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We present a Landau theory of the martensitic structural phase transformation undergone by bcc
Li into the 9R phase. We propose that the transition occurs via incomplete softening of the ( 3 30)
X4 phonon. Even though this branch does not soften to zero frequency (or even close to zero fre-
quency), because the system is strongly anharmonic, a Srst-order transition can occur. Coupled to
this distortion are the two homogeneous strains possessing the soft Zener elastic constant

2 (c» —c» ). These strains shear and stretch the (110)planes. As a result of our studies, we propose
that Li may transform into any member of a family of displacement patterns, the 9R stacking se-
quence corresponding to one solution within this family. In addition, our theory describes the
stacking faults that are known to occur in terms of (i) domain-wall structures, which model twin
faults, and (ii) a multiple domain-wall solution of the double sine-Gordon equation (an equation that
describes the phase-modulation equilibrium condition around defects), which models deformation
faults. We a1so discuss the possible extension of this theory to other P-cubic structures that undergo
martensitic phase transformations, viz. , the other alkali metals, and the TiNi(Fe) alloy system.

I. INTRODUCTION

The low-temperature phases of the alkali metals Li,
Na, and K have been a subject of considerable controver-
sy, and at present it must be admitted that the structures
assumed by these materials have not been conclusively
resolved. According to the theory of Alexander and
McTague' one would expect that these materials solidify
into a bcc structure, and then at low temperatures trans-
form into some close-packed configuration. This latter
observation follows immediately from the spherical sym-
metry of the s ' electronic configuration of these nearly-
free-electron systems. However, the specific form of
these close-packed structures need not correspond to ei-
ther of the familiar hcp or fcc lattices. In this paper we
propose a theory of the low-temperature, long-period,
close-packed 9R phase of Li (see note added in proof). ln
particular, we obtain a displacement pattern that
represents the bcc-to-9R transition for particular values
of the Landau parameters, although the general displace-
ment pattern that we obtain corresponds to a family of
possible distortions into which the bcc phase could trans-
form. We also suggest that stacking faults can be
modeled by allowing for spatial modulations of the order
parameter. We then discuss the possible extension of this
formalism to describe the low-temperature phases of
some of the other P-cubic structures, including Na and
K.

Initially it was believed that around 75 K Li un-
derwent a martensitic structural phase transformation
from the bcc to the hcp structure, where the hcp lattice
possessed a large number of stacking faults. This hy-
pothesis, as well as any notions of describing the low-
temperature phase of Li by the fcc structure, or possibly
a matrix consisting of a mixture of hcp, fcc, and bcc
phases, were shown to be inadequate in the work of
McCarthy et al. In 1984 Overhauser proposed that it

was possible for the elastic diffraction pattern of
McCarthy et al. to be understood in terms of a long-
period close-packed lattice, in particular, the so-called 9R
structure. This configuration corresponds to a unit cell
possessing nine layers with the stacking of close-packed
planes given by the sequence ABASCBCAC. . . , in con-
trast to the AB. . . hcp or AJ3C. . . fcc structures.
Overhauser's conjecture was subsequently verified by the
very precise work of Berliner and Werner, ' and Smith.
The remaining task for the diffractionists seems to be the
characterization of the stacking faults that are present.

A number of other important experimenta1 results
have been found for this phase transition and we now re-
view these. Firstly, the thermal capacity studies of Mar-
tin showed a large hysteresis loop, extending up to 65 K
above the transition. Further, Smith found that the sa-
tellite peaks that were obtained when the Li sample was
cooled to just below the transition temperature were still
present when the crystal was heated up to 160 K. Thus,
this data provides conclusive evidence for the strongly
first-order nature of the transition.

Secondly, the phonon spectra of Li corresponds to a
strongly anharmonic ionic Hamiltonian, a feature that
may be substantiated by a number of independent results.
This behavior is consistent with the large linear expan-
sion coeScients of all of the alkali metals. Also,
McCarthy et al. found that a harmonic Debye-Wailer
factor was inadequate to describe the temperature depen-
dence of the bcc Bragg spots, and showed that a theory
which included anharmonicities did suffice. In fact, on
the basis of their work these authors suggested that the
large anharmonicity they observed would prove to be an
important feature of the phase transition. Further, Ernst
et al. 'o have found that the (g'0) phonon branch, corre-
sponding to a [110]polarization [which shall be denoted
by the (g'0) X4 branch from now on], is temperature
dependent near the transition. To be specific, as the tem-

38 1695 1988 The American Physical Society



1696 R. J. GOODING AND J. A. KRUMHANSL 38

perature is lowered from 200 K to just above the transi-
tion, for 0.3&(&0.5, although far from softening com-
pletely this phonon branch does decrease by as much as
15%%uo. The softening is most pronounced below 100 K
and thus does not seem to be in contradiction to the
dynamical study of Smith, which only extended down to
100 K. (An earlier study by Beg and Nielsen"' also
found a very small dip around g= —,

' at 293 K. Further,
they were able to model this behavior using a five-
neighbor general force Born —von Karman model. Un-
fortunately, they did not study the variation of this
branch with temperature. ) We consider the above collec-
tion of results ample evidence for the strongly anharmon-
ic character and incomplete phonon softening of the
(g'0) X4 phonon branch of Li.

