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Narrow electronic bands in high electric fields: Static properties
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We present a gauge-invariant formalism for studying the motion of electrons in uniform electric
and magnetic fields. This paper treats static properties, mainly the spectral function and density of
states. These results will be exploited in a second paper devoted to transport, with the aim of ex-

tending the results of Khan, Davies, and Wilkins [Phys. Rev. B 36, 2578 (1987)] to include periodic
bands as well as parabolic bands. In particular, we define a gauge-invariant density of states that
can be used in the presence of applied electric and magnetic fields. This density of states can be in-

terpreted as a function of kinetic energy in the case of parabolic bands. It reduces smoothly to the
usual results in the absence of applied fields and gains a tail into negative kinetic energies when an
electric field is applied —a result well known from the theory of electroabsorption. Structure due to
Landau levels is seen when a magnetic field is applied. The results are more striking in the case of a
periodic energy band. Here the continuous density of states is split into a discrete "Stark ladder"
when an electric field is applied, with the levels separated by the energy of Bloch oscillations. It is
not necessary to introduce the Stark levels explicitly through the use of a scalar potential; they
emerge naturally within the gauge-invariant formalism. Again the density of states shows no un-

physical discontinuous behavior as the field goes to zero. The implications of these results for trans-

port are brie6y discussed.

I. INTRODUCTION

An exciting result of developments in the fabrication of
ultrasmall structures is the ability to perform experiments
that probe fundamental problems of quantum mechanics
and solid-state physics. An outstanding example is the
observation of periodic structure in the magnetoresis-
tance of small loops as the flux through the loop is
changed. This is intimately related to the Aharonov-
Bohm effect, where a vector potential is used to change
the phase of an electron's wave function and modulate
the transmission coeEcient of a ring-shaped structure.
Research is currently under way to exploit this effect in
switching devices. A more controversial phenomenon
despite its longer history, and one for which there is less
clear evidence, is that of Bloch oscillations or Stark
ladders in a periodic structure. It may be possible to har-
ness these oscillations directly, or to use negative
differential resistance that may arise in the conductance.
Again it is hoped to make use of this in practical devices.
Artificial "crystals" with a one- or two-dimensional
periodic potential may be formed in semiconductors by
several methods. Alternating layers of different materials
such as GaAs and (Al, Ga}As may be grown to produce a
compositional superlattice; the doping of a single materi-
al may be changed periodically during growth to produce
a doping superlattice; an interdigitated (or otherwise pat-
terned) gate may be used to modulate the potential seen
by a two-dimensional electron gas trapped at a hetero-
junction below the surface. Unfortunately, there is as yet

no convincing observation of Bloch oscillations in these
devices.

It is perhaps curious that the theory of Bloch oscilla-
tions remains controversial nearly 60 years after its incep-
tion; a review is given by Krieger and Iafrate. ' The
straightforward theory is well known. Under the
influence of an electric field F that is constant (in time)
and uniform (in space), a wave packet centered on crystal
momentum k and with charge e evolves with time ac-
cording to Adkldt =eF. The group velocity is given by
fi 'Vks(k} in a band with dispersion relation s(k), and
the motion of the wave packet will therefore be periodic
in time if s (k) is periodic in k. If F is applied along a
crystal axis of lattice constant a, the period of oscillation
is ro 2M/

~

eF——a
~

in time. This oscillatory motion of
the electrons will affect their density of states too: one
might expect it to be changed from a continuous band to
a discrete ladder of states separated in energy by
Eo ——

~

eFa
~

—the Stark ladder.
One objection to the simple theory of Bloch oscilla-

tions is that the possibility of (Zener) tunneling from one
band to another is neglected. The transition rate has
been estimated for a few cases (see Ref. 1) and has been
found to be negligible over a wide range of electric fields.
It is therefore legitimate to consider effects due to a high
electric field within a single isolated band and we shall
make that approximation, although the extension to
many bands should prove interesting (and challenging).
This paper presents the first steps towards a fully-gauge-
invariant theory of transport in periodic bands in high
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II. THEORY OF ELECTRONS IN AN ELECTRIC FIELD

Since we are restricting attention to electrons in a sin-
gle band, we may use an effective Hamiltonian of the
form

eH =E i V, ——A—(r, t ) +eP(r, t ), (2.1)

which includes both a scalar potential P and a vector po-
tential A; e(k) is the dispersion relation of the electrons.
We shall set 6=1 from now on. The applicability and
limitations of this effective Hamiltonian are considered in
detail by Anderson. It is valid "to all orders of perturba-
tion theory, " but is incapable of describing nonperturba-
tive effects such as Zener tunneling or magnetic break-
down. The omission of Zener tunneling is particularly
serious, since we are concerned with high electric fields,
and future work will be directed towards overcoming the
restriction to a single band.

Most work on this subject has been based on wave
functions. These have a strong qualitative dependence on
the gauge used for the electromagnetic potentials. We
shall take two examples to illustrate this, a parabolic
band and a co-sinusoidal tight-binding (periodic} band.
First, consider free electrons in one dimension with

electric fields. It is built upon the earlier results of Khan,
Davies, and Wilkins (to be referred to as KDW), who in-
vestigated transport in a parabolic band in high electric
fields.

We start by showing that it is useful —if not vital —to
base the theory on Green functions rather than wave
functions, because this permits the use of an entirely-
gauge-invariant formalism which cannot be achieved
with wave functions. A formalism that is gauge invariant
has two important advantages. The first is that it avoids
the possibility of making approximations that are intrin-
sically gauge dependent and therefore physically in-
correct. The second is that it emphasizes the physical
picture without having this obscured by features due to a
particular gauge. The simplest quantity to calculate is
the spectral function, from which a density of states can
be deduced. The general theory is considered in Sec. II
and the applications to electrons in parabolic bands and
periodic bands in Secs. III and IV. Both Bloch oscilla-
tions and a Stark ladder follow naturally from this
theory; moreover, the results reduce clearly to those in
the absence of an electric field.

The main aim behind these calculations is to develop
further the theory of KDW for transport in high electric
fields. They considered only parabolic bands, but a richer
variety of results is expected in a periodic band. For ex-
ample, how is the transport equation modified to include
Bloch oscillations? If a "Stark ladder" is formed, do the
scattering rates change to reflect the form of jumps be-
tween the rungs of the ladders rather than transitions be-
tween plane waves? We touch on these questions briefly
in the conclusions, but defer a full treatment to a follow-
ing paper.

