
PHYSICAL REVIEW B VOLUME 38, NUMBER 1 1 JULY 1988

Realistic treatment of the self-energy formalism in heavy-fermion metals:
Application to superconducting phases of CeRu2 and Ceos2
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A self-energy approximation is applied for obtaining the electronic structure of these two super-
conducting heavy-fermion systems and we explain some of their main experimental features by
analyzing the calculated total and partial density of states. The superconducting mechanism is dis-

cussed and we determine relations between the density of states and the superconducting parame-
ters.

I. INTRODUCTION

The one-body scheme deduced from the band-structure
models can explain the properties of the heavy-fermion
(HF) systems. ' The main difficulty for obtaining the
electronic structure of the HF compounds is to find a po-
tential for determining the dynamics of the heavy elec-
trons. ' This potential should reconcile the strong corre-
lation of the f electrons with the translational symmetry
of their Bloch wave functions (i.e., we should consider
that the HF systems are f lattices and not an incoherent
aggregation of impurities). In this paper we analyze the
electronic structure of two HF compounds (CeRu2 and
CeOs2} determined by means of a self-energy procedure.
These compounds have received a great deal of experi-
mental attention. However, the theoretical interpre-
tation of these results is in controversy, perhaps due to
the deficiency of a clear systematic procedure for know-
ing the electronic structure of the HF systems. ' The
main feature of the density of states (DOS} of these two
materials is the existence of a pseudogap between two 4f
peaks close to the Fermi level. This pseudogap has been
experimentally detected by thermal, magnetic, and elec-
tric measurements ' and electron spin resonance, and it
is related to the superconducting mechanism of these
compounds. In the second part of this work we perform
a study from a set of equations which relates the descrip-
tive parameters of the density of states curve with the
physical variables of the superconducting behavior.

CeRu2 and CeOs2 are two nonmagnetic and supercon-
ducting HF systems which present intermediate valence,
the f-electron count being less than one. The mechanism
of the attractive electron-electron interaction is an open
question since there is not a clear reason for considering
these compounds either as BCS or HF superconduc-
tors. ' On the other hand, CeRu2 and CeOs2 are two
similar compounds since their respective ligand atoms
(Ru and Os) are isoelectronic (4d Ss and Sd 6s ) and the
interatomic f-d hybridization is the main cause for the

I

appearance of the coherence pseudogap. These two facts
produce similar DOS in both compounds. However,
some subtle differences in their respective DOS in the vi-
cinity of EF are the cause of the difference between the
superconducting properties of these two Ce systems.

II. METHOD OF CALCULATION

We start from the multiband Hubbard Hamiltonian

c,I N' g (f ——
~
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(3)

i.e., we assume that the f states are band states with more
or less E(k) dispersion and they can be more or less hy-
bridized with s, p, and d states.

~ f ) are f orbitals
defined in all f electron atoms and whose symmetries are
compatible with the crystal. The Hamiltonian (l) is siini-
lar to the periodic version of the Anderson Hamiltonian
since the f-d hybridization terms of this Hamiltonian are
included in the calculation of the c.k spectrum.

Substitution of (3) into (l) leads to

H = g ek~ck~ck~+ —g c(fc(f c(f~c(f,t (l)
k, a i,f,f'

where the energies ek are obtained from the following
equation:

[—V + VMT(I —Pf)+ VMTPf]yk (r}=ek yk (r), (2)

where VMT is a mu5n-tin self-consistent potential which
contains no f-f repulsive interaction in order to avoid re-
petitions when considering the f-f Coulomb correlation.
VMT is the full muffin-tin self-consistent potential. PI(I)
stands for the orbital projection operator corresponding
to 1 =3 (unity) (i.e., Pf g~ 3m ) (——3m

~

and
I =pi

~
1m )(1m

i
). The operators c,f and c,f are

defined as
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a, P, y, 5 are the band indices. The interaction line is defined as