Thirdly, Li possesses a so-called Zener mode, ' viz. ,
there exists a high degree of elastic anisotropy for which
a very weak restoring force corresponds to the (g'0) X&
long-wavelength sound wave. The elastic constant of this
deformation is —,(c&t —c&z). As we will discuss in the
next section, there are also two homogeneous strains cor-
responding to this elastic constant. This behavior is
characteristic of most P-cubic lattices' and has previous-
ly been suggested' as the driving force of the bcc-to-hcp
martensitic structural phase transformation undergone
by Zr; we propose here that the transition is driven by a
combination of homogeneous elastic strains and incom-
plete phonon softening. It remains for one to determine
how Li takes advantage of this soft elastic constant in its
transformation to the 9R structure.

The fourth experimental result that is important con-
cerns the recurring evidence ' that stacking faults are
always present in the low-temperature phase of Li.
Stacking faults have two specific forms, viz. , deformation
and twin faults, and are illustrated in Fig. 1. One sees

. ABABCBCAC ABABCBCAC-

(b)

ABABCBCAC ABABA CACBCBABA

(c}

. ABABGBCAC ABACBCAC ABABCBGAC

that a deformation fault corresponds to an interruption
of the perfect 9R stacking, while a twin fault corresponds
to a reversal of this stacking, thus producing a mirror-
reflection plane at the fault (see Ref. 6 for an excellent
discussion of the implications of the presence of stacking
faults on the elastic diffraction pattern). At present it
does not seem to be resolved what kind of stacking faults
are present, viz. , whether deformation or twin faults are
dominant. However, it is clear that a correct theory of
the bcc-to-9R structural phase transformation of Li must
allow for a finite density of some kind of stacking faults.

In the present work we propose that the incomplete
phonon softening of the interior of the transverse (g'0)
X4 branch, coupled to the homogeneous strains associat-
ed with the soft Zener' elastic constant —,'(c» —c,2), is re-
sponsible for the formation of the 9R structure. This is a
consequence of the strongly anharmonic ionic Hamiltoni-
an discussed above. Some general consequences of strong
anharmonicity and incomplete phonon softening have
previously been discussed by one of us. ' ' We imple-
ment the Landau theory of phase transitions in order to
describe this change in structure, and show that the tran-
sition involves two different components, viz. , (i} homo-
geneous strains that shear and stretch the (110) planes,
and (ii) an inhomogeneous modulation corresponding to
the static (—,

'
—,'0) X4 phonon. This is consistent with a re-

cently proposed geometrical model of the transition from
the bcc-to-9R structure put forward by Wilson and de
Podesta. ' We find that for a perfect bcc crystal it is
necessary in the free-energy expansion of the coupled dis-
tortions to include contributions up to eighth order in the
X4 mode and that when the other degrees of freedom are
eliminated, the amplitude-only free-energy expansion can
have a strongly negative sixth-order coefficient. This
leads to a first-order phase transition from the bcc phase
to the 9R structure, in agreement with experiment. Fur-
ther, we show that twinning faults are naturally described
in terms of domain walls in our model. We also discuss
how deformation faults may possibly arise around defects
in the bcc phase, viz. , regions where the perfect Im3m
space-group symmetry of the bcc phase is broken.

The paper is organized as follows. In Sec. II we
present the free-energy density that describes the transi-
tion, as well as an analysis of the general distortion that
results. In Sec. III we discuss stacking faults within the
framework of our Landau theory. In Sec. IV we discuss
the relationship between our work and experiment, and
propose the possible extension of this theory to describe
martensitic phase transformations undergone by other P-
cubic structures. In the Appendix we provide the details
of the transformation properties of the distortions under
consideration that allow for the determination of the
form of the Landau free-energy density.

II. LANDAU THEORY

FIG. l. {a)The 9R stacking sequence. (b) A twin fault in the
9R pattern has occurred at the position denoted by an arrow.
Note that the two unit cells shown are mirror reflections of one
another. (c) A deformation fault has occurred at the arrow.
Note that the two unit cells shown are the same.