We start by considering the general theory of electrons
in constant, uniform electric and magnetic fields.

k
sf(k ) =

2m
(2.2)

where the subscript f denotes a parabolic band, and m is
the effective mass.

A. Parabolic band with a scalar potential

If a uniform, constant electric field is introduced
through a scalar potential P(x) = eFx—, the Hamiltonian
(2.1) becomes

2
—eFx .

2m
(2.3)

This has eigenfunctions which are stationary states, Airy
integral functions of the first kind (Ref. 4, Sec. 10.4); Airy
functions of the second kind cannot be normalized over
all space,

g&(x, t;co}ccAi (eFx+—co) e ' ', w =
N

' 1/3
(eF)
2m

(2.4)

B. Parabolic band with a vector potential

The results are entirely different if a different gauge
with a vector potential A(t)= Ft is used in—stead of a
scalar potential. The Hamiltonian becomes

2

0= 1

2m
—i +eFt

Bx
(2.5)

This is now a function of time and therefore does not
yield stationary states, so there are no well-defined ener-
gies. However, the time-dependent Schrodinger equation
has plane waves as solutions,

The eigenfunctions are standing waves, although it is pos-
sible to make current-carrying wave packets from super-
positions of Airy functions. Most of their weight, apart
from an exponentially small tail that represents tunneling
into the classically forbidden region, is in the half-space
to one side of x =~/eF. The energy eigenvalue co may
take any value from —~ to ~; in contrast, only positive
energies are allowed when no field is applied. The reason
is that the Airy function depends on x+coleF, so that
wave functions with different energies occupy different
regions of space —the wave function simply "slides
along" as the energy changes. All energies are required
in order to fill all space. This means that the density of
states averaged over all space, which is the distribution of
allowed values of co, is uniform between —Oo and ~.
This is qualitatively very different from its form in the ab-
sence of a field, and it changes discontinuously from one
form to the other when an infinitesimal electric field is
applied. A local density of states can also be defined,
with less discontinuous behavior, and will be considered
later.
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g„(x,t;p) ~ exp i px — [p t+eFpt1 2

2m

+ —,'(eF)'t '] (2.6)

on the allowed energies. The wave function is now re-
stricted to a finite region of space, and there is a ladder of
energies from —00 to 00 instead of the continuous spec-
trum found for the parabolic band; this is the Stark
ladder.

As the electric field is uniform in space, it is physically
satisfactory to have a wave function that reAects this, em-
phasizing that canonical momentum p is a constant of
the motion in this gauge. On the other hand, it is now
impossible to construct a density of states at all, since no
well-defined energies exist.

C. Periodic bands

New features appear if s(k) is periodic rather than par-
abolic, in which case the band has both upper and lower
bounds. A simple one-dimensional example is

s, (k) = —C cos(ka ); (2.7)

the subscript t denotes a periodic ("tight-binding") band.
The band has width 2C arid period 2m/a in k, corre-
sponding to a lattice of period a in real space. The true
wave functions of this model consist of sums over a
tight-binding orbital X(x) on each site, taking the form

pa„g(x na) .— (2.8)

g a„5(x na ), — (2.9)

with the 5 functions reffecting the discrete lattice of sites.
It is best to think of the coeScients a„as comprising an
envelope function.

D. Tight-binding band with a scalar potential

Introducing an electric field through a scalar potential,
we have

H=c, , —eFx (2.10)

instead of (2.3). The eigenfunctions may be found by
making a Fourier transform from x to k and back again;
the result for the cosine band is

f&(x, t; to) 0:e ' ' g 5(x na cg/—eF )J„—C
Eo

(2.11)

where Eo=eFa is the energy of Bloch oscillations. The
wave function (2.11) makes sense only if the 5 functions
occupy the sites of the lattice [compare (2.9)], which
places the restriction

co =NeFa:—NEO (2.12)

The form of X(x) is unknown, however, if the dispersion
relation (2.7) alone is given, and only the coefficients a„
can be calculated. This means that the eigenfunctions of
a Hamiltonian incorporating (2.7) will appear to be of the
form

E. Tight-binding band with a vector potential

Using a vector potential, the Hamiltonian becomes
T

H=c, , —i +eFt (2.13)

and the analogue of (2.6) is

g„(x,t;p ) 0:exp i px —I d~ s, (p+eFr) (2.14)

The periodicity of s, (k) means that this wave function is
periodic in time; the period is ro=2n. /Eo = 2n /eF—a, and
is the period of Bloch oscillations. The wave function re-
tains the form of a Bloch state in space, and continues to
reflect the translational symmetry of the lattice, but ener-
gies can no longer be defined in the usual way.

F. Green functions

It is clear that the wave functions calculated above
have very different properties depending on the gauge
used to represent the electric field. For example, Bloch
oscillations appear through the periodic behavior of
P„(x,t;p) in time, but through the "ladder" of allowed
energies for P&(x, t;co). These differences obscure the
physics, which must be independent of the choice of
gauge. It is, of course, possible to make a gauge transfor-
mation to go between the two sets of wave functions like
(2.4) and (2.6). An important example is that the eigen-
functions of canonical momentum become the set of
Houston functions if transformed to the scalar-potential
gauge. On the other hand, one is led to ask whether it
would not be better to use a gauge-invariant formalism
from the start. This means that it is necessary to go one
step beyond wave functions and use (single-particle)
Green functions. These can be written in terms of prod-
ucts of two wave functions, between which the gauge
dependence can be made to cancel. The most convenient
function, and that which follows most naturally from
wave functions, is the spectral function A not to be-
confused with the vector potential This is. defined in
terms of an anticommutator of field operators by

4(rl tl r2, t2) ( [ p(r1 tl ), 0 (I2, t2)l ) ' (2.15)

Although it is unusual to define the spectral function
directly in this way, the definition is entirely equivalent to
that usually given for the retarded and advanced Green
functions. The spectral function has an important sum
rule that follows from the anticommutation relation of
the operators at equal time,

A(r„t;r2, t)=( [%(r„t),% (r2, t)I ) =5(r, —r2) . (2.16)

The retarded and advanced Green functions 6' and 6'
follow immediately from A in the time domain; for exam-
ple,
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G"(r, , t, ;rz, tz)= —io(t, tz—)A(r, , t„rz, tz) . (2.17)

The combination of (2.15) and (2.17) yields the usual
definition of the retarded Green function. If A is a func-
tion only of the difference of its time arguments, it may
be Fourier transformed to an energy E. The precise
definition of E is important, and will be given later. Pro-
vided that this may be done, the familiar formula

n(E)= ——Im TrG'(E)= TrA(E)1, 1

7r 2m
(2.18)

can be used to derive a density of states. The "trace"
operation Tr means setting r&

——r2 in A. If A is a func-
tion of r, —rz only, it may be Fourier transformed to k
and in this case the trace becomes a sum over all k. This
will be clarified later for specific examples.