&k~ k'PI V
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The U parameter of this equation stands for the totally
screened Coulomb correlation energy. Several pro-
cedures for obtaining the U energy can be drawn from
the literature. " ' All of them determine U by calculat-
ing the difference between the total energies of the crystal
with two different configurations, i.e.,

U = N '{[E-(4f"+')—E(4f")]
[E(4f—") E(4f"—')]],

where E(4f"+')+E(4f" ') is the total energy of the
crystal when considering an electronic transference of
one f electron between two f electron atoms in each unit
cell, and E(4f") is the same energy before the electronic
transference. Then, the Coulomb correlation energy has
the meaning of the effective interaction between the local-
ized 4f electrons. Therefore, this definition of U can jus-
tify the consideration of a first-order approximation for
the self-energy.

This self-energy in this one-line approximation be-
comes

M(r, r')= U g (n —(n& & )q&(r)y&(r'),
f

where n = g& ( n& &. Equation (10) can also be written as

[—V + VM~(r)]pz (r)+ fd r'V(r, r')+„(r')

=e„y„(r), (12)

where V(r, r') takes the form

V(r, r')= g { U(n —(n~&)
f

—[VMr(r) —VM~(r)]]y~(r)qJ(r') .

When V=O the resulting equation is the standard local
density (LD) band Hamiltonian.

The problem in HF systems raises when an orbital f is
partially occupied in all f electron atoms of the crystal.
Since the f bands arising from the totally occupied orbit-
als can be treated by means of the local density formal-
ism. ' ' V(r, r') can be also written as

M r(k)=(ka
'

U g ((n&. & {f &(f
~ff'

—&nay & If &&f'
I

) Iky

where
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V(r, r'}=V„,(r, r'}+X(r,r'),
where

X(r, r')= g U(1 —(n&&)yJ(r)q&(r'),
f

and

V, (r, r')= g { U(n —1)
f

(14}

(15)

ho(r)yz (r)+ JM(r, r')yz (r')d r'=ez yz (r), (10)

where ho(r) is the band Hamiltonian corresponding to
[i.e., Eq. (2)]; and M (r, r'} is the real space representa-

tion of M(k). This potential M(r, r ) is given by

(n&&=(nff &, (g)

G (q0 )=i(c c

The terms ( nff'& —0 if f&f' because of the compatibili-
ty of the

~ f & orbitals with the crystal symmetry.
The Green function is a matrix whose dimension is the

number of bands with states containing l =3 component.
This matrix can be obtained from the equation

G(k, co)=[I—Go(k, a))M(k)] 'Go(k, co),

nka 1 —nba
[Go(k, co)] p

—— + 5 p,
Q) —Qga —l 5 CO —gga+ l 5

is the energy spectrum of the noninteracting system.
The poles of the function detG(k, co) are the new spec-
trum (ez ) of the interacting system. The new electron
wave functions are obtained by means of the following
Schrodinger-like equation:

—[VM~(r) —VM+(r}]]fy(r}%y(r') . (16)

The difference between VMr(r) and VM~(r) gives the lo-
cal Coulomb repulsion potential for an f electron pro-
duced by the other n —1 electrons. Therefore, this
difference should be equal to U(n —1) according to the
definition of U. This is not exact because the ways for ob-
taining the muSn-tin potentials and U are not equal. In
addition, as we say above,

d r'V„, r, r'
q&

r' =hV,„, r y& r, 17

where b, V,„,(r) is a correction to the local exchange and
correlation potential V,„,(r). b V,„,(r) and V,„,(r) are
included within VM&(r) and EV,„,(r} can be arbitrarily
small if one conveniently determines the potential

In our method, we calculate the radial wave functions
of the orbitals q&&(r) at the energies of the eigenvalues.
This fact implies that X produces effects in each yz (r)
state according to its spatial localization since the locali-
zation of the f orbitals strongly depends on the energy.
The radial part of these functions y&(r, ez ) are obtained
by means of the renormalized atom approach" ' and
are truncated at the muffin-tin radii of the f-electron
atoms. Therefore, Eq. (12) can also be written as
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with

