA 2Qb
3EoE o~o Eo ~o

(5.9)

2. I'qs bands along (I10J

As mentioned above, the I 8 components of these bands
are, to a good approximation, symmetry related to the

~ j,mj ) =(—'„+—,'), ( —'„+—,') angular-momentum functions
with the quantization axis along [110],i.e., they can be la-
beled heavy- and light-hole bands, respectively. A
perturbation-theoretical calculation shows that the y
coefficient of the heavy-hole bands (y„„) is zero. They
spin split, however, to orders higher than k (k, etc.).
The full k.p calculations confirm this result. For the
light-hole bands perturbation theory yields

where the bar above Eo and Eo represents an average of
the two spin-orbit-split components with weight two for
r, and one for I 8. According to Table I all terms in Eq.
(5.7} are additive for GaAs, GaSb, and InSb. For InP,
however, since b, is positive, C and 2) subtract from A
and S. The values of the various components of Eqs.
(5.7} for InSb obtained with the parameters of Table I are

We note that Eq. (5.9) has an energy denominator hp
which can be rather small, especially for InP (-0.1 eV).
In these cases Eq. (5.9) may not be a good approximation
and terms of higher order in H, , may play an important
role, even to third order in k. We find the y's obtained
with Eq. (5.9), however, to yield a rather good approxi-
mation to the splitting found through diagonalization of
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TABLE VII. Values of the coefficient of the spin splitting (I &, I », and I » bands) proportional to k

for k~~[110] as obtained with the LMTO method the 16X16 k.p Hamiltonian, and k.p perturbation

theory (PT) (in hartreesbohrs'). The signs correspond to the unit-cell convention discussed in the text

(anion at origin). For y„experimental data from Refs. 14 (absolute values, GaAs, GaSb, InP) and 18

are also given.

3 1h

3 sh

/le

7 he

3 se

LMTO
k-p
k p (PT)
Expt.

LMTO
kp
k p (PT)

LMTO
kp
k.p (PT)

LMTO
kp
k p (PT)

LMTO
kp
k.p (PT)

LMTO
kp
k p (PT)

GaAs

+ 3.7
+ 7.0
+ 7.4

6.3

+10
+28
+29

+ 5.2
+18
+ 19

—2.8

—4.2

+ 0.4
—1.4

—3.3
—5.4
—5.5

GaSb

+27
+38
+38

46

+ 37
+ 64
+64

+ 13.6
+26
+ 22

+ 3.6
+ 7.2
—1.6

+ 0.4
=0

—3.6
—4.2
—4.4

InP

—2.2
—2.3
—2.9

2.1

—31
—28
—41

—25
—21
—37

—3.0
—6.4
—3.7

—2
—3.2

—4.1

—4.5
—4.4

InSb

+54
+ 140
+ 118
+56

+ 64
+ 168
+ 190

+12
+40
+ 39

—3.6
—2.2
—4.3

+1
+ 0.5

—5.6
—4.0
—6.9

ZnSe

+ 0.4

+ 2.1

+ 1.5

—0.3

—0.1

—0.6

CdTe

+ 2.9

+ 5.1

0.0

—0.5

—2.0

CuBr

=0

+0.1

the complete k p Hamiltonian and graphical evaluation
of the k terms (see Table VII).

The y coefficient of the split-off I » band [I 7, ( —,', +—,
' )],

y,z, is very similar to that of Eq. (5.9). It can be obtained
from this equation by replacing Ep by Ep+Ap and Ep by
Ep +Ap. The results of the calculation based on this
prescription are also compared in Table VII with those
obtained from the full k.p Hamiltonian and from the
LMTO calculations.

effect in the total sign. The fourth term is due to the in-
teraction with the I

&
band (the next-higher I

&
conduc-

tion band).
The expression for y&, is basically the same with Ap

added to Ep. In order to give a feeling for the magnitude
and sign of the various contributions to y„contained in

Eq. (5.10), we list them below for GaSb in the order of
Eq. (5.10),

y„=—8.9—2.6—2.6+9.7
3. I"~s bands along/110J = —4.4 a. u. (5.1 1}

4(P"') Qb
3(E()" Eo )(Eo +2b,o/3 )6,o— (5.10)