The equations of motion for the spectral function can
be written symbolically as

GU '(1)A (1,2)=0 and A (1,2)GU '(2) =0, (2.19)

where

(i) Rather than use Eqs. (2.19}directly, form their sum
and difference which can be written symbolically as

[GU ', A I =0 and [GU ', A ]=0 . (2.22}

(ii) Change from the coordinates (r„ti;rz, tz) to sum-
and-difference coordinates ( r, t;R, T ) defined by

R= z(ri+rz} i (ri 12)

T=-,'(t, +t, ), t =(,r tz)-. (2.23)

(iii) Make a Fourier transform from (r, t ) to (p, co).
(iv) Replace (p, co) by (k, E ), defined by

method, which we shall follow here, is to make the equa-
tions of motion themselves gauge invariant. The follow-
ing procedure achieves this for uniform, constant electric
and magnetic fields, and is derived from the work of
Langreth, Keldysh, and Levinson; similar methods
have been used by Mahan and co-workers. '

GU '(1)=i —e i ——e A(ri, t, ) eP(r„ti—) .
ari Br,

k=p —e A(R, T), E =co—eg(R, T) . (2.24)

(2.20)

The equations in full are

i —e i —e—A(r„t, )
Bti Br,

(

eP(r„—t, ) A (r&, t, ;rz, tz )=0, (2.21a)

—i —e i —e A(rz 2}
Btz Brz

—eP(rz, tz) A(r, , t, ;rz, ~z)=0, (2.21b)

with the boundary condition given by (2.16}. The equa-
tions of motion for the Green functions 6' and 6' have

5(ri —rz)5(t, tz) instead of z—ero on the right-hand side,

and obey different boundary conditions in time.
There are two routes to finding gauge-invariant spec-

tral functions. One, taken by KDW, is to solve the equa-
tions of motion in a particular gauge and then to trans-
form the solution into gauge-invariant form. A second

It is this last step that ensures gauge invariance. There is
a simple classical analogy that illustrates this procedure.
The "total" energy co contains two components: the ki-
netic energy, and the potential energy due to the scalar
potential. Clearly, the latter is gauge dependent, and
should be subtracted out in the formula for E. This
leaves a gauge-invariant quantity, which could be mea-
sured classically by —,'m v . Similarly, the vector potential
A is subtracted from the canonical momentum p to leave
the gauge-invariant mechanical momentum k, which
could be deduced classically from the velocity of the par-
ticle.

After this procedure, it is found that only the electric
and magnetic fields F and B enter the equations of
motion rather than the potentials A and P, and that R
and T have dropped out. This is to be expected because
both the electronic system and the fields are translational-
ly invariant in space and time. It is another advantage of
the gauge-invariant formalism that only two variables are
needed to describe the Green functions; by contrast, two
spatial variables and one temporal variable would be
needed in a scalar-potential gauge, or one spatial and two
temporal variables if a vector potential were used. The
equations of motion for the spectral function become

a a
—,'[GU', A I= E——e k ——,'ie F +BX

2
+c k+ —,'ie F +BXa a

A(k, E)=0 (2.25a)

and

T

[GU, A ]= eF +i E k ,'ie —F—+B)& —c k+ —,'ie F +BX A(k, E)=0 . (2.25b)
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The solution of these equations for parabolic bands with
both electric and magnetic fields will be given at the end
of Sec. III, but we shall consider only electric fields in the
remainder of the analysis. The first of these equations,
(2.25a), can be simplified by making a Fourier transform
from E to ~; this means that the time ~ is conjugate to the
gauge-invariant energy. The result (with B=0) is

i ——,'[e(k+ —,'eFv)+e(k —
—,'eFr)] A(k, r)=0,

81

(2.26}

which is of first order in ~ and easily integrated to give

r/2
A (k, r) =exp i f —dr'e(k+ eFr')

—w/2
(2.27)

A(k, v=0)=1 (2.28)

in terms of A(k, r). The result (2.27) was previously de-
rived by KDW [their Eq. (2.30)]. Note that A has the
correct symmetry

A(k, ~)=A—'(k, r) . (2.29)

The second equation, (2.25b}, yields no additional infor-
mation.

G. Sum rules

The ordinary spectral function is subject to a number
of sum rules (see, for example, Chap. 3 of Ref. 11}. The
gauge-invariant quantity A(k, E) also obeys sum rules.
The most important of these has already been mentioned:

A(k, r) i, o
——f A(k, E)=1 (2.30)

[see Eqs. (2.16) and (2.28)]. This follows fundamentally
from the anticommutator of the field operators in (2.15}.
Higher-order sum rules can be obtained by differentiating
A(r„t„rz, tz) with respect to t, and tz or, more simply,
from the equations of motion (2.25). We find

where the normalization has been chosen to satisfy the
boundary condition (2.16), which becomes

H. Comments

III. PARABOLIC BANDS

We shall first derive the spectral function and density
of states in an electric field for electrons with a parabolic
dispersion relation, denoted by the subscript f:

kst(k)=
2m

(3.1)

The integral in (2.27) for the spectral function is trivial,
yielding

Several comments on the gauge-invariant functions can
be made at this point.

(1}The equations of motion depend on the fields, not
on the potentials. This removes problems' associated
with potentials that go to infinity, such as eFx in (2.3). It
also avoids the problems associated with boundary condi-
tions at x =+ ~ pointed out by Churchill and
Holmstrom see also Rabinovitch. '

(2) The density of states in a scalar-potential gauge
showed an unphysical discontinuous behavior when an
electric field was turned on. The gauge-invariant density
of states, a function of the energy E defined in (2.24),
behaves smoothly in this limit. It is therefore a more
physically satisfactory quantity. This will be illustrated
in the following sections.