X(r, r', e«)= U g (1—(nI ) )qrf(r Eg~)f f(r', e~~) .
f

(19)

An equivalent equation to (9) has to be developed to in-

troduce the potential X(r, r', ez, } instead of M(r, r').
Then Eq. (9) will read

G(k, a))=[I—Gs(k, co)X(k,co)] 'Go(k, co), (20)

where Go is the Green function corresponding to a spec-
trum deduced from the standard LD potential (i.e., with
X=O). The potential X commutes with all crystal sym-
metries of the point group if the terms ( nI ) are equal for
all bases of each f subspace of the decomposition
D7(21+ 1)=I ze1,5@I 2& (this decomposition corre-
sponds to the groups 0& ). Moreover, X is compatible
with the translational crystal symmetries because ( nI ) is

equal for all f-electron atoms.
The main effect of this X correction is to split the

diff'erent f symmetries according to their occupation
number (nI) producing a multiple Hubbard splitting
whose average interband separation is —U ( ( nI )
—(nI ) ). This splitting rises because the nonlocal term
depends on ( n& ). On the other hand, the appearance of
the ( n& ) 's in the self-energy is due to the exchange dia-

grams which only produce nonvanishing effects in the
case of the degenerated f symmetries. Equations (8), (18),
(19), and (20) are solved self-consistently. For the zero
iteration, we obtain the parameters (nI) from Eq. (8)
considering Go instead of G. So, we determine X and G
for the following iteration. For successive iterations the

(nI )'s are self-consistently obtained. The technical de-

tails of the band-calculation method for solving similar
equations to (18) are given in Refs. 15-17.

An important point is the conservation of the Lut-
tinger theorem in our calculations. This theorem implies
that the k-space volume occupied by the f states (or

f +d states if there is fd hybridization) below EF is in-

dependent of the value of the U energy. In our results the
f-electron count is conserved for U&0 with respect to
the case U=O and this implies the verification of this
theorem, since we consider the homogeneity of the
charge state in all f-electron atoms. The small variations
of the f-electron count versus the U energy are produced
by the dependence of the hybridizations on U. The mod-
el described in this section is similar to that given in Ref.
18 and the self-energy functional of (19) accomplishes the
two conditions required in Ref. 19; i.e., HO+X is Hermit-
ical and X conserves the f-electron count n

III. ELECTRONIC STRUCTURE

We analyze the electronic structure of CeRuz and
CeOsz from ez deduced from Eq. (18) and the DOS and
partial f-electron DOS determined by means of the
tetrahedron division method. The band structures of
CeOs2 and CeRu2 are two clear and similar examples of

[—V' + VM~(r) ]yz (r)+ Id «'X(r, r', e„)gz (r')

=eq qq (r), (18)
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FIG. 1. Band structure of CeRuz performed with U=0. 53

Ry.

fd bands with strong interatomic hybridization (see Figs.
1 and 2). In both figures, the bands from the conduction
bandbottom up to 0.7 Ry arise from 5d orbitals of Os and
Ru, respectively, which gradually become hybridized
with the f orbitals of Ce which are located just above EF
in Ceosz and at EF in CeRu2. As a consequence, the f
count is smaller than the unity in CeOs2 (-0.38 evenly
divided per spin direction) and more close to 1 for CeRuz
( -0.72 also evenly divided per spin direction).

Figures 3(a) and 3(b) and 4(a) and 4(b) show the DOS
and the f-electron DOS of CeRu2 (Ceos2), respectively.
The splitting between the occupied and unoccupied f
symmetries produced by the potential X yields different f
peaks in the DOS and f-electron DOS. There is a clear
similarity in both DOS; however, the location of EF is
different. In CeRu2, EF lies at the minimum of the DOS
between two f structures arising from the hybridization
of the f orbital R3(

~

r
~

)xyz/«and the d orbitals of Ru
[see Figs. 5(a) and 6(a)]. In Ceos~, EF is just below the
first peak of the double f structure arising from the same
fd hybridization [see Figs. 5(b) and 6(b)].