The structural transformation connecting the bcc and
9R phases involves both intracellular and intercellular
distortions (see Ref. 18 for a discussion of some features
of these two kinds of ionic displacements). For Li the
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relevant distortions may be described by (i} the homo-
geneous strains e;;, i =x,y, z, and (ii) the t —,

'
—,'0I X4 pho-

nons. These strains may be rewritten in terms of the fol-
lowing linear combinations:

C333 2e3= e2
(C1 1 C l2 )

The equilibrium value of e2 is given in terms of the g dis-
tortion, viz. ,

e2 ——— A cos(3$) .
C11 —C12

One thus obtains an effective free-energy density in terms
of ltj that may be written as

F=—,'rpA +—,'upA

Then, as discussed by Cowley, ' one has that e, corre-
sponds to the (lowest-order) volume change undergone
near the phase transition, and does not change the
structure's symmetry. However, e2 and e3 are shear
strains corresponding to the elastic constant —,

' (c l l
—c l2 ),

viz. , these are soft Zener modes. Also, the (—,
'

—,'0) X4 pho-
non corresponds to the distortion given by

Vp

6

V1
+

3

r'
C11 —C12

C11 —C12
cos(6$) A + —,'woA

(6)

u(r)= Aelllolsin(k r+lI}),

k= —,'(1, 1,0),
(2a)

(2b)

Since the phonon softening at (—,
'

—,'0} X4 is weak, which
we assume corresponds to the interaction given by v, (see
the discussion in Sec. IV), and the —,'(c» —c,2) elastic
constant is small, from now on we shall assume that

and, as usual, one may describe this mode in terms of the
two-component order parameter

P—= Ae'~ . (2c}

In order for one to derive the necessary expansion of
the Landau-type free-energy density, one requires a
knowledge of the transformation properties of the above
distortions. These are given in the Appendix. In this sec-
tion we focus on just one possible variant of the 9R struc-
ture, and thus we describe the phase transition in terms
of the four-component order parameter (e2, e3, A, p).
Then, including terms up to fourth order in the e2 and e3
strains and eighth order in f, we find that the free-energy
density is

F= —,'(Cll —Cl2)(e2+e3 )

+ 333 3(e3 3e2 )+ c2222( 2+e3 }

+-,'ro
I @ I

'+-.'&o
I 0 I

'+-,'&o
I @ I

'

+-,'ol [4'+(0')']+ ,'wo
I 0 I

'+re2[4-'+(4'}']

r'
C11 —C12

Then, Eq. (6} is minimized when the phase assumes one
of the following values:

/+=0, +
3

7r=+—,n. .3' (Sb)

F=—,rpA + —,upA + —,U,ffA +—,mpA
2 i 4 i 6 1 8

with

(9a)

Our labeling of these six variants corresponds to the +1
values taken by cos(3$). Note that the sign of the e2
shear strain is dependent upon P+ or P [see Eq. (5)],
while e3 is independent of this choice [see Eq. (4)].

Finally, the above analysis yields an effective free-
energy density in terms of the amplitude only, viz. ,

(3a)
y'

Ueff =Up+ 2U1 —12
C11 C12

(9b)

where the free energy is given by

(3b)

[the full expansion is given in Eq. (A14)]. We note that
the present discussion refers to a uniform order parame-
ter, i.e., A and P are independent of position; the exten-
sion to heterogeneous structures is outlined in the next
section.

From this expansion one notes that up to the order
considered the e3 strain is not directly coupled to the
(—,

'
—,'0) X4 phonon. Instead, to lowest order, the free ener-

gy is rninirnized for e3 assuming the value given by

Ueff + Ucrit

where the critical value of U,ff is given by

(10a)

Since we are not considering the phase transition to be a
soft-mode transition, ' ' we analyze Eq. (9) subject to the
constraint that ro &0 for all temperatures of interest (see
Ref. 20 for a discussion of soft-mode theories). Also, for
stability one requires mp&0. There seems to be no
motivation to consider up ~0, while, on the other hand,
owing to the small value of —,'(c» —c,2) in Li, we suppose
that U,ff can be negative. ' Further, if
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2
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6

+ A e(»0)sin(k r+P+),

a first-order transition to a phase characterized by A&0
can result (note that if v,s ——U, , the transition occurs at
ro 0——) .According to the study of Felice et al. ,

'

—,'(c» —c,2) increases very slightly with decreasing tem-

perature just above the transition. Thus, for now we as-
sume that U,~ is not strongly temperature dependent, but
rather take ra =

~

r
~

(T —To) where To is well below the
transition temperature. Then, as ro decreases a A&0
phase can become the state of lowest energy, as is shown
in Fig. 2 for U,&

——3v„;,. Further, Ernst et al. ' have
pointed out that the softening is quite small, possibly only
15%, and thus this version of the phase transition is con-
sistent with experiment if Ueff Q(Ug„t.

This is only one possible scenario for which a transi-
tion described by the expansion given in Eq. (9) can re-
sult. Others include a temperature-dependent U,it, a topic
to be discussed in Sec. IV, as we11 as a defect-induced
softening of —,'(c» —c,2) and/or ro, a topic to be dis-

cussed in a later publication.
The structure arising from this transition may be de-

scribed by the displacement pattern given by

(110) planes into two-dimensional triangular lattices, viz. ,
the cos '( —

—,') octahedral angle is transformed into the
cos '( ——,') close-packed angle [see Fig. 1(c) of Wilson
and de Podesta' ]. To be specific, this strain contracts
the (110) planes along the [001] direction, while stretch-
ing them in the +[110] directions. Also, the e2 strain
shears the (110) planes in either of the +[110]directions,
depending upon the choice of P+ or P . This strain ac-
counts for the rotation of the (009}9„satellite away from
the [110)b„direction that was observed by Smith. Thus,
as seen from Fig. 1 of Ref. 17, for specific values of e2, e3,
and A the displacement pattern given by Eq. (11) trans-
forms the bcc structure into the ideal 9R lattice.

