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The effect of mixing of the hole subbands on the magnetooptical interband transitions in quan-
tum wells is investigated in a six-band envelope-function approach. Our results compare favorably
with magnetooptical experiments on GaAs quantum wells and help considerably in their under-

standing. In particular, the explicit evaluation of the transition strengths is necessary in order to ex-

plain the experimental findings: The relaxation of the usual selection rules for optical transitions
due to the strong mixing between the hole subbands has a remarkable effect on the observed absorp-
tion spectra and is well accounted for by our calculation. Excitonic effects due to the electron-hole
Coulomb interaction are included in a simplified manner. A higher band-edge electron mass is

needed in order to fit the experimental data; we believe that this is an indication that nonparabolici-

ty effects are stronger than usually assumed.

I. INTRODUCTION

The recent improvement in epitaxial growth tech-
niques has made it possible to realize high-quality semi-
conductor heterostructures. The dispersion of the hole
subbands in these structures is rather interesting because
the degeneracy of the bulk valence bands and the effect of
the confinement in the one-dimensional superlattice (SL)
potential combine to produce strong nonparabolicities. '
At the same time the confinement energy of the electrons
in the conduction band enhances the effect of band non-
parabolicity with respect to the bulk.

Many of the most revealing experiments on semicon-
ductor heterostructures are performed in an external
magnetic field: in a two dimensional (2D) system of elec-
trons or holes in an isolated quantum well (QW) or in the
binding potential at the interface of a doped heterojunc-
tion, a perpendicular magnetic field quantizes both avail-
able degrees of freedom, producing an entirely discrete
spectrum and thus leading to an enrichment of optical
structures. '

Magnetooptical experiments on these systems have re-
vealed in the observed spectra complex features that can-
not be accounted for by simple models of quantum
confinement. More detailed band-structure calculations
are necessary in order to explain the observed spectra:
However, the strong nonlinear behavior of the Landau
levels and the relaxation of the usual selection rules for
optical transitions resulting from the coupling between
heavy-hole (HH) and light-hole (LH) subbands, have pre-
cluded up to now a convincing comparison between
theory and experiments. In addition, the interpretation
of magnetooptical data in terms of single-effective masses
to describe the HH and LH dispersions has masked
somewhat the effect of nonparabolicity in the conduction
subbands.

The purpose of the present paper is to show which

effects are brought about by the mixing of the valence
subbands in quantum wells on interband magneto-
optical transitions. The system investigated is a
GaAs/Al„Ga& „As QW in an external magnetic field ap-
plied along the (001) growth axis and the results of the
calculations are compared with the experiments.

The quantitative details of the calculation depend criti-
cally on the sample parameters, implying the possibility
of their precise determination through the comparison
between the theory and magnetooptical experiments. In
particular, the combined check against the energy posi-
tions and the intensities of the transitions allows one to
assign unambiguously every experimental transition line
to a calculated one and also to estimate the HH, exciton
binding energy.

The paper is organized as follows: In Sec. II the
method of calculation of Landau levels in a QW is briefly
outlined; in Sec. III we discuss the resulting nonlinear
electron and hole Landau levels; in Sec. IV we evaluate
explicitly the matrix elements for direct optical transi-
tions between valence-to-conduction Landau levels and
make simple considerations about the symmetry proper-
ties of the SL wavefunction; Sec. V is devoted to the com-
parison between theory and magnetooptical experiments;
by including the exciton effect in a simple model, ' we
are able to reproduce many details of the observed spec-
tra; in Sec. VI some concluding remarks are given.

II. THEORY

The method of calculation, based on a six-band
envelope-function approach, is described in detail else-

ere
Assuming a full k.p coupling between a twofold s-like

conduction band and the upper (J =—', ) fourfold edge of a
spin-orbit-split p-like valence band at k =0, the bulk band
structure of a direct-gap semiconductor in the presence of
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a magnetic field applied in the (001) direction (hereafter
denoted by z) is described in terms of a 6&(6 effective ma-

trix Hamiltonian H (additional terms that come from the
lack of inversion symmetry in zinc-blende semiconduc-

tors are neglected, as usual):

H =H,„+H,„b,
where (atomic units are used throughout the paper)

H ax

H22

H33

H i i iP&eB /c a iP&eB/3c a

y &3(eB /c)a

iP(l2/3k,

iP&—2/3k,

y&&6eB/c k, a

iP&eB /3c a

Hss

yz&—6eB/e k, a

iP&—eB/c a

y&3(eB/c)a

(la}

H» H4~=——E, +(eBlm, , c)(a+a+1)+k, l2m. .
Hzz —E, —(y&/2 —yz}k, (eB /e)—[(yi+yz)(a+a —,

' )+3m/2],

H&& E, —(y—i/2+yz)k, —(eB/c)[(yi —yz)(a+a —,
'