The sign of the first three terms in y„ is opposite that of
y,h because of a change in the product of matrix ele-
ments. The energy denominators change sign with no net

The I"7 components correspond for k along [110]to the
(—,', +—,

' ) combinations of wave functions, with [110]being

the quantization axes. The corresponding y (y„) is

4PP'Q

3(Eo Eo )(Eo +2bo/3 )—
4(P'} Qb,

3(Eo Eo )(Eo+2ho/3)—bo

2Q b,

3(Eo+2ho/3) bo

The values calculated in this manner for y„and y&, for
GaAs, GaSb, InP, and InSb are given in Table VII. Be-
cause of the fact that the perturbation calculation of y~,
has been done under the assumption of pure (—'„+—,')
states, it is not as reliable as the calculations of y„. Also,
in that case, the full k.p calculation should give better re-
sults. Similarly, the perturbation calculation of yh, yields
zero, while the full calculation does not.

4. Discussion

We find, on the whole, reasonably good agreement be-
tween the three theoretical estimates of the y's listed in
Table VII and also, in the case of y„with the experirnen-
tal values. Particularly satisfactory is the sign agreement.
The theoretical signs were determined in the case of the
perturbation calculation by careful self-consistent choice
of all matrix elements of p and H, , (see above). In the
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LMTO calculations we determined the sign of y by the
expectation value of spin along [110](with the exception
of yh, ). It was also possible to determine in this manner
the signs of C& and C&, the coefficients of the linear terms
in k (see below). Once the sign of C„was known, we
were able to determine that of yh, by observing whether
the cubic term in k had the same or opposite sign as the
linear one. With the signs of C& and C& known, it was
trivial to determine those of y~„y~h, and yhh in the full
k.p calculation. The signs of y„and y,h in this case were
assumed to be those given by perturbation theory since
the magnitudes of the full k.p calculations and those of
the latter agree (the only exception, y„ for InSb, the
discrepancy probably being due to the large value of ho
and the small value of Eo, which may make the perturba-
tion expansion inaccurate).

Let us next discuss y, . Experiments based on the
Hanle effect' measure a lifetime and thus do not give in-
formation on the sign of y, . Those of Refs. 17 and 18 for
InSb measure an interference between two transition ma-
trix elements, one proportional to y, and the other of
known sign. Hence they yield the sign of y, (positive
with our convention: anion at the origin of coordinates).
This sign agrees with the theoretical one. The magni-
tudes of y, found by the different methods are mostly in
acceptable agreement with each other, the possible excep-
tion being InSb, where the LMTO result agrees extremely
well will experiment, the k p data being a factor of 2 —3
too high. The LMTO calculations can be regarded as ab
initio and thus include all states of s, p, and d symmetry,
particularly the core levels. One may therefore take them
more seriously than the others. They have, nevertheless,
two handicaps: the gap adjustments [Eq. (3.1) and Table
IV] and the spherical charge symmetrization in each of
the spheres. The gap adjustments change the y's in the
manner suggested by Eqs. (5.7), (5.9), and (5.10), if one
changes only the energy denominators. It is thus reason-
able to assume that they lead to correct values of y. The
error introduced by the charge symmetrization is more
difficult to estimate, but should be small. The fully rela-
tivistic nature of the LMTO calculations may also lead to
improved results with respect to the k.p data, especially
in the case of materials with heavy atoms such as InSb.
The agreement among all values of y, is rather good for
InP and InSb. For GaAs the LMTO data lead also to
values nearly half of those obtained with k.p. The exper-
imental results, however, fall closer to the LMTO calcu-
lation for InSb and closer to the k p results for GaAs and
GaSb. The contributions of the four terms of Eq. (5.7)
for InSb are given in Eq. (5.8). Those for GaAs are

4.0 (=A)+1.1 (=%)+2.1 (=C)+0.2 (=2))=7.4 .