The DOS obtained for CeRu2 is in agreement with the
available experimental data. Actually, the XPS results
given by Allen et al. and Gunnarsson et al. present an

f structure close to (and below} EF and a value of n -0.8

which is in agreement with our results. Moreover, the
specific heat determined by Sereni ' and Hiebl et al. 5 im-
plies a DOS at the Fermi level of around 28 02
states/[(Ry)(cell)(spin direction)] which also agrees with
our results -31 states/[(Ry)(cell)(spin direction)]. In ad-
dition, the pattern of a pseudogap for the DOS where EF
is located [see Figs. 5(a) and 6(a)] reconciles the small
value of specific heat of CeRu2 with the presence of an f
structure close to EF.

We do not dispose of XPS of CeOs2 to be compared
with our DOS results. However, Schlott et al. suggest-
ed from electron spin resonance (ESR) measurements
that the location of EF just below an f structure is the
main cause for the nonlinear behavior of the ESR
linewidth versus the temperature which is in qualitative
agreement with results of Figs. 5(b) and 6(b). On the oth-
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er hand, the value of the f-electron count (0.19 per spin
direction) and the corresponding Ce valence (3.6) is in
agreement with the magnetic susceptibility and specific-
heat measurement given by Hiebl et al.
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IV. STONER INSTABILITY
FIG. 4. (a) f-electron DOS of CeRu2. (b) f-electron DOS of

CeOs2.

The Stoner enhancement factor (Fs ) corresponding to
the paramagnon effect has great relevance in the specific
heat, magnetic behavior, and the superconducting mech-
anism of the HF compounds. This factor is given by

Fs ——[1 IN(EF)]—
where N(EF ) is the DOS at EF, and I corres. ponds to the
repulsive interaction between those electrons located near

EF. One can consider the HF system constituted by a
mixing of two Fermi liquids, one of them corresponding
to the f electrons and the other, to the nonlocalized elec-
trons. Then, it is necessary to differentiate the HF elec-
trons at EF [Nf(EF)] from those non-HF electrons
[N (EF ) Nf (EF ) ]. In —the HF liquid, the f states are hy-
bridized with other extended bandstates, then their Bloch
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wave functions
~
ka ) can be considered as

~

ka ) =~n
) kf ) +& I n~ kc ), — (21a)

where
~
kf ) is a state belonging to a pure f band and

~

kc ) is an extended conduction bandstate. So,

I = ( kak'a'
~

V
~

kak'a') = Un (21b)

U being the Coulomb correlation energy, and n being the

f count per spin direction in each f-electron atom for a
nonmagnetic HF system. Therefore, Fz for the HF liquid
can be written as

Fs ——[1—Un Nf(EF)] (22)

In the two cases analyzed in this paper, the values of
U, n, Nf (EF ), and EF are given in Table I, and the values

of Fs for CeRuz and CeOs2 are 13.4 and 1.2, respectively.
This means that CeRuz is closer to the magnetic transi-
tion than CeOsz. Actually, for Un Nf (EF ) = 1, Fs
diverges and then a spontaneous magnetic transition
occurs, since the electronic susceptibility takes the form
X=XOFs, Xo being the electronic susceptibility of the
noninteracting systems. It is remarkable that the sign of

The superconductivity in the Ce systems is an open
question. This question is more intriguing in CeRu2 and
CeOsz than other Ce compounds since the optical spec-
troscopies detect the f structures close to EF, which
could imply an HF superconductivity, and, however, the
tunnel spectrum ensures a superconducting gap around
1.6 meV for CeRu2 which points out a tendency towards
the BCS superconductivity. Our results do not clarify
this dilemma a priori since close to EF there is a similar
number off states and other extended states, and this in-
duces a supplementary difficulty for discerning the super-
conducting mechanism.