) —ir/2],

H&5 E, —(y——
~

/2 +yz)k, (eB—/c)[(y, —yz)(a+a —,')+a/2],

Hs6=E, (y&—/2 yz)k, —(eB/c—)[(y, +yz)(a+a —,')—3ir/2],

and the lower half of the matrix is obtained by Hermitian conjugation. In (la) y =(yz+yz)/2, E, and E„are the con-
duction and valence band-edge energies, 8 is the magnetic field strength, a and a are harmonic oscillator raising an
lowering oPerators; five band Parameters, P—: i (s

~

—P„~ x ), y „yz, ys, and a aPPear in this matrix, describing electron
and hole effective masses and g factors. The effective mass m, ,' =1+2P /3(Ex+6) appearing in the electron terms

H1 1 and H~ takes into account indirectly the coupling to the split-off (J =Yl) band, lo
Eg and 2 being, respectively, the

energy gap and the spin-orbit splitting at k=O.

The term H,„b has the form

H, 0
H b 0

(lb)

where

0 0 0

(yz y3) 0 0 (a )
&3eB t 2

2G
0 a 0

Inclusion of this anisotropic term uncrosses some of the Landau levels, namely those differing in the Landau index n

by +4, but the absolute shifts are always less than 10%."'z We will then assume H „=0.
The H,„ term in (1), which neglects the anisotropy in the (k„,k } plane, can be solved exactly. In this case the solu-

tion « the effective-mass (EM) equation in each of the A and B materials constituting the SL takes the formz 'i

3( )(i' +1 c4(z)4'n+l~cs(z)en~c6(z)cg+z)

where p„(x,y) are harmonic oscillator wave functions
with n = —2, —1,0, . . . and the cj(z) coefficients are au-
tomatically vanishing for the components with negative
oscillator index.

With the replacement k, =k„iB/Bz in—H,„(k„be-
ing the quasimomentum in the SL Brillouin zone), the
EM equations for the components F„' of (2) become a sys-
tem of differential equations for the envelope functions
c (z}. Suitable current-conserving boundary conditions

must be imposed at the interfaces.
The total zeroth-order wave function is

'P„=e ** g Fju
i=~

(3a)

where u is the periodic part of the jth host Bloch func-
tion, our basis is
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TABLE I. Material parameters used in the calculations.

ui= P, ——,
' ) =

~

—v'I/6(x —ty)T —&2/3zl ),
(3b)

u4= ~sl)

us=
I

I''
~ ) =

I
&2/3zl+1/1/6(x+t'y)~)

u6=
I

—,'; ——,') =
~

—&1/2(x iy—)l )

P (a.u. )

y& (a.u. )

y~ (a.u.)

y3 (a.u.)

~ (a.u. )

E, (ev)
6 (eV)

Band parameters
GaAs

8.78
2.41

—0.12
0.68

—1.02
1.53'
0.34

AlAs'

8.78
1.29

—0.40
0.21

—0.96
313
0.27

(these functions are assumed to be identical in A and 8
layers, in the spirit of the envelope function approach).
For SL's with very thick barriers (QW limit), the depen-
dence on k„of (3) is very small and can be neglected.

III. LANDAU LKVKLS IN QUANTUM WELLS

The calculated hole and electron Landau levels (LL)
for the case of a 78-A QW between Ala &Gao 7As barriers
are shown in Figs. 1(a) and 1(b) (the zero of energy is tak-
en at the top of the GaAs valence band). They are ob-
tained using a 60%-40% rule for the band offset; the ma-
terial parameters used are listed in Table I.

'Linear interpolation is used for Al„Ga& „As.
Corresponding to the value m =0.074 for the electron mass

(see text).
'The energy gap of GaAs at 0 K is 1.52 eV: The 10 meV

difference is due to the presence of a slight amount ( (1%)of
Al in the GaAs well of the sample analyzed.
"The energy gap for A1„Ga& „As is (Ref. 41) Eg(x) Eg

'"'
+ 1.155x+0.37x2.

A. Holes

-0.01
HH1)

S

0)
S

LLI

LH1

-2
2

1
2
3

-1
0 3

4
04

The most remarkable feature of the calculated hole LL
displayed in Fig. 1(a) is their strong nonlinear dependence
on the magnetic field: At 8&0, LL's originating from
the first HH subband interact with those from the next
subbands, giving rise to anticrossing behavior. In partic-
ular, the initial electronlike dispersion of LL s emerging
from the LH1 subband is mainly due to the interaction
between LH1 and the HH2 subbands (see Appendix A).
It is evident that this Landau-level structure can no
longer be described in terms of one effective mass per
subband.