(5.12)

In the case of InSb, agreement of the y, estimated using
Eq. (5.7) with the other three y, values would be restored
by inverting the sign of b, (change in sign of terms C
and Xl, y =+58). Nevertheless, this would lead to the
wrong sign for the contribution of b, to the g factor. 36,37

A reversal of 5 in InSb would most likely also imply a

reversal in 5 for InP and GaAs. This would lead in the
former materials to the wrong sign of y, (as compared
with LMTO), in the latter to y, =2. 8, considerably
smaller than the experimental value. At present, we must
leave the question of the origin of the discrepancy open
since no obvious pattern is discernible in it. Calculations
for more materials may help.

For the other y's in Table VII no experimental data ex-
ist that would help us sort out other existing discrepan-
cies between LMTO and k p data (however, recent spin-
polarization rneasurernents for InP and GaSb are con-
sistent with the y,h's given in Table VII; see Ref. 15). For
ysh and y&„ the LMTO values also tend to be smaller than
the k p ones, with the exception of Inp.

In the case of the I ts bands the k p values of y„agree
rather well with those calculated by means of the LMTO
method. We should point out, however, that in order to
obtain this agreement it is of the essence to include the
upper I

&
conduction-band state, particularly its coupling

to I » via P"'. In the case of y&„one should only com-
pare the results of the full k p calculation since those of
perturbation theory suffer from the incorrectness of the
( —'„+—,') ansatz. There is agreement in the sign of y~, be-
tween k p and LMTO values and their magnitudes agree
fairly well, especially when one considers that these states
are rather high in energy and thus may interact with
higher states that have not been included in the k p
Hamiltonian.

For the II-VI compounds ZnSe and CdTe and for the
I-VII compound CuBr we only have LMTO results. The
strong drop in the y's in these compounds as compared
to the corresponding isoelectronic III-V compounds
(GaAs~ZnSe~CuBr) is rather striking. The most like-
ly explanation lies in the influence of the d core levels of
the cation [binding energies with respect to I &s. GaAs,
18.8 eV; ZnSe, 9.2 eV; CuBr, 2 eV (Ref. 10)]. This sug-
gests that the d core levels of the III-V compounds, not
included in the k p calculation, may also contribute to
the discrepancy between k p and LMTO results.

VI. STRAIN-INDUCED LINEAR TERMS IN jE

Upon application of linear strain, the symmetry of the
crystal is lowered and spin splittings linear in k may re-
sult from the combined effect of the k p and the strain
Hamiltonian. One may regard them as the result of re-
placing two powers of k in yk by a symmetry-equivalent
strain. Such terms also appear, for the same reasons, in
crystals with wurtzite structure even without strain.
They have been observed for the I

&
bands of InSb by

means of Shubnikov —de Haas measurements and in its
valence band by means of cyclotron resonance. Linear
terms in the I 6 conduction band appear through the cou-
pling via the strain Hamiltonian of this band with the I »
and I

&&
bands. This coupling can only be effected

through a strain of I » symmetry, i.e., through the E'j
(i&j) components of the strain. This coupling is charac-
terized by parameters referred to in the literature as d"'",
d'" or C2 ——2d". ' They are de5ned as '
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d""=(r, ~H(e„)
~

I", , ),

d'-=(r,
~
H(e„, )

~
r;„) .

(6.1)

TABLE IX. Parameter Vz which, according to Eq. (6.2),
determines the spin splitting of the I

&
bands linear in strain and

k {in a.u.). Values calculated from the pseudopotential (ps) and
LCAO deformation potentials with Eq. (6.3) are given. The
magnitudes of the experimental values are also given.

bE(X4 X3)=—V2ke„y, (6 2)

where the symmetries X4 and X3 refer to the [110]
reflection plane. Using second-order perturbation theory,
we find

The values of these parameters calculated with the pseu-
dopotential and the LCAO method ' are listed in Table
VIII for GaAs, GaSb, InP, and InSb. The I » and I »
are coupled by strains of I » (i.e., compression along
[111])and I', 2 (along [100]) symmetry. The correspond-
ing deformation potentials, which are also given in Ref.
31, affect the spin splittings linear in strain and k of the
I &s and I ts bands. For a [100] strain they are the deter-
mining factor. Experimental data for these bands are
only available for InSb. We shall not discuss this point
any further.