It is to be stressed, however, that what we have shown
does not convince us that the transformation must be to
the ideal 9R structure, but rather the diffractionists
must determine whether or not the best fit to their satel-
lite peaks does indeed correspond to the 9R structure, or
to some other values of e2, e3, and A. Note that in this
sense our theory is similar to that of Ref. 14 in that no
symmetry-breaking terms appear in the free-energy ex-
pansion that would specifically choose the 9R structure
(or the hcp lattice in Ref. 14). In view of the considerable
effort that has been expended in understanding the stack-
ing faults, results that could be influenced by such a
(e2, e~, A} determination, it seems imperative that this
fitting be carried out.

It is very interesting to note that the transition we pro-
pose cannot lead from the bcc to the fcc or hcp phases.
No values of e2, e&, and A lead to the hcp phase (this
would require that the phonon minimum occur at the
zone boundary), while

providing that we assume that y&0 and c333)0. We
have explicitly included the cos(3/+) prefactor of the e2
distortion since e2 changes sign if P+ is changed to P
while ei remains unchanged [see Eqs. (4) and (5)].

It is easily seen that the e3 distortion can transform the

e2 ——0,

e3=
4&6 9

5 5
' 1/2

2 1+ =0.29,
e3

6

(12)

50—

U

gives rise to a bcc-to-fcc transition, where a is the bcc lat-
tice constant. However, as shown by Eq. (4), our theory
only allows for the development of a nonzero e3 strain in
conjunction with an e2 strain, and thus the parameters in
Eq. (12) are not compatible with this theory.

III. STACKING FAULTS

A. Twin faults

A

FIG. 2. The function F{A) representing a first-order transi-
tion for v,z ——3v„„{uo——wo ——1) with {a) ro ——30, {b) ro ——20, and
{c)ro ——15.

Our discussion of stacking faults begins with the exten-
sion of Eq. (6} to include spatial correlations of the order
parameter g. In order for this aspect of our theory to be
valid, these variations must occur over distances large
compared with the interplanar spacings. Thus, we do not
attempt to model the discrete stacking faults shown in

Fig. 1, but rather we examine the low-energy spatial vari-
ations of the order parameter that can connect two (or
more) regions of the 9R phase. Thus, for i) being a coor-



38 THEORY OF THE bcc-TO-9R STRUCTURAL PHASE. . . 1699

dinate describing the [110] direction (viz. , the direction
parallel to k) we include the term that behaves as

~
t)P/Bri

~

. Then, if we consider the phase-only terms
we have that the relevant expansion is

'2

(a)

27KC S

t)p
F~ ———'g A

t)7) 3
+

~&i —~i2
A cos(64) . (13)

Thus, the function /=4)(ri) is minitnized by solutions of

d P 1

dr)~ 6d~
sin(6$),

where

(14a)

(b)

1 36 y
g C11 —C12

A
3

(14b)

Note that Eq. (7) ensures that d is purely real. Equation
(14a) is recognized as the time-independent sine-Gordon
equation, whose solutions, some of which are known as
domain walls, discommensurations, kinks, or solitons, are
well known. In particular, the single soliton (kink) solu-
tion is

P(r))= —,'tan 'I exp[+(ri rio)/—d]I +me/3 (15)

where m is some integer which for convenience we set
equal to zero, and go is an arbitrary constant. This de-
scribes the region of transition from one of the six vari-
ants to another, and defines the sequential ordering of
variants. Choosing the plus sign of Eq. (15), one sees that
P(rt~ —cc)=0 and $(ri~+ ~)=m/3. Thus, compar-
ison of this result with Eq. (8) shows that for rj ~& ric a P+
distortion is obtained, while for rl~~t)o a p distortion
occurs. Also, Eq. (5) shows that the e2 shearing of the
(110)planes changes sign at ri = rio.