B. Electrons

1.71
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The Landau levels for the conduction subbands shown
in Fig. 1(b} are much more regular with respect to the
ones derived for holes, displaying a simple "Landau
ladder" form [note that a scale of energy different from
Fig. 1(a) has been used]: At high fields slight deviations
from a linear behavior occur, especially for large n; in
particular, the separation between successive levels, at a
fixed value of 8, decreases with increasing n

These effects, as it is well known, must be ascribed to
nonparabolicity in the conduction band due to the cou-
pling with valence-band states. In fact, the energy of the
electron levels —measured from the conduction subband
edges at 8 =0—can be approximated as well by the fol-
lowing expression' (where the small spin-splitting terms
are neglected):

1.55-
10

8 (tesla)

I

15
I

20
E2

E„=E(n,B,k, ) 1+ E(n, B,k, )
g

(4)

FIG. 1. (a) Calculated Landau levels for the first two hole
0 a

subbands in a 78-A GaAs QW between 160-A A)0 qGao 7As bar-
riers. The numbers are the Landau level indices n. (b) Calculat-
ed Landau levels for the first two electron subbands. The two
spin-split states are also indicated for each level.

where E(n, B,k, }:co,*(n+—,
'—}+k2/2m', co,*=eB/m* is

the cyclotron energy, n is the LL index, and m ' is the
electron band-edge mass in the QW material. The non-
parabolicity parameter K2 is given, from four-band k.p
theory, by'
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(1—m*) E (3E +45+26 /Es)
(E,+b, )(3E,+26, )

For GaAs, one obtains K2 ———0.83, using in (5) the
value m*=0.067 for the effective mass. ' It can be seen
from Eq. (4} that nonparabolic effects are more important
for high values of E(n, B,k, ), as found in quantum wells
due to the confinement energy.

In Ref. 3 magnetooptical data in GaAs QW's are fitted
using (4) to describe the electron levels, with m ' =0.067
but using the value E2 ———1.2. This is an indication that
the conduction-band nonparabolicity is enhanced with
respect to the values predicted by simple models. We will
come back to this point at the end of Sec. V.

IV. INTERBAND OPTICAL TRANSITIONS:
MATRIX ELEMENTS AND SELECTION RULES

Let us consider the process in which a photon is ab-
sorbed and an electron is raised from a valence-band LL
to a conduction-band one. We indicate with

I
4„& and

I 4„&, respectively, the initial (valence) and final (con-
duction} states with Landau index n, n

' defined in (3a),
whose envelope terms F„depend implicitly on the mag-
netic field; the matrix element for direct optical transi-
tions is given by

6
'=&q'n

I
p'e

I
Pn &= g'&ui

I
p'e

I uj &&F'
i j =1

6

+ y ~ &P„' IpIF'„&fi,J, (6)

e being a unit vector in the direction of the electric field
of the incident radiation. We use here the compact nota-
tion

(u,. I
( ~ ~ )

I u, &:—f u,'(r)( )u, (r)«;
cell

(F' I( ) IF„'&—=fcrystal

The first term on the right-hand side of (6} gives the al-

lowed interband transition matrix elements. ' The
second term, which gives the strength of the intraband
transitions analogous to those observed in cyclotron reso-
nance and whose explicit expression is given in Appendix
B, involves essentially the overlap between the same com-
ponents of the wave function (2} for the two states I and

F; for this reason, it is expected to contribute also to the
interband transition strengths in type-II superlattice sys-
tems like InAs/GaSb, where the conduction-band states
of one materia1 are strongly mixed with the valence-band
states of the other, as a consequence of the peculiar band
lineup of the InAs/GaSb heterojunction. In the present
case we neglect this term since is gives a contribution to

I M„„ I
which is typically 1 —2% of that given by the

first term.
The intensity of an inter-Landau level transition be-

tween the states I and F is thus proportional to the
squared matrix element

6

I

p'& Iu & f c (z)c, (z)dz

x f 4.'y. , «

1(p e)&z I
=P/&2=

I (p'e)46I =v
3 I (p e)»

I

I(p e}4s I

= I(p e}»
I

(9)

[P being the Kane momentum matrix element appearing
in (la)], one sees by inspection that the selection rule
n' n=+—1 must be satisfied, the plus (minus) sign refer-
ring to right- (left-) handed circular polarization (hereaf-
ter o+ and cr )

The matrix elements (8) for optical transitions in a
magnetic field are proportional to the absorption
coefficient. At zero field the evaluation of the absorption
coefficient involves an integration over the in-plane
momentum k~~

=—(k„k~), whereas in a magnetic field the
Landau levels are degenerate and the integration over kII
reduces to a factor which expresses such degeneracy.