We write the spin splitting induced by the E'zy E'y„

components of the strain for k~~[110] as

GaAs GaSb InP InSb

ps
LCAO
Expt. '

'Absolute value.
"Reference 14.
'Reference 57.

—0.26
—0.78

0.27

—1.2
—2.9

1.0b

—0.03
—0.11

0.11-0.21b

—7.6
—13.6

5.5'

VII. TERMS LINEAR IN k

smaller than the theoretical one, a fact which is also
reflected by the value of d'"=C2 obtained by these au-
thors (see Table VIII).

8 d"' Ph
3 Eo(Eo+ bo)

d C, CSP&g&
0

(Eo Eo)(Eo Eo+bo)

(d v, cspi+d c,csp)b-

(Eo +2bo/3 )(Eo —Eo + 2bo/3 )
(6.3)

The values of V2 obtained with Eq. (6.3) for the parame-
ters of Table I and the two sets of deformation potentials
of Table VIII are given in Table IX and compared with
experimental data. The latter fall for GaAs and GaSb
close to the pseudopotential value, while in the case of
InP it is closer to the LCAO result. The experimental re-
sult for InSb were reconstructed from the Shubnikov-de
Haas measurements of Seiler et al. by using their
values of P, Ep Ap and d'"=C2/2 and no other contri-
butions than the I &-I » interaction. It is somewhat

1 avCI'= — .—,res,. res, .2&3c '
p

(7.1)

The reader will have already noticed the terms linear in
the components of k, with coefficients C„ in the Hamil-
tonian of the Appendix. They result in spin splittings
linear in k for the (-,', +—,

'
) and ( —',, k —,

'
) I s bands when k is

along (110) and for the (—,', +—,') bands only for k along
(111). This sphtting does not arise for k along (100).
Similar terms have been included for the I's bands in our
k p Hamiltonian. We designated the corresponding
coefficient by Ck. Two different contributions to Ck (and
Ck) have been identified. One of them arises from operat-
ing with H, , on the Bloch function l(tz

——uke'"' and
treating one of the terms in first-order perturbation
theory: '

TABLE VIII. Interband deformation potentials (in eV) of
four III-V semiconductors calculated with the pseudopotential
(ps) and LCAO method (Ref. 31). For the latter we list the aver-
age of values obtained with sp and sp's* bases. For the calcu-
lation, the internal strain parameter g has been assumed to be
0.7. Experimental values of d"'" equal to 1 and 1.5 eV have
been reported for InSb.

The others arise in second-order perturbation theory,
taking one matrix element of k p and one of H, , The
only allowed intermediate states for these terms have I,2

(Ck) and I 2s (Ck) symmetries, ' and thus they have not
been included in our basis, nor has Ck. This is why they
have to be represented in Eq. (A2) by additional parame-
ters Cz and Ck.

Despite early estimates, ' it is easy to show that Ck
can be neglected. Let us consider the commutator

dV, CS

d C, CS

ps
LCAO

ps
LCAO

GaAs

0.55
2.75

2.8
3.0

GaSb

0.69
2.2
2.6
2.9

InP

1.1
2.6
1.9
2.35

InSb

1.24
2.25

2.1

2.2

.av[p,H]= i-y'
py

(7.2)

and take its matrix elements between the I,z „and I »,
states:
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—(r ~[,H]~r„,&=iE(r„)( „, p, —,—& Il ls, , &=0.r Iis. = Iis, Sy15,x (7.3)
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TABLE X. Values of the parameters required for the calculations of Ck with Eq. (7.6) and calculated Cl, 's (in meV A) compared

with the results obtained with the LMTO method and with available experimental data.