(3} The procedure described above also makes the
Green functions and density of states gauge invariant in
slowly varying fields, within the lowest order of a "gra-
dient expansion. "' The fields F and B will become func-
tions of the center-of-mass variables R and T, but the ex-
pressions are otherwise unchanged.

(4} It is relatively straightforward to extend these re-
sults to an electric field that varies arbitrarily in time,
provided that it remains uniform in space. The extension
to spatially varying fields is much more complicated.

We shall now examine the spectral function and the
density of states in detail for two cases of interest: a par-
abolic band and a periodic band, taking a one-
dimensional cosinusoidal tight-binding band as an exam-
ple.

i A(k, r) = f EA(kE) , e(k=)
T 0 0& 2tt

(2.31) Ai(k, r) =exp i [k w+——,', (eF) 2]

and

if 8=0. (2.32)

a2
A(k, r) =f" —E'A(k, E)=[e(k)]'—CO 271

r

1 (eF)—=exp i E&(k—)~+
12 2m

(3.2)

The Fourier transform of this back to the gauge-invariant
energy E is an Airy function,

If B&0, the last sum rule gives

a a
2

k ——,'ieBX +c, k+ —,'ieBX e(k),

22/3
A~(k, E }=2~ Ai

where the "width"

22/3
[E—ci (k)]

W
(3.3)

(2.33)

although this again reduces to (2.32}for parabolic bands.
The spectral functions derived in the following sections
can all be verified to obey these sum rules.

1/3
(eF)
2m

(3.4)

These results were used extensively by KDW. It is in-
teresting that A& does not depend on the direction of F,
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even though the field has broken the rotational symmetry
of the system; this is true only for parabolic bands. As
F~O, w ~0 and

Af (k, E )~2rt5(E —Ef (k ) ), (3.5)

the usual result for a system without scattering. In a
translationally invariant system with no applied field,
A ( k, E ) is non-negative even if scattering is included,
which allows it to be interpreted as a probability density.
This property no longer holds in an electric field, and
Af(k, E) is a smoothly oscillating function taking both
signs.

The density of states (per spin) nf(E) is given by a spe-
cial case of (2.18), where the trace means a sum over all
k:

P nr r n~V V V

nf(E)= f d Af(k, E);1 d k
2n(2.m )

(3.6)
I I I I I I I I
I I I I I I 1 I

at this point the dimensionality d enters. This can be in-
terpreted as a density of states in kinetic energy, the
gauge-independent variable E. The results for electrons
in a parabolic band with d =1,2 and 3 are, for d =1,

' 1/2 ' 2

nf(E) = ~ E
Ai

W
(3.7a)

for d =2,
10

nf(E) = I2'
and for d =3,

22/3E

2

(3.7b) FIG. 1. Gauge-invariant density of states (thick curve) near
the bottom of a parabolic band in an electric field in d =1, 2,
and 3 spatial dimensions. Energies are plotted in units of
w = [(eF)~/2m ]'~'. The thin curves show the density of states
in the absence of a field for comparison.

n (E)= (2m')' Ai'
2~ u

E . E
Ai

N W
(3.7c)

where

I(z) = f dt Ai(t)
z

(3.8)

n&(co, R)=nf(co+eF R) . . (3.9)

and Ai'(z) is the derivative of Ai(z). The expressions are
sketched in Fig. 1. For large energies in two and three
dimensions, nf(E) approaches the form that it would
have in the absence of an electric field. The singularity at
the edge of the band is destroyed and instead there is a
tail of width w to negative (kinetic) energies. This corre-
sponds to the part of the wave function (2.4) with z ~ 0 in
Ai(z), representing tunneling into the classically forbid-
den region. For an effective mass m*=0. 1 and F=1
MV m ', m =7 meV. These results are well known in the
theory of electroabsorption (see Ref. 15), and the gauge-
invariant density of states defined here is very closely re-
lated to the local density of states n&(co, R) calculated in a
scalar-potential gauge. The connection is

In one dimension nf(E) does not approach the density of
states in the absence of a field, but continues to oscillate
between zero and twice the "E ' " form. The reason
for this can be seen from the wave functions (2.4). Con-
sider a fixed point x. As the energy is raised, the wave
functions "slide past" because of their dependence on
x+coleF. At certain energies there are nodes in the
wave function and therefore no contribution to the local
density of states. Equation (3.9) shows that these nodes
survive in the gauge-invariant density of states nf(E)
This effect is largely washed out in higher dimensions by
motion transverse to the field, although the oscillations at
small energies in the two-dimensional case do not de-
crease in amplitude as the strength of the field decreases,
but are compressed into an ever smaller range of energies
at the bottom of the band.

A. Electric and magnetic fields

It is possible to calculate Af(k, E) for electrons in uni-

form electric and magnetic fields, because Eqs. (2.25) sim-

plify considerably in the case of parabolic bands. They
become
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E— 1

2m

a2
k2 F2 ++2

aE' ak'

2
a a aB

al
+2FXB

ak aE Af(k, E)=0 (3.10a}

and

eF +2 kF +k X B-8 e 8 a
2m

Af(k, E }=0 . (3.10b)

The solution of these equations is straightforward but rather tedious, and again it is easier if they are Fourier
transformed from E to 7. The result can be written as

Af(k, r)=e Ax(k —mvd, r),
where

1
vd —— FXBB2

(3.11}

(3.12)

2
~ i — K + —,mu„+. a 1 2, 2 e

r 2m Sm
—F rl+B2 2a'

aK
(3.13a)

is the drift velocity perpendicular to both F and B. The "drifted" spectral function Az obeys the equations of motion
'2

aB Ax(K, r)=0

and
r

e a p a p
KXB +mFIIB +iFllrB K Ax(K, r)=0,

m BK
(3.13b)

where

F =BF
II

(3.14)

is the component of the electric field parallel to the magnetic field, and B is a unit vector parallel to B. These equations
are to be solved subject to the boundary condition (2.28). This is most easily done in cylindrical polar coordinates,
where K is the radial component and K, is the z component parallel to B. Equations (3.13) then take the form

a 2

Ax(K, K~,K„r)=0 (3.15a)

and

e 8 aB+mF—
1 +iFlrK, Ax(Kp, K~,K„r)=0 .

m aK~ Z

(3.15b)