We show in Table II how the various components of
the wave function (2) are involved in the transitions for
the two different polarizations sr+ and 0. , the arrows
connecting the pairs of components which contribute to
the overlap integral in (8): 0+ corresponds to b, m J ——+ 1

and o. to hmJ ———1, where mJ is the total angular
momentum quantum number. A shorthand notation for
the

I
J;m J & basis states (3b) is introduced, as indicated in

the left part of the table.
Note that the oscillator strength of an HH component

is three times bigger than the LH one, as a consequence
of the particular form of the atomiclike dipoles (9}associ-
ated with the basis set chosen (this is represented by the
thicker lines in the table): transitions from HH Landau
levels are thus expected to be more intense than those in-
volving LH levels. Pairs connected by down-pointing ar-
rows are expected to give a negligible contribution to (8}
since the conduction (valence-) band components in a
valence (conduction} state are always very small (1—3%).
We stress the fact that in a simple scheme which uses
only the selection rule An =+1 for the total wave func-
tion to determine the allowed transitions between Landau
levels, far more transitions are predicted than experimen-
tally observed, because the mixing between LH and HH
hole subbands, together with the restrictions imposed by
Table II, make many of the allowed transitions have
small matrix elements. Moreover, the mixing makes the
transition intensities strongly field-dependent: the result-
ing picture of magnetooptical transitions is thus neither

6 2

(p e);J fc;*(z)c (z.}dz 5
ij =1

m;, m ' are the ith and jth components of the
vectors m =(n, n —I,n+I, n+l, n, n+2) and m'
=(n', n' —I,n'+ I,n'+ I, n', n'+2), respectively Since
the only matrix elements (p e);~ different from zero, for
circularly polarized light and in the Faraday
configuration, are
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TABLE II. Components of the Landau-level wave function [Eq. (2) in the text] involved in the opti-

cal transitions for the two dift'erent circular polarization.

CBf
HHf
LH$
CBL
LH)
HH$

( ~sl))

( ~sl)}

n —1

n —2

[F )

—n —1

n n+1
n n+1
n —1 ~ n

n+1 n +2

iF„,)
~& n+1

( ~ n

n +2
n+2
n+1
n +3

simple nor obvious. In addition, even transitions that
satisfy the restrictions of Table II can still have vanishing
matrix elements due to the different parity of the en-
velope functions ci(z) of the initial and final state in-

volved.
Thus the explicit evaluation of the dipole matrix ele-

ments (8) is an essential ingredient in any attempt to
make a comparison between theory and experiment.
Postponing this comparison to Sec. V, we discuss now
brieAy simple symmetry properties of the envelope func-
tions c (z) appearing in the overlap integrals in (8).

Every c (z) in the envelope function (2) is a solution of
a 1 X 1 effective Hamiltonian H,z, obtained by projecting
the Hamiltonian (1) onto the jth edge. It can be shown
that H,&, if Hat-band conditions prevail, contains only
even powers of k, —:—it}/t}z Thus every cj(z) can be
either even or odd with respect to the reAection z ~—z
in one of the mirror (x,y) planes bisecting the QW layer.
In particular the HH 1 state is coupled, in the matrix (la),
with the LHL state by a term proportional to k„and to
LH) by a term independent of k, (see the left column of
Table II for the notation). As k, is odd under the
refiection with respect to the mirror planes, an even HH1'
component will be coupled with an odd LH L and an even
LHI, and vice versa. A similar argument applies to the
coupling between HH$, LH1, and LH J, states. To illus-
trate this point, we show in Fig. 2 the z dependence of the
squared amplitudes

~

c (z)
~

for each of the hole com-
ponents (j =2,3, 5, 6) of the envelope function (2) for the
highest (in energy) four hole Landau levels with n =1 at
B =10 T, in a 78-A QW. The strong admixture between
the HH and LH components is clearly visible in the LL2,
LL3, and LL4 states: only the highest LL1 state displays
a dominant HHI character. As anticipated, HHI
(HH 1 ) and LH l (LH1') states are mixed with opposite
parity. The total wave function, not shown, does not ex-
hibit any particular reAection symmetry.

It is worth noting that the mixing between LH and HH
Landau levels at finite fields leads, as we shall see in the
following, to the violation of the usual selection rule
Am =even integer, m and m' being the subband indices
of the valence- (HH or LH} and conduction-band (CB}
states involved in the transition. Even at B =0 transi-
tions between subbands of different parity are equally al-
lowed, due to valence-band hybridization at finite kI~
(Ref. 19) (such transitions, as the one between HH2 and

CB1 subbands, have also experimentally been observedzo).
The correspondence between kl dispersion at B =0 and
Landau-level behavior can be easily understood by noting
that, in the limit of high oscillator quantum numbers, the
Landau levels of a subband E (k» ) are given by

E„(B)=E(k =&2eBn lc ), n &~ 1 .