We now discuss the change in the structural distortion
given by Eq. (11) that occurs as a result of this phase
modulation. In the previous section it was noted that
U ff ((u„;, seemed to be compatible with the observed'
small incomplete softening of the g(110)X4 phonon above
the phase transition. Further, the minimum around /= —,

'

is likely to be very shallow, implying a small value for the
constant g appearing in Eq. (13). Thus, it seems reason-
able to assume that d is very small. This corresponds to
the domain-wall thickness (2d) separating the P+ and P
solutions being small, possibly only a few interlayer spac-
ings of the 9R structure. Then, the phase modulation
given by Eq. (15) corresponds to the stacking sequence
shown in Fig. 3, viz. , this phase modulation represents a
twin fault, the twinning occurring around g=go. To see
this more clearly define the three-layer sequences
P, = ABA, P2 ——BCB, and P3 —CAC. Then, a P+ distor-
tion gives a P, P2P3 sequence, while a P distortion pro-
duces a P, P3P2 pattern, and thus Eq. (15) corresponds to
a . . . P, P2 "P3"P2P, . . . stacking fault, where "P3"
represents the twin fault. Larger values of d simply in-
crease the domain-wall thickness, thus further distorting
the twin-fault region. (Note that at the twin fault e2 and
thus e3 go to zero, i.e., locally the structure is still P-
cubic. Thus, any crystallographic modeling of these

I

ABABCBCACACBCBABA .
I

FIG. 3. (a) The phase-modulation function P(ri) correspond-
ing to a single domain wall at go=0 connecting a P+ state with

a P state. (b) The stacking sequence corresponding to the
above phase. Note that the central C layer is a mirror-reflection
plane and represents a twin fault.

faults should take this into account. ) Away from rIo the
homogeneous 9R structure is still obtained.

The only other solutions of Eq. (14) are P=mm/3, viz. ,
the homogeneous 9R structure [note that
$=(2m +1)n/6 are relative maxima of Eq. (6)], and the
soliton lattice solution that may be cast in the form of el-
liptic sine functions. One such solution is shown
schematically in Fig. 4, from which it follows that the
stacking sequences regularly alternate between P+ and

(a)

I I I I

I I I I

I I I I" ABABCBC BABACABABC BCBABACABABC.
I I I I

I I I I

FIG. 4. (a) The phase-modulation function pertaining to the
soliton lattice. Note the regular alteration between P+ and P
regions. (b) The stacking sequence representing the soliton lat-
tice. The P+ and P regions are separated by twin faults.
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solutions. Thus, a regular twin-fault lattice would
occur, and would be consistent with the highly correlated
stacking faults proposed by Smith.

In addition to a spatially-varying phase, one may also
consider the amplitude-modulation condition given by

(a}

27r
3

g =10A +BOA +Ucg A +woA
d A 3 5 7

d~'
(16)

Then, for 6 A 9z being the solutions minimizing Eq. (9} in
the 9R phase, a domain-wall solution can connect + A 9„
states at g~ —00 with + A9+ states at g~+00. Thus,
these may be viewed as being like multiple-phase solitons
connecting the /=0 and P=rr states. Like a phase soli-
ton, this solution also models twin faults if one includes
in Eq. (11) the dependence of e2 on the sign of the ampli-
tude, as shown in Eq. (5).

Which of these two types of domain walls will be found
in Li, viz. , amplitude or phase modulations, is determined
by the energies of these structures. The solution of Eq.
(16) may only be obtained numerically, and as seen from
Eq. (14b) and Ref. 24, the energy of the phase solitons in-
volves a large number of parameters occurring in the
free-energy expansion. Consequently, based on the
present theory, the determination of the lower energy
domain wall cannot be made.

B. Deformation faults

I I

I I

ACABABCBCACBCBABABCBCACAB
I I

I I

FIG. 5. (a) The phase-modulation function solving the dou-
ble sine-Gordon equation. The width of the P plateau varies
as O(ln(e ') ). (b) The stacking sequence corresponding to a de-
formation fault.

As seen from Fig. 1, a deformation fault is simply
represented as an interruption of the regular 9R se-
quence. The stacking fault shown occurs over only one
layer, although more complicated multilayer defects are
also possible. In our model this corresponds to P+ or P
solutions being present on both sides of the deformation
fault. However, it is to be stressed that there are no solu-
tions to Eq. (14) possessing this property. For example,

P(ri) =—', tan '[exp(+gri)], (17)

+d.r=
3

[4'+(4*}'] (18a)

where the free energy in the region of the defect is given
by

is not a solution to Eq. (14) for any value of g. Thus, if
one only considers the four-component order parameter
(ez, e3, A, P), deformation faults are not predicted to arise
from the phase transition. We consider this to be an im-
portant conclusion of our theory. However, in view of
the result provided by Berliner and Werner, viz. , that
they were able to model their powder-diffraction profiles
using only deformation faults, we have extended our
theory in search of deformation faults.

Suppose that at some location the perfect Im 3m
space-group symmetry of the bcc phase is broken by the
presence of a defect. Then, the symmetry restrictions
may no longer be enforced on the free-energy density ex-
pansion near the defect. Thus, Eq. (3) must be augment-
ed by terms that were disallowed in the analysis present-
ed in the Appendix. This leads to the introduction of the
(lowest-order) term which is of the form

d, r
——J (F+Fdcr)dV,

Vdef
(18b)

Vd f being the volume of the region around the defect.
[Note that we are approximating that the I.andau
coefficient 5, which appears in Eq. (18a), is independent
of "position. "

] Consequently, Eq. (14) becotnes

d P 1
sin(6$)+csin(3$) (19)

where e represents that local perturbation induced by the
defect on the phase-modulation equilibrium condition.
Equation (18) is a double sine-Gordon equation, and has
one particular solution that is shown schematically in
Fig. (Sa). To be specific, one sees that a double domain
wall can occur connecting the P+ or P solutions on
both sides of the domain-wall structure. Thus, the phase
modulation corresponds to deformation faults, as shown
in Fig. (Sb), and we predict that this form of faulting will
only occur around defects.

