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Strictly localized states on a two-dimensional Penrose lattice
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Infinitely degenerate states at an energy E=O on a two-dimensional Penrose lattice are investigat-
ed in a tight-binding model where atomic orbitals are located at vertices of rhombuses. The states
with E=O are all strictly localized and have amplitudes only on some specific vertices, which are
three-edge vertices and some non-three-edge vertices. A lower bound on the fraction of them is cal-
culated analytically as —50r+ 81 =9.83 X 10 ' [r=(&5+1)/2], which is conjectured to be the ex-

act fraction.

I. INTRODUCTION

There has been much interest in quasicrystals. ' Since
the quasicrystalline phase is characterized by quasi-
periodicity and long-range-bond orientational order, the
physical properties of quasicrystals are expected to be
quite different from both periodic and random systems.
Several theoretical models had already been investigated
before the discovery of the real quasicrystals, ' i.e., a one-
dimensional (1D) Fibonacci lattice and 2D (Refs.
8—10) and 3D (Ref. 11) Penrose lattices. In these lattices
there is an upper bound of distance to find an exact copy
of any original pattern of a finite size, which is called
Conway's theorem. From these points of view, they
should be distinguished from incommensurate structures
such as the Harper model.

Electronic structures of the 1D Fibonacci lattice have
been investigated extensively. The numerical and
analytical studies showed that the energy spectrum is a
Cantor set and that wave functions are critical, namely
neither localized nor extended. On the other hand, the
2D Penrose lattice has not been much investigated. In a
recent work' we argued that exponentially localized
states do not exist in a system which satisfies Conway's
theorem. This general statement is consistent with
Sutherland's self-similar wave function' and other works
on 1D Fibonacci and 2D Penrose lattices. ' ' Using
this statement and numerical results we conjectured that
the energy spectrum of the 2D Penrose lattice is singular.

Another singular feature of the electronic property on
the 2D Penrose lattice is the existence of states whose de-
generacy is proportional to the system size. These states
were first pointed out by Semba and Ninomiya' in the
center model' and independently by Kohmoto and Suth-
erland' in the vertex model. ' Recently we investigated
these infinitely degenerate states in the center model and
found two different kinds of states at the same energy. '

One is called confined states and they are strictly local-
ized without tails. The other is called string states, which

appear on some strings of rhombuses with one three-edge
vertex and which are self-similar and fractal.

The existence of confined states is mainly due to the lo-
cal connectivity of the 2D Penrose lattice. On the other
hand, the string states are strongly influenced by its glo-
bal configuration. The existence and its degeneracy of
both states are sensitive to the decoration of the lattice
and other details. We found confined states in other 2D
lattices, either quasiperiodic or periodic lattices. ' A sim-

ple example of the periodic lattice with confined states is
the periodic Penrose lattice. ' In 3D lattices and the real
quasicrystals it is not clear whether confined states exist
or not.

In this paper we analyze the infinitely degenerate states
at E =0 in the vertex model using the basic idea of Ref.
18. We show that all states are strictly localized, i.e.,
confined states, and that there is no correspondence of
string states in the center model. In Sec. II we define the
model Hamiltonian and show the general character of
confined states. Various explicit wave functions and an
exact lower bound of the fraction of confined states are
presented in Sec. III. In Sec. IV the fraction is estimated
by another method. Section V is a summary.

II. LOCALIZED STATES AND FORBIDDEN SITES

We use a tight-binding Hamiltonian on the 2D Penrose
lattice. Atomic orbitals are placed on vertices of rhom-
buses and we call this model a vertex model. An electron
can hop only to nearest-neighbor sites (vertices) which
are connected by the edges of rhombuses and we set all
transfer integrals to unity. Then the Schrodinger equa-
tion for a wave function

~

4 ) =g, 4,
~

i ) with an energy
Eis

(2.1)

where the summation is over nearest-neighbor sites.
Since the basic units of the lattice are rhombuses, the lat-
tice can be divided into two sublattices. In Eq. (2.1) +t
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on the left-hand side and +; on the right-hand side be-

long to different sublattices. If we change the sign of the
wave function on one sublattice, the resulting wave func-
tion becomes an eigenfunction with an energy —F.
Thus, the energy spectrum is symmetric with respect to
F. =0. Moreover, for the states at E =0, since the right-
hand side of Eq. (2.1) vanishes, the Schrodinger equation
of each sublattice is independent, i.e., bipartite.