Note that the second equation shows no dependence on E at all. The drifted spectral function is finally found to be
~ ~

A&(K, r)=2e ~ g ( —1)"L„K exp i K—,r+ F~~r expI i[(n+ '—)co, ——'mu—d]rj
—K /eB n 2 ~ 1 2 1 e 2 3 1 1

n eB 2m 12 2m II

where

eB

(3.16)

(3.17)

is the cyclotron frequency. The sum over n with Laguerre polynomials L„reflects the Landau levels induced by the
magnetic field. Motion parallel to B is unaffected by this and the terms with K, 7 and FII 7 are exactly as for a one-
dimensional system in an electric field FII. The final feature is the uniform drift velocity vd in crossed electric and mag-
netic fields. Mahan' has given a similar result. The Fourier transform to real space is given by

with

imvd -(r —vd v)
Af(r, r)=e A, (r —vdr, r} (3.18)

-eBs /4
1 1 2 m

A, (s, r)= e ~ g L„s expI —i[(n+ —,')co, ,'mud]r]——
2m „=0 2 27Tl 7

1/2
1 e 2 3 m2

exp ~ —I,

12 2m 27 'FII7 — s,

(3.19)
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which is again expressed in cylindrical polar coordinates
and exhibits the same features as (3.16). The drift motion
is shown particularly clearly by (3.18).

The gauge-invariant density of states can be obtained
by setting r=0 in (3.18), which performs the trace re-
quired in (2.18), and taking the Fourier transform from r
to E. The result is best written as a convolution,

with
' 1/3

(eF)
MJIt

=
2&l

This reduces to

(3.22)

nf(E)= f dE n~~(E)nz(E E)—. (3.20) 1 m

2E

' 1/2

B(E) (3.23)

2
2m (3.21)Ain(((E) =

The first part, n~~(E), is due to the motion parallel to 8
and is the density of states for a one-dimensional system
in an electric field Fll.

' 1/2 if Fl ——0, where B(E) is a step function. The "trans-
verse" part n~(E) is influenced by the Landau levels and
drift motion in the plane normal to 8:

eB "
1

n~(E) = g, exp
o (meBud)'.

[E ,'mu—d —(n+——,')co, ] E —
—,'mud —(n + —,')ro,

eBu
"

(eBu )'
d {. d

(3.24)

where H„(z) is a Hermite polynomial (following the nota-
tion of Abramowitz and Stegun ). If there is no com-
ponent of F perpendicular to B, in which case vd ——0, this
reduces to the well-known set of Landau levels,

(3.25)

IV. PERIODIC BANDS

We shall consider only a one-dimensional model for
simplicity and because this emphasizes the properties in-
duced by the electric field. The lattice constant is a, so
the dispersion relation E, ( k ) has period 2m /a in k; the
subscript t denotes a periodic ("tight-binding" ) band.
The energy now has an upper bound as well as a lower
bound (the parabolic band has only a lower bound). The
spectral function is given [using (2.27)] by

A, (k, r) =exp i f d—r's, (k+eFr'} . (4. l)—7./2

One might expect A, (k, r) to be periodic in r with the
period of Bloch oscillations, given by

2Kro= Eo=
I
eFa

I
(4.2)

( A, is, of course, periodic in k). Surprisingly, this is not

The 5 functions are broadened by the drift motion if
vd&0; their functional forms are those of the probability
density of the levels of a harmonic oscillator.

These results should be useful in analyzing transport in
strong electric and magnetic fields. An example of an in-
teresting process is "quasi-elastic inter-Landau level
scattering" (QUILLS) proposed by Eaves et a/. ,

' where
transport occurs by hopping from one Landau level to
another with the energy provided by the electric field.

We shall now abandon magnetic fields and investigate
the behavior of a periodic energy band in an electric field.

I

the case. Consider instead A, ( k, r+ 2ro ):
r/2+ ro

A ) ( k, 'r+ 27ro ) =exp i f — d r'c, ( k +eFr' .)

The integral can be reduced as follows:

Ip

IeF
I

'

(4.3)

(4.4)

where Ip is a constant independent of ~ and k because the
integral is over a full cycle of a periodic function:

Ip= dK Cf K
0

(4.5)

The part of the integral from r/2 ro to ——r/2 ca—n be
treated likewise. Therefore,

A, (k, ~+2')=e '
A, (k, r) .

—2ilo/I, eF
I (4.6}

Equation (4.5) shows that Io is the average energy in the
band. It may therefore be made to vanish by choosing
the reference of energy judiciously [i.e., by adding a con-
stant to s, (k)]. Equation (4.6) then shows that A, (k, r)
has period 2' in ~, and it can be verified that there is no
period of ~p. If we make a Fourier transform from ~ to
the gauge-invariant energy E, the resulting function
A, (k,E) will be a sum of 5 functions with spacing ,'Eo, —

not Ep, which is expected to be the spacing of the Stark
ladder.

This periodic behavior of A, is very diferent from that
in the absence of an applied field. In that case the spec-
tral function is given by

A, (k, r)=e (4.7)
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which shows that A, has a diferent period in r for each
value of k. By contrast, we see from Eq. (4.6) that A, has
the same period 2vo for all k when a field is applied. This
qualitative difference is blurred by scattering, which
causes A, (k, r) to decay for large

~

r
~

. The fact that A,
has the same period in ~ for all k is essentially a manifes-

I

tation of Bloch oscillations, showing that the motion of
electrons is periodic; in fact, the period of

~
A, (k, r)

~
is

~0, the period expected for Bloch oscillations.
Next, consider the density of states as a function of the

gauge-invariant energy E. In a periodic band the trace in
Eq. (2.18) becomes

n, (E)= f A, (k,E)= f f drexp i Er f— dr'E, (k+eFv')
27T —m/a 27'' '

2m —n/a 277 —r/2
(4.8)

which has an integral only over the Brillouin zone, not
over all k. If the integral over k is performed before the
Fourier transform from ~ to E, the resulting function of ~
has period rp rather than 2', thus ensuring that n, (E) is
a set of 5 functions with spacing Ep as one would physi-
cally expect. The density of states appears to consist of 5
functions even for infinitesimal fields, while it is a con-
tinuous function if the field is strictly zero. This anomaly
disappears if one considers the spectral function in the
presence of scattering. Roughly speaking, the 5 functions
are broadened by the scattering to a width I given by the
scattering rate. The peaks in n, (E) are well separated if
I «Ep, and the approximation of using 5 functions is
accurate. In the opposite limit of small electric fields,
where Eo &&I, the peaks merge together to form a con-
tinuous function and all trace of periodicity is lost. The
physical picture is that an electron is scattered before it
has had time to complete more than a small fraction of a
Bloch oscillation.