Material

AlAs
Alsb
GaP
GaAs
GaSb
InP
InAs
InSb
ZnS
ZnSe
ZnTe
CdTe
HgSe
HgTe
Cucl
CuBr
CuI
AgI

0
0
0.36
0.36
0.36
0.88
0.88
0.88
o.4'
o.4'
o.4'
o.79'
1.8
1.85"
O.34'
O.34'
O.34'
o.4s'

0.53
1.25
0
0.53
1.25
0
0.53
1.25
0
0.83
1.51
1.51
0.83
1.51
0
1.0
i.S7'
i.S7'

E(r, ) —E„,

18.7'
is.ss4
18 95"
174
17.2
17.4
9 03'
9.2 '~

9.6"
10 3"
7 93"
8.3
1.8'

2.0'

2.1'

41

E(I 8) —Ed,

40 95'
32.2b

40 8'
31 75'

40.65'
31 35'

53.35~

4p ph

4O.2"
53 4"
39 7"

70
50
50

CA (LMTO)
kll[111]

—3.4
+ 0.4

—13.7
—9.5

—14.5

—27.0

—86.0

Ck (LMTO)
king[110]

—3.6
+ 0.7

—14.4
—9.2

—14.1

Ck

[Eq. (7.6)]

+ 2.0
+ 6.0
—5.5
—3.4
+ 0.7

—14.4
—11.2
—8.2

—15.5
—13.8
—11.2
—23.4
—80.2
—74.6
—78
—70
—66
—48

(Expt. )

9.3"

12"

( 10'

20 6m

82q

73,"50', 69q

36q

'Estimated from the values of GaAs and InAs.
N. J. Shevchik, J. Tejeda, C. M. Penchina, and M. Cardona, Solid State Commun. 11, 1619 (1972).

'L. Ley, R. A. Pollak, F. R. McFeeley, S. P. Kowalczyk, and D. A. Shirley, Phys. Rev. B 9, 600 (1974).
Reference 17.

'W. Gudat, E. E. Koch, P. Y. Yu, M, Cardona, and C. M. Penchina, Phys. Status Solidi B S2, 505 (1972).
F. Herman and S. Skillman, Atomic Energy Levels (Prentice-Hall, Englewood Cliffs, NJ, 1963).

~N. J. Shevchik, J. Tejeda, D. Langer, and M. Cardona, Phys. Status Solidi B 60, 345 (1973).
"N. J. Shevchik, J. Tejeda, M. Cardona, and D. Langer, Phys. Status Solidi B 59, 87 (1973).
'S. Ves, D. Glotzel, M. Cardona, and H. Overhof, Phys. Rev. B 24, 3073 (1981);N. E. Christensen, Int. J. Quantum Chem. XXV, 233

(1984); A. Goldmann, J. Tejeda, and M. Cardona, Phys. Rev. B 10, 4388 (1974).
Landoldt-Bornstein Tables, edited by O. Madelung, M. Schultz, and H. Weiss (Springer, Berlin, 1982), Vol. 17a; see also Ref. 3.

"Reference 7.
'Reference 6.

Reference 5.
"Reference 4.
'D. P. Vu, Y. Oka, and M. Cardona, Phys. Rev. B 24, 765 (1981).
No values are listed since the 3:1 rule is not obeyed. See text.
T. Itoh, Y. Iwabuchi, and T. Kirihara, Phys. Status Solidi B (to be published).

all other materials (Ck & 0).
We have also plotted in Figs. 20 and 21 the spin split-

tings obtained for our 16&&16 k p Hamiltonian (dashed
lines). The linear regions for small k agree with the
LMTO results by construction. The LMTO trends of the
deviation from linearity are also reproduced by the k.p
calculation, although quantitative difFerences exist.

Ck [110]„ Eq. (7.8)

TABLE XI. Values of Cl', (in meV A), the coefficient of spin

splittings linear in k of the I 8 conduction bands, calculated with

the LMTO method for k~~[111] (correct values) and for k~~[110]
[incorrect due to ( —', +

~
)-( ~, + ~ ) admixture]. Also, values cal-

culated with the semiempirical equation (7.8).