In the following we will focus on the behavior of inter-
band transitions at high magnetic fields which, for the
range of energy of interest here, result from Landau lev-

els of index n ~ 10. These states derive at 8 =0 from the
region of subband structure around kl ——0. Hence for
these leoels the limit B~O is equivalent to the limit

k~~~0, where the HH and LH components are decou-
pled: This should be kept in mind especially when read-
ing Sec. V. The full coupling provided by the off-

diagonal elements in the Luttinger matrix Hamiltonian
(la) would be present at B-0 in Landau levels with high
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I
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FIG. 2. Squared amplitudes associated with the four com-
ponents (indicated in the first panel) of the envelope functions
for the four highest valence states with Landau index n = 1, at
8 = 10 T. The levels are labeled with LL1, LL2, LL3, and LL4,
in order of decreasing energy. The arrows show where the
GaAs/Al„Ga, „As interface is located.
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states with opposite parity at higher values of the mag-
netic field.

Many interesting features, that are not obvious on the
basis of the calculated Landau levels only are emphasized
by the present calculation. For instance, the admixture
between LH and HH hole states in Landau levels with
n &0 leads, at fields above 10 T, to a change of slope of
the transition lines involving these levels, making them
less steep at higher fields where they recover in part the
LH character (which, because of the particular asym-
metry in the diagonal elements of the Luttinger hole
Hamiltonian, ' has a heavier mass in the (k„,k» ) plane).

One important consequence is that the zero-field exci-
ton binding energy in QW's, obtained by extrapolation at
8 =0 of high-field data as the difference in energy be-
tween the ground state and the continuum states, may in
some cases give an overestimated value for the binding
energy: In fact the experimental values for this quantity,
derived in the above manner, are systematically higher
than the theoretical ones.

Note that, for the 0. spectrum, the transitions associ-
ated with Landau levels that evolve from the zero-field
HH1-CB1 edge are always stronger than those involving
LH states. The more or less regular, equidistant Landau
level-like features can in fact be recognized both in the
experiment and the calculation. This statement is
definitely not true in the more complicated o + spectrum.

As an example of the effect of hole mixing on the tran-
sition strengths, we report in Fig. 5 the calculated intensi-
ties of the 0 HH1($)~1 CB1($) transition —curve
(a)—and of the 0 LH 1( J, )~1 CB1( $ ) transition —curve
(b)—as a function of the magnetic field 8. [In Fig. 4(a)
the corresponding transition lines are identified with a
solid and empty circle, respectively. ]

On the top of each figure we show, as functions of 8,
the relative weights of the hole components entering into
the envelope function of the Landau level. The 0 LH1( 1 )
and 0 HH1($) levels are both visible in Fig. 1(a), the
0 LH1( J, ) being the one which crosses the 8 axis at about
13 T. Their anticrossing behavior is easily understood by
recalling that the HH1 subband has a parallel mass [i.e.,
the mass in the (k„k ) plane) lighter than the LH1 sub-
band: The splitting of the possible crossing levels arises
from the off-diagonal terms in (la), with a resulting heavy
mixing of the m J ——2—', and mj ——2—,

' character.
At zero field the transition (b) is forbidden, in o+ po-

larization, by the conservation of the total angular
momentum, since for this transition 4m& ———1, but at
8&0 it acquires intensity through the admixture of the
hole level with a HH$ component. At 8 ~ 15 T the in-
tensity decreases again due to an increase of a LH 1 com-
ponent.

On the other hand, the transition (a), which is allowed
at 8 =0, becomes less intense at higher fields due to the
increasing mixing with the LHJ, component. For com-
parison, we report with dashed lines the intensities of the
corresponding transitions in bulk GaAs: It is evident
that mixing effects in QW systems make the transition in-
tensities strongly field dependent.

A similar analysis (see Fig. 6) is performed on the
3 HH2( $ )~4 CB1( f ) transition, which is parity forbid-
den at 8 =0 [the corresponding line is identified with a
square in Fig. 4(a)]: At 8+0 it grows in intensity as the
mixing of the odd HHL state with a LHt' component of
the opposite parity makes a nonvanishing overlap with
the even C state in the matrix element (8) (see Fig. 6). At
fields higher than 8 T, a "forbidden" HH 1 component is
picked up, making the intensity vanish again.
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FIG. 5. Normalized intensities of the transition
0 HH1( t)~1 CB1(l) [curve (a)] and 0 LH1($)~l CB1( 1)
[curve (b)] as a function of the magnetic field B In the upper.
part of the figure the weight of the various hole components in

the envelope functions are shown for different values of B: solid
and empty circles correspond respectively to heavy and light
states while up- and down-pointing arrows identify the spin
states. For comparison, the intensities of the corresponding
transitions in bulk GaAs are shown with dashed lines.
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FIG. 7. Intensity vs magnetic fields plot for the same two
transitions of Fig. 5, for three different values of the QW width
(solid lines) and for the bulk (dashed lines).

As it was already mentioned at the end of Sec. IV, for
B~O also transitions involving higher-n Landau levels
should be considered. The above results are however
meaningful and relevant at finite (and relatively large)
values of B where the transitions in the range of energy of
the experiments considered here come mainly from low-
index Landau levels.