The governing parameters in the superconductivity are
5 and T& and the relation between them in CeRu2 is
26=7ktt Tc (Ref. 5) which is double that foreseen by all
BCS theories. Therefore, it is logical to look for other ex-
planations for the electrical behavior of these two com-
pounds.

In this section we shall discuss, for the electronic struc-
ture, the possible mechanism for the superconductivity of
CeRu2 and CeOs2. We start from the superconductivity
gap equations and the formulation of the attractive e-e
interaction according to the Anderson-Brinkmann
theory:

~k(0) = —X Vk -) & c-k ck )o
gl

T) X Vk' k(C kck )T &

k'

(23)

(24}

Un [1—Un X(k k' )—]2
(25)

where ( )0(( ) T) stands for the expected value for a zero
( T) temperature; X is the magnetic susceptibility corre-
sponding to the ck spectrum deduced with the method of
the former section.

The evidence of a gap in the I-V curves of the tunnel
current in the SM devices of CeRu2 (Ref. 8) leads to con-
clusions in the reasonable validity of the isotropic condi-
tions for the pair potential. Therefore, we assume that
hk-b and Vk Vp where 6 is the experimental value
which we consider as an average value of b&, and Vp ls
the pair potential in the Brillouin-zone center ( I ). Equa-
tions (23), (24), and (25) can be written as

Fz is positive in both CeRu2 and CeOs2, and this implies
that the HF superconductivity is possible in both cases.
Under hydrostatic pressure, U remains almost constant
but n and Nf(EF) become substantially modified. There-
fore, the formation of localized magnetic moments can
occur in CeRu2 and CeOs2 when applying the external
stress.

V. SUPERCONDUCTING PROPERTIES

N(E, ) Nf(EF ) U

TABLE I. DifFerent numerical results concerning the DOS of
CeRu2 and CeOsz. Energies of EF are given in Ry. The param-
eter n stands for the f-e)ectmn count.

V0~N()de
( &2+g2 )

1/2

Vp a
tanh

2 —Ace C

(26}

CeRuz
CeOs2

0.7540
0.7572

31.39
64.04

0.719
0.376

14.218
9.607

0.53
0.55

—1 Un
Vp ——

[1—Un Nf(EF)]
(28)
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fun is the bandwidth around EF where the pair potential
is nonvanishing and Nf(e} is the partial f-electron DOS
previously calculated. %e determine Vo by means of Eq.
(28) and according to this expression both CeOs2 and
CeRu~ can be superconductors since Un N&(Ez) is less
than unity in both cases.

~
Vo

~
is larger for CeRu2 than

for CeOs2 (0.22 Ry for CeRui and 0.012 Ry for CeOsz}
due to the different values of n and Nf(E+). The experi-
mental values for 5 and T& for CeRu2 are 1.6 meV and 7
K, respectively, and the value of Ace can be calculated ei-
ther by Eq. (26} or (27). Then, the simultaneous
verification of (26) and (27) iinplies that the value for the
pair potential Vo can be correct. The differences between
Eqs. (26), (27), and (28) from the corresponding BCS
equations are the consideration of Nf(e} within the in-
tegrand instead of N(e) Nf(e—) and the way for obtain-
ing the pair potential. Besides, the large gradients, versus
the energy, in the f-electron DOS hinders consideration
of the Nf(e) constant in the integration interval, as it is
considered in the standard BCS model.

We have obtained fico (0.6 meV in CeRu2) from Eq. (26)
considering the experimental value for 5 and the Vo de-
duced from (28). We wish to remark that i}lco is so small
because Vo is very large. Taking into account this A~ in
(27), we obtain a Tc of around 9 K which is 30% larger
than the experimental value. If we determine fico from
(27) considering the experimental value for Tc and the
above-mentioned Vo, we obtain b, =1.2 meV which is
25%%uo less than the experimental data. The differences be-
tween calculated and experimental values for 5 and T&
can be attributed to anisotropy in the pair potential
which is neglected in these calculations. The same
analysis for CeOs2 seems to exclude the superconducting
behavior for the cubic Laves phase of this alloy since we
have not found any T& for which these equations were
compatible. Some authors have also stated the inex-
istence of a Tc from resistivity measurements in this com-
pound.