The effect of terms such as Fd,f on the phase transition
will be discussed in a later publication. For now we
simply note that it has previously been suggested that
martensitic instabilities seed around defects.

IV. DISCUSSION

We now discuss the relationship between a number of
aspects of our theory and experiment. Firstly, consider
the small dip in the (gO) X4 phonon dispersion curve ob-
tained by Ernst et al. ' In this paper we have asserted
that this incomplete softening (viz. , the increased anhar-
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monic content of this branch near g= —,') occurs as a man-

ifestation of an incipient low-temperature instability of
the bcc phase relative to the phase corresponding to the
displacement pattern stated in Eq. (11). In order for us to
explain our motivation for this assumption we must make
the connection between the anharmonic phonon Hamil-
tonian and the measurement of phonon dispersion rela-
tions. The formal aspects of this problem involve the re-
normalization of the harmonic phonon frequencies by the
phonon self-energy correction. In terms of our formal-
ism we compare the expansion given by Eq. (3a} to that
describing the incomplete phonon softening of the (gg)
L (longitudinal) mode of Zr, 9 which is represented by
Eq. (18a) if P is taken to represent the (—,

'
—,
'

—,
'

) L mode. '6 0

Clearly, the analogous term in Eq. (3a) is the U&g term.
The (g0) X4 phonon of Li is renormalized by a sixth-
order term in the anharmonic phonon Hamiltonian,
while the (gg) L phonon of Zr is renormalized by a cu-
bic term, and thus the lesser degree of softening of the Li
branch that is observed is to be expected.

In spite of this, it still remains for the g= —, minimum
to be proven. Apparently there are diSculties with the
experimental verification of this point (note that Refs. 7
and 10 obtain different conclusions regarding any dip be-
ing present). One possible resolution to this problem
could come from the work of Harmon and collaborators.
Their first-principles frozen-phonon calculation for some
bcc metals ' verified the instability of bcc Zr relative to
the co-phase, and a similar investigation of Li (and possi-
bly the other alkali metals) could prove invaluable in test-
ing our assertion. In particular, if such a calculation ob-
tained an energy-versus-amplitude curve for the (—,

'
—,'0) X4

phonon that mirrored Fig. 2, we would consider this a
verification of this aspect of our theory.

Secondly, we discuss how the amplitude-only free-
energy expansion of Eq. (9) can account for the transition
to the 9R phase if v,z is temperature dependent. This
version of the phase transition requires that an associa-
tion be made between precursor states occurring above
the transition (obtained on cooling) and the experimental
determination of the elastic constants. For ro being near-

ly temperature independent and U,& decreasing with de-
creasing temperature Eq. (9) still behaves (approximately)
as shown in Fig. 2, although the evolution of the A&0
minimum is considerably more sensitive to changes in U,ff
than it is to changes in ro. Thus, from Fig. 2 one sees
that above the transition temperature metastable A &0
states may occur, regions of the crystal that are known as
precursors. (This is not true for second-order transitions
where the A&0 minima do not occur until below the
phase transition. ) Some evidence for this has already
been reported above the bcc-to- (presumably) hcp transi-
tion (see note added in proof) undergone in Na (Ref. 32}
in studies of the diffuse scattering, as well as possibly in
Li."

If the softening of the elastic constant that we are sug-
gesting does indeed occur one cannot utilize the results of
inelastic neutron scattering studies to determine this
since one must probe the elastic behavior right at the
zone center, not out in the interior of the zone [note the
stiffening of —,'(c» —c,2) reported by Smith followed

+,=-,'~
I p~ I'+-,'&I(p~+c.c. )+-,'P2(pa0'+c. c. ) . (21)

One may then show that providing P»0, both uo and
the prefactor of cos(6$) in Eq. (6) are reduced by the Pz
coupling, viz. , U„;, becomes less negative while U,z be-
comes more negative. Thus, the consequences of this
coupling are (i) that a commensurate, charge-density
modulation occurs below the transition such that
p&-A, and (ii) the conditions under which the transi-
tion can take place are enhanced (the degree to which
this occurs cannot be estimated from the present theory).
We wish to stress that the charge-density modulation
that occurs is parasitic, and simply represents the
response of the electron distribution to the structural dis-
tortion that Li undergoes, and that in no way does our
theory rely on the presence of some electronic instability
in the bcc phase. [An identical analysis also applies to
the coupling of the P—,'OIX, (longitudinal) phonons with
the X4 phonons. ]

from neutron studies that only extended down to /=0. 1

and is not a zone-center study]. The most dramatic evi-
dence of this latter assertion comes from studies of the
A15 compounds where the neutron results were found
to be completely inadequate in displaying the pronounced
softening of the —,