In Fig. 7, the calculated intensities versus magnetic
field for the same two transitions of Fig. 5 are displayed,
for three different values of the QW width. For the nar-
row well case the coupling between the two states starts
to be effective at high fields, due to the marked difference
in the confinement energies of the two holes: The intensi-
ties are thus slowly varying with the field and in praticu-
lar the transition from the upper HH1 level (the one
which is allowed at B =0) shows a closer resemblance to
the corresponding bulk transition line (upper dashed line
in figure). On the other hand, for the thick-well case, the
mixing takes place at much lower fields, the upper level
thus acquiring a dominant LH 1 character that makes the
intensity decrease abruptly towards the corresponding
bulk value (lower dashed line): In particular, this level
becomes nearly Hat after -5 T, due to the anticrossing
behavior with the lower Landau levels, displaying only a
very weak dependence on the magnetic field. The partner
transition from the lower LHl level (thin line}, after an
initial increasing of strength due to the interchange of
character between the two LL, is also depressed after -5
T because of a strong mixing with a third "forbidden"
LH 1 component.

We compare the outcome of our calculation with the
experimental data by using band structure parameters
that correctly reproduce the bulk data and proceed as fol-
lows.

We corrected our results for excitonic effects, in the
same way as done in Ref. 3. The structure of the magne-
tooptical spectra in GaAs QW's has been interpreted by
several authors ' ' in terms of transitions between free-
carrier Landau levels, of which only the lowest is affected
by excitonic effects. This is known, however, not tp be

Ea =3%*D,
2(2n '+ 1)~' , n'=0, 1,2, . . . .

(10)

In (11) p, is the exciton reduced mass, R ' is an effective
Rydberg %' =pe /2e (e being the dielectric constant of
the QW material) and D, is a parameter related to the
dimensionality of the exciton (Di ——

—,
' in the 3D case,

while D i
——1 for a strictly 2D exciton). Note that Ea

does not depend on the reduced mass p.
We subtracted the binding energy (10) from the calcu-

lated Landau level transition energies, taking n'=0 for
the lowest line in each of the fans emerging from the
zero-field edges in Figs. 4(a) and 4(b), n'=1 for the next,
and so on. The best overall agreement with experimental
points is obtained with D, =0.5. Formula (10) applies in
the limit of high fields: A rough estimate of its domain of
validity is given by the criterion y & 1, where y is the
reduced magnetic field y =co,

' /ZR ', taking
JM '=1/m*+y, , one finds B ~6 T.

It must be remarked that the expression (10) is derived
in the case of simple parabolic bands and thus should not
be taken too seriously in the present context, whereas a
realistic calculation of exciton binding energies in quan-
tum wells should include at the beginning the coupling
between heavy and light holes.

We then identify the transitions in Figs. 4(a) and 4(b)
with the corresponding ones in the experimental results:
this comparison shows that we could assign every experi-
mental transition to a calculated one, but that consistent-
ly all theoretical ones were too steep, clearly indicating a
too-small electron mass. We found that an increase of
the electron effective mass at the band edge by —11% is
necessary to give the correct slopes of the transition lines.

The results of our calculation are reported in Figs. 8(a)
and 8(b} (excitonic corrections included) together with
the observed spectra, for B ~6 T. Although the transi-
tions have the right slope, few of them have absolute en-
ergy slightly different from the observed ones (typically
deviations of 2 —5 meV are encountered). However the
strongest lines, originating from the HH1-CB1 edge,
come out at the right energy and with the right slope.
We note that the effect of the exciton character of the
transitions is essential in obtaining not only the right en-
ergy, but also the right slope for the transitions corre-
sponding to the lowest three exciton states.

An additional downward shift of =9 meV has been im-
posed on the lowest HH1-CB1 and LH1-CB1 lines to fit
approximately the HH1-CB1 exciton peaks. This value

the case in bulk GaAs in which Coulomb binding is ap-
preciable at high fields even in the higher levels: In a
quantum well, due to the enhanced binding energy of ex-
citons, the Coulomb interaction between electron and
holes is expected to play a significant role in the interpre-
tation of magnetooptical spectra.