From the former discussion, we conclude that CeRuz
can be a HF superconductor. Besides, the pseudogap at
E~ in the f-electron DOS is an important feature for
finding the attractive pair interaction. Actually, if E+ is
located in the f peaks, as it is in the DOS determined by
local-density formalisms, Nf (E~) is much larger than the
value that produces the Stoner instability [i.e.,
1= Un Nf(E~)]. Finally, we have to recognize that the
extreme sensitivity of the Fz factor before variations of
the f-electron count and Nf(E&) requires a great pru-
dence in the quantitative conclusions.

VL FLUCTUATION OF THE fCOUNT

In this section we analyze the relation between the
properties of the charge-density fluctuation (CDF} and
the superconducting instability of the HF systems. The
CDF becomes defined by the fluctuation of the f-electron
count (hn) This is a p. arameter with a crucial influence
in both the magnetic order and the appearance of the su-
perconducting transition in the HF systems. bn can be

The quantum indetermination hn implies a supplemen-
tary Coulomb correlation energy for each f site defined
as

hE, = ,' U—(hn) (30)

The tendency of the f systems is towards the minimum
indetermination, i.e., b, n ~0. This implies that the f or-
bitals tend either to the total occupation or total unoccu-
pation; however, this tendency is compensated for by the
variation of the VMT before the changes in the f count
produced by the minimization of the term hE, . For the
cases with En+0, different instabilities such as Kondo,
magnetic and superconducting transitions can appear.

In the Ce systems crystallizing in cubic symmetry and
with a 4f" configuration between 1 and 0, the f electrons
are localized in the f orbital XYZ because of the nonlocal
effects defined in Eq. (19). This occurs in the two cases
studied in this paper since ( nx„z~ ) = ( nxrz ~ ) =0. 19
(0.36) for CeOs2 (CeRui) (it must be remembered that
both alloys are nonmagnetic at room pressure}. This im-
plies that both CeRuz and CeOs2 are two charge-density
fluctuators whose indetermination in the f count is

bn = 'g {~nxrz~~ ~nxrz~) =0.66 and 0.56,

respectively [the values for ( nx„z ) are determined by
expression (8)]. The maximum value of b, n for a nonmag-
netic Ce systems is 0.71 which corresponds to the case of
(nx„z ) =0.5. Therefore, the valence fluctuation for
these two compounds is close to the maximum and larger
in CeRu2 than in CeOs2.

There is an intriguing correspondence between the in-
determination of n and the appearance of the HF super-
conductivity. When b, n =0, the f count tends either to 1

or 0. For the cases with n = 1, ( nx„z )~ 1 and
( nx„z )~0 since this is the only case for which
b n =0. This fact implies a magnetic order and the bands
are spinbands occupied by one electron. In this situation,
the X potential shifts down (up) the spinbands arising
from the orbital XYZo (XYZ —cr ) and then Nf(E+)~0,
hindering the appearance of the HF superconductivity
(all these facts occur in y-CeA12). On the other hand,
the shift down suffered by the occupied spinbands leads
to an increase of the f localization and a decrease of the
fd hybridization which is also coherent with the interdi-
tion of the HF superconducting state. Moreover,
Nf ( Ep }=0 implies that Fz is close to unity so that the
Stoner transition is forbidden. When En &0, E~ is locat-
ed near the f structures of the DOS, the magnetic order
usually disappears and the f-electron DOS can be such
that Eqs. (26}, (27), and (28) are compatible for a finite
value of T& as it occurs in CeRu2.

determined by means of the indetermination of the
operator n =gf cfcf and this is given by

(hn) =(n) —(n )= g((nf) —(nf) )

f
(29)
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