' (c» —c,2 ) elastic constant that is found
in V3Si and Nb3Sn just above their cubic-to-tetragonal
structural phase transformations. Further, ultrasonic
techniques would also suffer from the diSculty that they
would not be sampling just the bcc structure's elastic
moduli, but rather those of a bcc-precursor matrix, if pre-
cursors do indeed occur. To be specific, the pulse-overlap
method employed by Felice et al. ' found a small
stiffening of —,(c» —c,2 } with decreasing temperature just
above the transition, a result that could be interpreted as
the stiffening of the measured elastic modulus due to the
presence of precursors. In fact, a stiffening of the mea-
sured elastic constant seems to be consistent with the ap-
pearance of precursors taking advantage of the small
resistance to the e2 and e3 distortions given in Eq. (11).

Unfortunately, a satisfactory theory describing the
effects of precursors on ultrasonic experiments (including
the resonant method, which may also suffer from these
problems) is presently unavailable. This is certainly re-
quired before the above assertions could be tested. For
now we simply note the apparent consistency of the
softening of this elastic constant above the transition with
(i) Eq. (9) describing the bcc-to-9R transformation, (ii) the
existence of precursors above T, and their subsequent
effect on the experimental determination of this elastic
constant, and (iii) the discussion of the 9R phase present-
ed by Wilson and de Podesta. '

We now turn our attention to the relation between our
theory and the modulation of the electronic density that
would occur at the transition, viz. , what about charge-
density waves in Li? For the electron density p(r) being
modulated according to

p(r) =pa+(p), e'"'+c.c. ), (20)

where po is a constant and k is given by Eq. (2b), the cou-
pling of p with the structural distortions that we have
been discussing is given by
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It seems likely to us that this theory may be extended
to describe the martensitic phase transformations of oth-
er P-cubic materials. Both Na (Ref. 35) and K (Refs. 34
and 36) have been reported to exist in incommensurate
charge-density-wave states, while others have refuted
these claims. ' ' The low-temperature martensitic
phase transition undergone by Na is first order and
strongly hysteretic. Also, an incomplete phonon soften-
ing of the (g'0) X~ branch has already been observed,
and even though these authors suggested that the phonon
minimum occurred at the zone boundary (leading to the
transition to the hcp phase), the strongest temperature
dependence just above the transition could well be taken
to occur at g= —,

'. Further, as mentioned previously,

disuse scattering was observed, consistent with the
presence of precursors. Thus, it seems possible (see note
added in proof) that Na may undergo a transformation to
the 9R phase, instead of either the reported hcp phase,
or the alleged incommensurate charge-density-wave
state. '

The notion of K undergoing a transition to the 9R
phase has been discussed at length by Wilson and de
Podesta. ' Of particular importance is the study of Dol-
ling and Meyer examining the possibility of anomalous
X4 phonons at 4.3 K. It is clear that a minimum at /= —,

'

was not observed. Note, however, the similarity between
the data points of Beg and Nielsen's study"' of the X4
phonons in Li and those of Ref. 40. To be specific, in
each case a fitted smooth curve passing through the data
points may be found, although the data points at (=—,

'

clearly are (slightly) beneath such curves (but within ex-
perimental resolution) for both these materials. Further,
no 9R satellites have been confirmed, ' and satellites at
other positions (see Fig. 3 of Smith ) have yet to be ob-
served (however, see the discussion of Ref. 41 provided
by Wilson and de Podesta' ). Thus, the proposition of
Wilson and de Podesta' cannot be justified (at this time}
by our theory, although it is possible that many of the
low-temperature anomalies" observed in K are due to an
incompletely transformed bcc-9R matrix, viz. , precur-
sors.

Some P-phase alloys are also candidates for undergoing
their martensitic transitions according to the theory we
are proposing for Li in this paper, and for now we consid-
er its application to the TiNi(Fe) alloy system. It has
been established that there is an incomplete softening of
the (g'0) X4 branch for g= —,', and that the —,'(c» —c,2)
elastic constant decreases with decreasing temperature by
about 10% from room temperature to the transition tem-
perature, which is approximately 230 K. Further, the
symmetry of the ordered TiNi structure (Pm 3m) also al-
lows for it to be described by the free-energy expansion
given in Eq. (3a). Below the transition an anomalous sa-
tellite pattern has been observed that may not simply be
described by a commensurate phase transition at /= —,

'

relative to the untransformed bcc Bragg spots. It has
been proposed that this satellite pattern may be ex-
plained by the presence of a discommensuration lattice
that does not significantly alter the bcc spots, but does
modify the location of the satellites. One may show that
the displacement pattern that follows from the U4 term of

Eq. (A14), with or without discommensurations such as
those given in Eq. (15), can provide an alternate explana-
tion of this data.