In the theory of simple-band excitons in highly aniso-
tropic systems in an external magnetic field described in
Ref. 6, the high-field correction to the free Landau level
energy due to Coulomb interaction is written as

' 1/2
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FIG. 8. Comparison between the calculated (lines} and the
experimental transition energies (dots): Excitonic corrections
are included, as explained in the text. Large dots correspond to
strong transitions, small dots to the weak ones.

of the zero-field heavy-hole exciton binding energy agrees
with the value of 9.4 meV derived from a photolumines-
cence study of an 80-A GaAs/Ala 3Gao 7As QW reported
in Ref. 31. In Fig. 9 the predicted intensities at B =19 T
are compared with the experimental ones, for both polar-
izations: In order to mimic the broadening of the ob-
served peaks, we have dressed each of the indicated inten-
sity bars with a Lorentzian-shaped profile 7 meV wide
(the two lowest exciton peaks are not shown in the
figure). The difFerences between the observed o + and o
spectra come out naturally from the calculation, making
the overall agreement satisfactory. It should be remarked
that a small change in the relative energy position of
transition originating from different subbands, such as
LH1-CB1 or HH2-CB1, has a sensitive effect on the ob-
served spectra. Since the position of the subbands is ex-
tremely sensitive to the values of the material parameters
(thickness, aluininum content, and mainly band-offset) an
exact knowledge of the latter is required in order to make
a successful comparison between theory and experiments.

A surprising fact is that we need to use a value for the
electron mass at the edge of the conduction band
[m'=0. 074, corresponding to the value P =8.85 eVA
in (la)) higher than the commonly adopted value
m*=0.067 %e have also tried to analyze samples
used in different experiments ' and consistently arrived
at the same conclusion, i.e., a higher electron mass is
needed to fit the experimental data.

At present is not possible to state unambiguously
whether this effect is due to the quantum well, or to a

FIG. 9. Comparison between the excitation spectra measured

at B =19 T and the predicted intensities, for the two circular
polarizations cr+ and o of the incident light. The theoretical
curves have been obtained by dressing each of the calculated in-

tensity bars with Lorentzian-shaped profiles 7 meV wide.

higher nonparabolicity of the bulk or to the approximate
treatment of the exciton: we have verified however that
the bulk GaAs magnetoabsorption spectra 9 are repro-
duced in detail by a calculation of inter-Landau-level
transitions when the value m'=0. 067 is used. Both the
effect of the exciton and that of enhanced nonparabolicity
is to reduce the slope of the transition energies as a func-
tion of the field 8; therefore the two effects cannot easily
be distinguished. The position of the subbands at zero
magnetic field is only weakly dependent on the mass used
in the range of uncertainty relevant here (for comparison
we show in Fig. 3 this dependence). There are several in-

dications that the bulk GaAs nonparabolicity is indeed
stronger than that predicted by the six-band model used
here: However, a clear distinction between the two
effects requires a careful treatment of the effect of the ex-
citon, the complex valence-band structure, and the mag-
netic field effect simultaneously.

VI. CONCLUSIONS

In conclusion, the results of interband magnetooptical
measurements of GaAs quantum wells are compared with
the calculated transition energies. The explicit evaluation
of the transition matrix elements is necessary in order to
understand qualitatively all the essential features of the
observed spectra, and demonstrate the important effect of
hole subband mixing: These effects are shown to be more
pronounced in quantum wells than in bulk materials.
Furthermore, the inclusion of excitonic corrections in a
simplified manner leads to a detailed agreement between
experimental and theoretically calculated spectra. How-
ever, a quantitative agreement is reached only if an elec-
tron mass higher than the commonly accepted value is
assumed: we attribute this discrepancy either to the
effect of higher GaAs nonparabolicity and/or to the
effect of excitons.

Tote added. A paper has been published in which a
theory of excitons in a magnetic field normal to the quan-
tum well is constructed, including the complex valence-
band structure. All the observable optical transitions are
found to involve bound excitons and the exciton lines are
significantly different in energy from the unbound
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electron-hole pair lines; moreover, due to the LH and
HH mixing at finite fields, excitonic states cannot be at-
tributed a purely light or heavy hole character. This
effect is brought about mainly by the magnetic field

which mixes the hole levels. This mixing is correctly ac-
counted for by our calculation even if our treatment of
the Coulomb interaction is more approximate. One strik-
ing point of disagreement with our results is that, in o
polarization, the second transition line of lowest energy is
attributed to the 3d HH exciton, rather than to the 1s LH
exciton.
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APPENDIX A

We show in the following how the anomalous low-field
dispersion of the LH1 subband in Fig. 1(a) can be under-
stood simply in terms of the interaction between LH1 and
the second HH2 subband.

The bulk valence-band top is well described by the
4X4 Luttinger Hamiltonian that can be obtained by re-
moving rows and columns 1 and 4 in (la}, corresponding
to the conduction-band states: the coupling with these
states is taken into account by using the renormalized
band parameters y &, yz, y3, and ~; the envelope
functions are given by an expression similar to (2) but
with the first and fourth components missing. Let us
consider for simplicity the case n = —1. Thus, as it is ap-
parent from (2), only HH1 and LH1 states enter into the

R
H R D (Al)

where

k2
A = —(yL1+2y2L)

2

k
D = —(y1 —2y2)

Z

2

R = —y3/6eB/ck, ,

L. Z, I.
2c

3eB
, (y1+y2 "-},

and k, is the wave-vector component parallel to the QW
axis.