The density of states given by (4.8) can usefully be
termed a "Stark ladder, " but it is important to distin-
guish between this and the Stark ladder defined in Sec. II,
which had "rungs" of equal weight and extended from
—oo to ap. The ladder defined by (4.8) has rungs of vary-
ing weight, and does not extend far beyond the unper-
turbed bandwidth unless the applied field is very strong.
This will be made clear by an example.

A. One-dimensional cosinusoidal band

Consider a cosinusoidal band of the form

s, (k ) = —C cos(ka ); (4.9)

the bandwidth is 2C and the effective mass near the extre-
ma is m ' = 1 la C. The spectral function for this band is

w/2
A, (k, r)=exp iC f dr'cos[(k+eFr')a]

—t/2

sin( —,
' Epr )

=exp is, (k—) 1E (4.10)

This correctly reduces to

exp[ i e, (k)r]— (4.11)

A, (k,E)=f drexp i Er—e, (k)
sin( —,

' Ep r )

Eo

(4.12)

Set u =—,Eo~, and exploit the periodicity by splitting the
integral into pieces 2m long,

as F~O, with period 2mle, (k) in r, while its period is
4rrlEp =2' when F&0 as shown for the general case
above. Next take the Fourier transform, which returns
us to the gauge-invariant energy E,

=2 ~ E n. e, (k)
A, (k, E)= g exp 2nin, du exp i, u —, sinu

Eo .= 2Eo — 2Eo 2Eo
(4.13)

The summation can be treated separately, and the Pois-
son summation formula yields

where J„ is a Bessel function of the first kind. Thus,

g exp 2m.in,
n 0 1E A, (k, E)=2m g J„

e, (k)
1E

Eo
5 E—n

2
(4.16)

E=—,'Ep g5 E n—
2

(4.14}

e, (k)
=2m.J„

0

(4.15}

while the remaining integral is

e, (k)
du exp i nu —, sinu—7r 0

The spectral function is a set of 5 functions of spacing
—,'Ep, as asserted before. The Bessel functions J„(z) decay
rapidlyfor ~n

~
& ~z ~, or ~E

~
& ~e, (k)~. Thismeans

that A, (k,E) is mainly confined within the bandwidth

~

E
~

&C, but has exponentially decaying tails outside.
An interesting special case is k =+m /2a, the middle of
the band in energy, where e, (k)=0. Using the identity
J„(0)=0 for n &0, we see that
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A, (k =+a./2a, E)=2~5(E) . (4.17)
2.0 ,

A, (k,E) can be divided into two sets of peaks using the
relation for Bessel functions,

1.5-
= 0.02

J„(—z)=( —1)"J„(z). (4.18) 1.0-

This shows that the series of peaks with n =0,+2, +4, . . .
contributes an even function of E, while the series with
n =+1,+3, . . . is odd in E. This further implies that
A, (k, E) is generally two-signed; this is like A&(k, E),
but is unlike the spectral function in the absence of a
field. The peaks with odd n are vital to satisfy the sum
rules of Sec. II.

The density of states n, (E) is found from (4.8) and
(4.16) to be

0.5-
1

~ ~ a

i ::::. I'

E C=004

1
n, (E)=-

a
n = —oo

C
fl E

2

5(E—nEO), (4.19)
1.0-

0.5
which is a ladder with the expected spacing E0. It must
be stressed again that the energy argument E is the
gauge-invariant energy, not the "total" energy. It seems
to be difficult to give a precise physical description of E
because there is no classical analogue like the kinetic en-

ergy of a free particle, as there is for a parabolic band.
The concept of kinetic energy is generalized in quantum
mechanics to allow negative values during tunneling, as
shown by the densities of states in Fig. 1. The concept of
"band energy" needs to be generalized in the same way to
include the energies outside the original band shown in
the density of states (4.19). These correspond to electrons
tunneling into "classically forbidden regions" under the
influence of the applied electric field, and are illustrated
by the tails of the wave functions (2.11).

The density of states given by (4.19) is plotted against
energy in Fig. 2, using the dimensionless variables
aCn, (E) and E/C. The heights of the bars representing
the 5 functions are

C C
E0 " E0

2

(4.20)

which are the values that would be obtained if the density
of states were broadened into a smooth curve. This al-
lows a direct comparison with the density of states in the
absence of an electric field, but this way of plotting the
data unfortunately tends to give the misleading impres-
sion that the number of states in the band decreases at
large electric fields. The densities of states are symmetric
in E and, like A„exhibit tunneling beyond the edges of
the band. Note that the "Stark ladders" shown in Fig. 2
are largely confined within the original band (

I
E

I
& C)

and do not extend to + ~ as they would if "total" energy
rather than the gauge-invariant energy were used [com-
pare Eq. (2.12)]. The envelope of the 5 functions ap-
proaches the density of states in the absence of a field as
E0/C ~0, except for the oscillations due to the one-
dimensional nature of the system, discussed in Sec. III in
connection with nI(E).

The behavior near the edges of the band can be es-
timated using the asymptotic expansion for Bessel func-
tions in terms of Airy functions:

I i II Il il
= 0.1

0.5

-1.0 1.0
EIC

FIG. 2. Gauge-invariant density of states (bars) for a one-
dimensional periodic (cosine) band, for three ratios of the Stark
energy Eo ——eFa to the half-bandwidth C. The thin continuous
curve shows the density of states in the absence of a field for
comparison.