Note added in proof I.t has recently been shown that
Na also transforms to the 9R phase with a transforma-
tion temperature above 18 K.
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Firstly, we determine the transformation properties of
the displacements of wave vector k& ——g(1, 1,0). The little
cogroup of wave vector k&, corresponding to the X line of
symmetry, is given by Gp(k~)=[E C2( &) o,o, J (we

follow the labeling of space-group operators given in Ref.
46), and its irreducible representations are given in Table
I. There is one ion per primitive unit cell and for these
three branches one may show that the displacement rep-
resentation decomposes according to X=X&+X2+X4.
The X4(k, ) phonon corresponds to a transverse mode
propagating in the [110] direction polarized along the
[110]direction. For g= —„this distortion is given in Eq.
(2). The star of k& may be denoted by +k&, . . . , +k6,
where k2 ——g(0, 1, 1), k3 ——g(1,0, 1), k4 ——g(1, 1,0),
ks=g(0, 1, 1), and k6 ——g(1, 1,0). Then we introduce the

ip.
other X4 order parameters p2, . . . , 1t6, with 1( = A e
according to

uz(r) = A ze[pTt]sin(k2 r+$2),

U3(r}=A3e(, p-, }sin(k3 r+P3}

u4( r) = A 4e( & &p}sin(k4 r+ P4),

u5(r) = A5e(p&&}sin(ks r+P&),

(A1)

u6(r)= A6e(, p, }sin(k6 r+p6) .
Having defined these distortions, we determine their

TABLE I. The irreducible representations (irreps) of the lit-
tle cogroup of wave vector k&. In the last column we have
displayed the association of these representations with the pho-
non modes that transform under them, viz. , the longitudinal
mode (L) transforms under the identity irrep, while the trans-
verse mode polarized along the z direction (T,) transforms un-
der Xz irrep, and T„ transforms under the X4 irrep.

XI
X2

X3
X4

C2(xy }

1
—1

1
—1

Xy

1

1

—1

—1

1

—1

—1

1
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APPENDIX: TRANSFORMATION PROPERTIES
OF THE ORDER PARAMETERS
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transformation properties under the action of the bcc
space-group symmetry in order that the correct form of
the free-energy expansion may be constructed. The space
group of bcc Li is Im3m, and the generators of this
group may be taken to be (i) the bcc primitive translation
vectors, and (ii) the elements i, C3+, , C4+. The transfor-
mation properties of the g may be determined by noting
that a vector function U(r) transforms under the opera-
tor 0 according to

IE I tie, , ~e.. .
Ii I OIe, , ~e.. .

(A7)

exx X3'

IC31 I 0I (A9)

The transformation properties of e1, e2, and e3 defined
in Eq. (1) may be determined from those of the e...
i =x,y, z. %e find

O(U(r)) (OU)(IO 'rI ) . (A2) exx

Thus, we find

I E I t) p, ~1(,exp( —ik,. t), (A3)

exx

c4+ I0I eye e (A 10)

r

42

(A4)

The free-energy density must be invariant under the
action of the space group of the bcc phase of Li, viz. ,

O(F)~F, 0 GIm 3m (Al 1)

Ps

f4

(A5)

(A6)

6

F» —— g g A; e,, (g, +c.c. ) .
i =xyz j=1

Then, Eq. (Al 1}requires that F» assume the form

(A12)

F13= A 11 [( e —
e~~ ) ( p, p4) + ( e—

~~
—e„}(1"z—ps )

+(e —e„„)($3 lPQ)+c. c. ] . (A13}

Applying similar analysis to all terms up to sixth order in
the g and third order in e2 and e3, and including the
lowest order coupling term between these distortions, we
find

and this restricts the form of the expansion. For exam-
ple, consider g= —,

' and the term

6 6 6

F= y ( —,'ro Iy, I +4~o Iyj I +4&o I fj I +4"1&WJ+(yj') ]+ewo IPJ I'}+4&1 X 2'
I &J&k I'

6

+-,'o2 g g'
I 0, I'I fk I'+6&3 g g' X"

I @,@kA I'
j=1 k=1 j=1 k=1 1=1

+ 6&4((444sf6)'+(040243 } +(fskl'A) +(4A'142 ) +c c ]

+ (cll c12)(e2+e3 }+ c333 3( 3 2)+ c2222(e2+e3 } +F132 2 2 2 2 2 2 (A14)

~e have included the wo and c2222 terms such that the high-temperature ground state pertains to e2 ——e3 =g.=(). lt is
to be noted that the term given in Eq. (18a) does not appear in the above expansion. This follows immediately from ap-
plication of Eq. (A6) to

6
F = , X l4,'+(4;)']-

j=1
Since this term is not an invariant under the space-group symmetry of bcc Li, one must set 5=p in the ordered phase.
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