In the absence of the linear k, coupling, the A and D
terms would give the dispersion relation of a purely light
and heavy hole, respectively, characterized by effective
masses in the z direction mHH „H ——(y, +2yz) '. let
CLH (z),C,(z) represent the corresponding eigen-

functions, when the QW boundary conditions are taken
into account (m and m' thus being discrete quantum
numbers). In (Al) k, has to be replaced by —iB/Bz, ac-
cording to the usual prescription of the effective-mass
theories; we seek for a solution I" of the associated EM
equations g, H,JF =EF; of the form

F +CLH,
pCHH m (z) (A2)

The EM equations can be recasted in the form of a sys-
tem of two algebraic equations in the unknown
coefficients a and P: solutions of the system exist if

wave function (see the left side of Table II, the labeling of
states). If we let the a, a operators appearing in the Lut-
tinger Hamiltonian act on the harmonic oscillator func-
tions P„of(2), the following 2 X 2 matrix is obtained:

«LH, m I
~ —~

I CLH, m ~

det
«LH. m I

R
I CHH, m' &

=0.
( CHH, m'

I
D —&

I CHH, m' }
(A3)

In a symmetric QW potential CLH, CHH are either even or odd with respect to the reflection z ~—z; since R cc i d/Bz, —
the off-diagonal matrix elements in (A3} are different from zero only if the two states have different parity: thus the first

(I = 1) LH1 state will interact essentially with the second (m ' =2) HH2 state.
Let E+(8) represent the two roots of Eq. (A3) for this choice of the CLH and CHH states, the upper sign referring to

the solution with highest energy. The inverse effective masses in the (k„,k ) plane, for the two levels, are proportional
to

dE~
dB ~ p

12I (k, & I2y2L

2y 1 +3 2 2+ + g (+O,LH1 +O, HH2 )(3 1 +2y2 + ) +
2c I EO, LH1 EO, HH2 I

2
L L a

+12LH2 ~72+~72~ CLH, I CLH, I)Z'

2
L L

+22 HH2 i'V2 —2'V2 i CHH 2 CHH 2)Z'

(A5}

where Ep LH& Ep HH2 are the zero-field confinement ener-
gies of the two holes:

I

and (k, ) is defined as

a
(k*1=(CLH, 2

i CHH2) (A6)

Let us consider the simplest case of an infinite square-well
potential of width L; then CLH, =&2/I. sin(mz/L),
CHH 2 &2/L sin(2n'z/L}, ——and
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E,(LH1) = ——,'(y', +2y2 )(~/L )',
Eo(HH2) = ——,'(y, —2y~i)(2n. /L)2,

(k, ) =8i /3L .

(A7)

F„defined in (2). For circularly polarized light, e, =O;
then e.v=e+u +e u+, where'+=(—e„+if~)/ 2 and

aa,„aB,„
u+ ——(u„+iud )/&2= — +i

Substituting (A7) in (A4) and using the matetial parame-
ters appropriate for GaAs (Ref. 38) y, =6.85, y2

——2. 1,
y3i ——2.9, tt =1.2, it turns out that (dE /dB)o&0, i.e.,
the upper n = —1 level has an initial electronlike disper-
sion.

It must be noted that this state is the HH2 in the
infinite square well, whereas the finite barriers have the
effect to push the LH1 edge above it [see Fig. 1(a)].

=(c/eB)'i~ '" = + (c/eB)' [a+,H—,„] . (B3)
()a +

In (B3) we define the creation (a+) and annihilation (a)
operators' as a*=(c/2eB)'i (k„+ik ), respectively.

APPENDIX B M„"„' =(c/eB)' '(EF E, )e+—g (F„'
i

a+
~

F„' ), (B4)

The second term in (6) can be rewritten in the follow-
ing form:

M„' „' = g (F„'
i
P e

~

F„' ) =mo g (F„'
i
(v e),

~

F„', )

(Bl)

[see (7) for the notation]. Here, instead of the first-

principles scalar interaction p e, the matrix interaction
term mov e has been used; the velocity operator v is
defined in terms of the Hamiltonian (la) as

(B2)

and is also a 6)& 6 matrix acting on the envelope functions

E, , EF being the energies of the initial and final levels.
From the definition (2) and from the orthogonality of the
oscillator states with different index n, one derives im-
mediately the selection rule hn =+1, where the + ( —)

sign holds for left (right) circularly polarized light. We
underline the fact that the above selection rule pertains to
the axial model only: If one uses the exact Hamiltonian
(1), including the cubic part (lb) and the terms that come
in when the crystal lacks inversion symmetry, the previ-
ous selection rule must be relaxed and one has instead
bn =+m, m an odd integer. The matrix element (B4)
has been used in this form in connection with the inter-
pretation of cyclotron-resonance experiments in 2D hole
gas in GaAs/Al„Ga, „As heterostructures. '2
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