' 1/3

J,(u+u' z) — — Ai( —2' z)2

U

(4.21)

(Ref. 4, Eq. 9.3.23). Using this near the bottom of the
band, E = —C, we find that (4.19) can be approximated
by

n, (E)=
' 1/2

2m*
Ai

E —( —C)

x+5
pg 0

—n (4.22)

where
' 1/3

(
i EzC)ii3

2m
0 (4.23)

sets the scale on which the density of states decays out-
side the original band, and m*=1/a C is the e8'ective
mass at the bottom of the cosine band. The envelope of
(4.22) is exactly the density of states at the bottom of a
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0.0
-1.2

/.
-1.0

For a periodic energy band, in which case e(k)=s, (k),
the resulting functions A+(k, v) have period ro in r, in
contrast to the unmodified functions A(k, 7) which had
period 2T0. This is clear since if ~ is replaced by v+v.0 in
(4.24) this just adds one complete cycle of e, (k) to the
integral. In turn, the modified Fourier transforms
A, +(k,E) are sets of 5 functions separated by Eo. For
the cosinusoidal band,

Ejc

FIG. 3. Comparison of the density of states near the lower
edge of a cosinusoidal band (bars) with that of a parabolic band
with the same effective mass (thick curve). The strength of the
electric field gives Eo/C=0. 04, and the thin curve shows the
density of states for the cosine band in the absence of a field.

A, +(k, r)=exp i [sin(kakEor)+sin(ka}]. C
E0

Note that the modified spectral functions obey

(4.25}

one-dimensional band with efFective mass m*, given by
(3.7a). This is illustrated in Fig. 3.

=exp —i r'c +eF~'
0

(4.24)

B. Modified spectral functions

Our main purpose in calculating the spectral functions,
apart from obtaining the density of states, is to use them
in calculating scattering rates in a quantum-mechanical
transport equation (see KDW, Sec. IID). The peaks in

A, (k,E) at half-integral spacings of Eo may therefore
present something of an embarrassment, as we would ex-
pect scattering to be between rungs of the Stark ladder
and that the energies of the initial and final states should
differ by integral multiples of E0. This anomaly can be
removed by the introduction of modified spectral func-
tions, which KDW found to be more appropriate in the
construction of scattering rates. These modified func-
tions A +(k, ~) are defined in general (not just for periodic
bands) by

A +(k, r) = A (k+ —,'eF~, ~)

=exp —i ~'c. +—,'eF~+ eF~'
—r/2

A~(k, r)= —A ~ (k, ~} (4.26}

A~(k, E)=A~(k, E) . (4.27)

In the case of the cosinusoidal band,

00 C
A, +(k,E)=2~ g exp ki sin(ka )+nka

n= —oo
E0

xJ„5(E nEO), —C

0
(4.28)

which shows the expected spacing Eo of the 5 functions.

C. Spectral functions in real space

It is sometimes useful to have expressions for the spec-
tral functions in real space rather than k space. Consider
first

rather than the usual relation (2.29). This means that the
modified Fourier transforms A +(k,E ) will not be purely
real as is the case for conventional spectral functions; the
pair are related by

A(r ~)=f d
e' 'A(k, r)= f ~exp i k r f . d—z'e(k+eFr')dk;&., dk . ~/2

(2n ) (2n. )~ . . ~n— (4.29)

Note that r is a relatiue coordinate; there is no "center-of-mass'* coordinate because of the translational symmetry. Re-
strict attention to one-dimensional periodic systems. The periodicity of s, (k) means that the integral over k may be
split into segments of length 2n/a in the same way as the integral over v in (4.12). The result is again a sum over 5
functions:

A, (x,r)= +5(x na) f— dk exp i nka —f dr'e, (k+eFr')
2K 0 —r/2

(4.30)
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This contains a sum over 5 functions for the same reason
as the wave function (2.9) of the tight-binding model, and
should be regarded as an envelope function.

In the limit of large electric fields, A, ( x, r) becomes lo-
calized in space. Consider the integral over r' in (4.30).
This can be written as

A, (x,E)=2' g 5(x —a(m n—))
m, n = —oo

Eo C
&(5 E— (m+n) J

2 Eo

1 yk+ F~2d
( )

eI' k —eF/2
(4.31) xJ„ C

0
(4.35)

by making the substitution ~=k+eFr'. Now E, (i~) is a
periodic function, and its integral over one period is given
by Io [Eq. (4.5}), which has been chosen to be zero.
Therefore the part of the integral in (4.31) that covers full
periods of e, (v) vanishes. This means that the integral
does not grow monotonically as F (and therefore the
range of the integral) increases, but remains bounded.
The prefactor then forces the overall value of (4.31) to de-
cay as 1/eF at large fields. In the limit of very large fields
this term may be dropped completely and we find from
(4.29) the limit

lim A, (k, )r=
d exp(ik r)=5(r) .

dk
F ~ (2m)

(4.32)

This result shows that the spectral function becomes lo-
calized onto one site in very strong fields, and the Stark
states must do the same. The reason is best seen by tak-
ing a scalar potential. This induces a difference in energy
of Eo=

~

eFa
~

between adjacent sites. The amplitude for
tunneling between the sites falls drastically if this
difference in energy exceeds the bandwidth 2C. The
Stark states and spectral function then become localized
mainly onto single sites, and the sites are effectively iso-
lated from one another. The condition for this localiza-
tion to occur is

Eoy)C . (4.33)

In an ordinary crystal, where a =0.3 nm and C=2 eV,
this requires colossal fields of order 10' Vm '. Super-
lattices in semiconductors have much larger values of a,
around 10 nm, and smaller values of C, around 10 meV.
In this case fields need only exceed about 10 V m ' to
fulfill condition (4.33) and achieve isolation of the "sites."
Zener tunneling between bands is likely to be significant
under these conditions, however, and should be included.

For the example of the cosine band, the spectral func-
tion in real space becomes

A, (x, r) = g 5(x —na)i "J„sin(—,'Eor)2C

n 0
(4.34}

This has the usual period of 2' [although
~

A, (r, r)
~

has period ro]; one could instead use the modified func-
tion A,+(x,r) which has period ro The Bessel fun.ctions
J„(z) vanish at z =0, except for Jo, demonstrating that
the property (4.32} holds. We can also make the Fourier
transform to A, (x,E):

The density of states can be obtained from this using
(2.18), but the definition of the trace needs to be treated
with care in a periodic system. We must set x to zero as
usual, but must also replace the 5 function by a Kroneck-
er 5, making this step the equivalent of the finite integral
over k restricted to the first Brillouin zone in (4.8):

5(a(m n))~——5
1

a

The result reproduces the previous one [Eq. (4.19)].

(4.36)

D. Generalization to higher dimensions

It is trivial to generalize the above results for the densi-
ty of states to certain simple higher-dimensional systems.
An example is a superlattice grown in a semiconductor
where the periodic potential is in one direction only. The
energy band might be modeled with the form

e(k)=e, (k„)+ (k +k, ),
2m

(4.37)

e, (k)= —C[cos(k„a)+cos(k a)) .