B. Sylittings along [110]

We show in Figs. 22 —27 the spin splitting found for the
I &5 and I

&
bands for six of the compounds under con-

sideration with the LMTO method [similar curves are
not shown for CuBr, due to the ambiguity; cf. Figs. 14(a)

GaAs
GaSb
InP
InSb
ZnSe
CdTe
CuBr

+ 3.04
+ 11.3
—1.18

+ 11.4
+ 3.63

+ 14.8
+ 5-72

+ 1.92
+ 7.60
—0.58
+ 7.64

2.32
+ 6.5
+ 3.3

+ 6.43
+ 21.6
—1.74

+ 23.6
12.1

39.0
+ 16.9

+ 3.9
+ 11.7

0
+ 11.8
+ 3.63

+ 14.8
+ 5.7
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outermost cation and anion d levels and Ed „Ed, their
energies, respectively. The constants A and 8 are as-
sumed to be the same for all III-V compounds. They can
thus be determined from two of the LMTO values of Ck
and then used to estimate Ck for all other III-V com-
pounds using Eq. (7.6) and the parameters of Table X.
We used for this procedure the Ck's obtained from
LMTO data for k~~[110] for InP and GaSb and found
A =285 rneVA and 8=155 meVA. Taking into con-
sideration the fact that A should be equal to 8 for
group-IV materials, we estimate in this case A =8 =220
rneVA as an average of the values found above for the
III-V compounds. It is now an easy matter to extrapolate
linearly and find for the II-VI compounds A =350
meVA, 8=9 meVA, and for the I-VII compounds
A =415 meVA, 8=25 meVA. The values of Ck evalu-
ated by this procedure are listed under Ck [Eq. (7.6)] in
Table X. They agree rather well in magnitude with the
few experimental data available (no experimental infor-
mation on the sign of Ck is available).

It is also possible to estimate A and 8 directly from
band-structure data. For A we can write, e.g., '

FIG. 31. Detail of the spin splittings of the I 8 and I 6 bands
of InP for small k's along [110]as calculated with the LMTO
method (see also Fig. 24).

A =—4&3sP(a. u. ), (7.7)

The 3:1 relationship between the splittings of Eq. (7.5) is
not fulfilled for the I"

s bands: in Fig. 30 it is rather 1:l.
This fact rejects the nonspherical nature of the I'8 bands.

We have also listed in Table X the values of Ck ob-
tained from the linear portion of the hh splittings along
[110]. Small discrepancies with the values found from
the [111]splittings are due to round-off errors and inac-
curacies in reading the computer plots and extracting
their slopes. In Table XI we have listed the values of Ck
obtained from the I s (—,', k —', ) splittings for k~~[111]. We
have also given the values obtained for k~~[110] under the
incorrect assumption of a pure (—'„+—', ) and (—'„+—,') wave

function implicit in Eqs. (7.5) (or their equivalent under
the replacements Ck~Ck, h~e). We note that the
values obtained from the alleged he (—,', +—,') and le (—,', +—,

'
)

bands do not coincide: the former falls below the correct
value (for k~~[111]) while the latter falls above. For the
I 8 bands these three values coincided within computa-
tional error bars. This fact illustrates the strong devia-
tion from spherical symmetry of the I'8 states.

0

Ck ——+330 ' meV A,
E(I s) Eg, — (7.8)

where P is the admixture of d core wave function in I s

and s the matrix element of p between I » „and the I,2

component of the core levels. Taking from the LMTO
calculations P=-0.26 and from optical data s =0. 1

bohrs ', we find with Eq. (7.7) for a typical III-V com-
pound A =3.6&&10 a.u. =520 meVA. This result is in
reasonable agreement with the one determined above in
view of the rough values of the parameters used. In par-
ticular, P=0.26 represents the total d-like component of
I 8, i.e., an upper limit of the core contribution.

It is not as easy to systematize the values calculated for
Ct (Table XI). Maybe the most telling fact is the negatiue

sign for InP, while the signs are positiue in all other cases.
The particular feature of InP is the lack of core d levels
in the anion. Hence one may conjecture that the strong
positiUe values of Ck due to these levels. We have tried
several schemes to describe Ck in a unified manner and
found them not to be fully satisfactory. Hence we

present here the simplest of them:

Ck ———A
' +8

E(rg) Ed, E(l g) ——Eg,
(7.6)

where bd, and Ad, are the spin-orbit splittings of the

C. Origin of Ck

We have already mentioned that Ck is mainly pro-
duced by bilinear second-order perturbation terms, in-
cluding H&.&

and H. .. with mainly the outermost core d
levels as intermediate states. Thus the following interpo-
lation formula was suggested in Ref. 10:

which implies only a contribution of the d levels of the
anion cores to Ck. The smal1 negative value of Ck for
InP would, within this scheme, be due to yet unidentified
contributions of other states, such as, for instance, the d
levels of the cation. If the latter is true, however, it
would be difficult to explain why Ck is larger in InSb than
in GaSb. Higher states may also play a role, although
their s.o. splitting should be small. Unfortunately, no ex-
perimental data which would help to solve this problem
are available.
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VIII. CONCLUSIONS

We have calculated several effects of spin-orbit cou-
pling and inversion asymmetry in zinc-blende-type semi-
conductors. These effects have been evaluated by means
of ab initio LMTO band-structure calculations and with a
semiempirical parametrized 16X 16 k.p Hamiltonian.
Emphasis has been put on an unambiguous determination
of the signs of the splittings. Three types of effects have
been considered in detail: splittings proportional to k
for k along [110],linear in k for k along [110]and [111],
and the spin-orbit coupling between the I &5 and I &5

bands. Also, strain-induced splittings linear in k have
been calculated. In all cases where experimental data are
available, our calculations agree with them in magnitude
and sign.

Particularly novel in our work is the identification of
the interactions responsible for the coefficients CI, and CI',

which determine the splittings linear in k of I 8 and I 8.
They involve the outermost core levels as intermediate
states.

APPENDIX: k-p HAMILTONIAN

We show in Fig. 1 the convention used for the phases
of the orbital wave functions which are taken to be real.
Within this convention, and the definition of Eq. (2.1), P,
P', and Q are positive. The sign of P"' is irrelevant by
construction. The convention also defines the sign of 6
as given in Table VI.

Our 16' 16 k p Hamiltonian involves matrix elements
between the six I &5, six I &5, two I &, and two I

&
wave

functions. We take as basis the linear combinations of
these wave functions times spin which correspond to
(—,', +—,'), ( —,', +—,') angular-momentum states, with z (i.e.,
[001]) as the quantization axis. A portion of this Hamil-
tonian, namely that between the I 7, I 8 and the I"7,I 8, I 6

states, is shown in Table I of Ref. 25. In it one must in-
clude the coupling through 6, which was omitted in
Ref. 25:
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(Al)

I[rIk'-
y~(k~+ky' 2k )]

&3yqk, k,
Ck

(k„+iky)

(3 1)2' 2

y (k2 I 2)

—i &3y3k„k

+Ckk,

c,&s
(k„—iky ) —&3/2y,'k, k

(- ——)2' 2

3/2y2( k„—ky )

+i &6y)k„ky

C, ~3
,' [r ik'—— (k„+iky )

—y p( k„'+ ky' —2k,') ]

y~(k2 k2)

—i &3y'3k„k„

—Ckk,

I

(k„+ky —2k,') —y3kz k+

—
—,
' [yIk' —& 3y3k, k

—y,'(k, + k —2k, )) — (k, +ik„)

y,'k, k
3

v'2

I

(kz+ky2kz)v'2

—
—,
' [y'(k' &3/2y,'(k,' —ky')

+y2( +ky 2k, )] +i &6y3k, k„

1 ~ 2y1k —ho2

—&3/2y~k, k

1 ~ 2—
2 y 1k —ho

(A2)

These matrix elements imply a choice of phase in the
angular-momentum wave functions which the reader can
easily retrace. It is consistent with Ref. 25. As an aid to
the reader in constructing the full Hamiltonian matrix,
we give below the "diagonal" matrix connecting the I &5

states with themselves. That connecting I
&&

with them-

selves is isomorphic to it and can be easily written down
by inspection. We have used atomic units (e =fi= m = 1).
In Eq. (A2) we use k+ ——k„+ik and k =k, —ik

The Luttinger parameters y, , yz, and y3 are related to
P, P', and Q and the residual parameters y' through the
equations '
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y2
——+y2, y, =,'(F+H, )+y', , A = ,'(F—+2M)+1, 8 = ,'(—F—M),2 2

2P 2 2

C2= —,'[(F+M)2 (F——M) ], F=, M=
Eo En+26,o/3

(A3)
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