The spectral function becomes

A( ,k)r=exp iC I dr'(cos[(k +eFr')a]—r/2

+cos[(k +eFr')a]I

(4.38)

(4.39)

sin( —,
' eF„ar )

—,'eF a
=exp i[—Ccos—(k„a )] X 0 ~ ~

7

(4.40)
where F and F are components of F and the ellipses
represent similar terms for y. We see that A, (k, r) is a
product of two functions; each of these has the same form
as the spectral function in one dimension (4.10), but the
two have different frequencies in ~. The Fourier trans-
form A, (k, E ) will therefore be a convolution of two
functions like (4.16), and the result is

with a cosine band for e, (k„). If an electric field is ap-
plied only along the x axis, the resulting density of states
is a convolution of that for E,(k, ) in a field with that of
free electrons in the yz plane; in this case each 5 function
of the one-dimensional density of states becomes a step
function of height m/2M . A similar result would be
obtained if the y and z motion were also governed by
cosine bands, provided that F were still aligned with x.

The analysis is more complicated if F is not along a
principal axis. Consider a two-dimensional "square" sys-
tem with cosine bands:
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A, (k,E }=2m g J
—C cos(k„a )

2eFzQ
J„

—Ccos(k a)
5(E —rn( ,'e—F„a) —n( ,'e—Fa)) .

2

(4.41)

If F„/F is rational, we can write

F pF Fy qF (4.42)

where p and q are integers, and p /q is in its lowest terms.
Setting E„=eF„a,the 5 function in (4.41) becomes

5(E—
—,
'

( mp + nq )E„) . (4.43)

V. CONCLUSIONS

We have presented a gauge-invariant formalism for
studying electrons in uniform electric and magnetic
fields. The gauge invariance is gained by basing the
theory on Green functions rather than on wave functions.
In particular, we have defined a gauge-invariant density
of states by choosing it to be a function of kinetic energy.
This density of states reduces smoothly to the usual result
as the electric field vanishes; it does not show the unphys-
ical discontinuous behavior that is seen when the ordi-
nary density of states and a scalar potential are used.
Perhaps the most important results are those concerning
the Stark ladder in a system with a periodic energy band,
which has an upper bound as well as a lower bound. We
have demonstrated the existence of this ladder —a densi-

ty of states that breaks up into a series of 5 functions—
without having to construct it explicitly by introducing
the electric field through a scalar potential.

Although we have concentrated on the spectral func-
tion and density of states in this paper, our main thrust is
towards the theory of transport in high electric fields.
KDW developed gauge-invariant transport equations,
but considered only parabolic bands. The band structure

In this case the spectral function consists of a discrete set
of 5 function in energy, although the 5 functions may be
very close together if E, is small.

If, instead, F„/F is irrational, the 5 functions in (4.41)
cover all real values of E densely and the periodic struc-
ture is lost; there are no Bloch oscillations or Stark
ladders, and no gaps in the density of states. As with the
limit of the electric field tending to zero, the mathemati-

cal distinction between rational and irrational values of
F„/F„will be blurred by scattering.

A severe limitation of this work, mentioned earlier, is
the restriction to a single band within the framework of
the effective Hamiltonian (2.1}. This implies particularly
the omission of Zener tunneling, which is expected to be
of great importance in high electric fields. There have

been several studies of electrons in rings subject to an
electric field, a simple example of an effectively periodic
system. The complexity introduced by Zener tunneling is
amazing, illustrated by the work of Blatter and Browne. '

The effect of Zener tunneling in more conventional sys-

tems has recently been studied by Krieger and Iafrate. "
We shall now consider briefly the implications of these

results for transport in high electric fields.

I

enters the scattering rates of the transport equation
through the spectral function, so we now have the in-
gredients to extend the theory of KDW to periodic ener-

gy bands. This is planned to be described in a further pa-
per, but some general remarks can be made now.

The transport equation should reduce to the
Boltzmann equation at low electric fields. This has
scattering rates that contain 5 functions to conserve ener-

gy of the form

5(e(k+q) —s(k) —Qq), (5.1)

which is for scattering from k to k+q by absorption of a
phonon of wave vector q and energy Q . The form of
(5.1) reflects the fact that k states form the natural basis
at low electric fields. There is no sign of periodic motion
of the electrons —it does not matter whether e(k} is
periodic or parabolic —which implies that the discrete
nature of A, (k, E } must be blurred away by scattering in
the same way as for n, (E) at low electric fields, discussed
in Sec. IU. The scattering rates must therefore be calcu-
lated using spectral functions that themselves contain
scattering; in other words, it is vital to calculate the
scattering rates self consis-tently

In high electric fields the discrete nature of A, (k,E}
should be manifested in the scattering rates. These would
therefore be expected to contain 5 functions of the form

5(nEO —Qq) (5.2)

instead of (5.1), and correspond to an electron jumping
between rungs of the Stark ladder. Electrons make many
Bloch oscillations between scattering events in such
strong fields, so k states are no longer an appropriate
basis set. Localized Stark states, like those derived for
the cosine band [Eq. (2.11)],provide a better description,
and it may be clearer to use a transport equation in real
space than k space.

There is an important difference between these two re-
gimes of transport. In low fields, the "natural" basis is of
k states which are current carrying, and scattering im-
pedes transport. The Stark states that are appropriate in
high electric fields are localized in space and in this case
scattering between levels promotes transport. Saitoh' in-
troduced a theory of transport based on a Stark ladder
explicitly constructed in a scalar potential, and his work
has been extended by Sawaki and Nishinaga, Sawaki, '

Holden and Debney, and Movaghar. It is extremely
difBcult to treat the limit of low electric fields in this for-
malism, because huge numbers of Stark states then over-
lap strongly in space. Krieger and Iafrate' have recently
taken the opposite point of view and exphcitly used a vec-
tor potential throughout, extending the work of Levin-
son and Calecki and Pottier to many bands; this has
the advantage that it is straightforward to extend the
theory to fields that vary in time (but not space).
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We plane to show in a further paper how the gauge-
invariant transport theory of KDW and the present work
can be combined to provide a framework for describing
transport in periodic bands that works over the whole
range of electric fields, from linear response to the behav-
ior dominated by Bloch oscillations in very high fields.
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