For this model it is known that there exist infinitely de-
generate states at E=O. We will show that these states
are also strictly localized and hereafter we call them
confined states. Kohmoto and Sutherland' found some
of these states (Fig. 1). The state in Fig. 1(a) is denoted

by type 1 and that in Fig. 1(b) by type 2. We refer to
them as KS-ring states because the supporting regions of
them form rings. They argued that the fraction of
confined states is f, =0.0557 under the conjecture that
all confined states have amplitudes only on three-edge
vertices (K and Q by de Bruijn's notation'n). But this
conjecture is incorrect and, as we will show in the follow-

ing, there exist the confined states with amplitudes on the
non-three-edge vertices (S, S5, and J). In the center
model which has atomic orbitals on the centers of rhom-
buses, both confined states and string states exist at
E =+2. We showed all eigenstates with E=+2 explic-
itly, and calculated an exact fraction of them. ' In the
following, we apply the same idea and show an exact
lower bound on the fraction of the confined states for the
vertex model.

We calculated all eigenstates with E =0 numerically to
specify the character of confined states. We used a lattice
with 6545 rhombuses, which has the fivefold rotational
symmetry. Because of nonperiodicity of the Penrose lat-
tice, some nontrivial boundary condition is necessary.
We used the fixed boundary condition, namely the wave
function vanishes outside the lattice. These boundary
conditions cause a crucial influence on almost all eigen-
states. However, confined states are less affected by the
boundary conditions, because their extents are essentially
finite regions.

From the result of these calculations, we found that
there are specific sites on which any wave function with
E =0 vanishes (Fig. 2). We call these sites forbidden sites
and others allowed sites. Except in the neighborhood of
S vertices and S5 vertices, three-edge vertices are allowed
sites and non-three-edge vertices are forbidden sites. To
understand the structure of forbidden and allowed sites,
we must consider the structure of three-edge vertices in
the 2D Penrose lattice, which we previously discussed in
Ref. 18. The results are as in the following.

(1) Any rhombus has one or two three-edge vertices.
(2) All rhombuses with one three-edge vertex are con-

nected by strings and there are no end points in a string.
(3) The smallest strings are five fat rhombuses around S

or S5 vertices and we call them zeroth S strings and
zeroth S5 strings, respectively. (Strictly speaking, the
zeroth S string is not really a string defined above, but we
use this notation in the present paper simply for conveni-
ence. )

(4) Strings are generated by 2n-fold deflation of the
zeroth S (S5) strings and we call these strings the nth S
( S5 ) strings.

From Fig. 2 we observe that non-three-edge vertices on
nth S (S5) strings for n & 2 (n & 1) are forbidden sites.
These forbidden sites on strings are connected by bold
lines in Fig. 2. These connected forbidden sites divide the
whole lattice into finite independent parts. Thus we can
treat Eq. (2.1) in each finite region surrounded by strings
and all eigenstates with E =0 are confined in them. In
the finite region, Eq. (2.1) splits into two groups, and each
of them corresponds to one sublattice. Figure 2 shows
that, in each region surrounded by strings, confined states
exist on one sublattice and that all vertices on the other
sublattice are forbidden sites. Moreover, the sublattice
which has confined states changes from one to the other
on strings. From these observations we can summarize
the structure of forbidden and allowed sites as in the fol-
lowing.

FIG. 1. The confined states found by Kohmoto and Suther-
land [{a) type 1 and (b} type 2]. The numbers on the vertices
represent the amplitudes of wave functions. Since confined
states always sit on one sublattice, the vertices on the other sub-
lattice are shown by solid dots.

Rule 1.1. On nth S (S5) strings for n & 2 (n & 1), non-
three-edge vertices are forbidden sites. One-dimensional
alignments of these forbidden sites divide the whole lat-
tice into finite independent parts.

Rule 1.2. In an independent part, one sublattice con-
sists of forbidden sites and the other consists of allowed
sites. The sublattice of forbidden sites changes from one
to the other on strings.
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In Fig. 2(a) these rules are broken near the boundary part
because of the boundary condition. It seems that the
rules are not satisfied at the central parts of the second S
strings and of the first S5 strings, namely some "allowed"
sites have zero amplitudes of a wave function. Though
we can use an additional rule to explain them, it is more

suitable to consider that these allowed sites have just zero
amplitudes of the wave function as a result of solving the
Schrodinger equation.

Between strings, since each rhombus has two three-
edge vertices which locate diagonally, one sublattice con-
sists only of three-edge vertices. Moreover, it is easily
found that the sublattice constructed by three-edge ver-
tices changes from one to the other on strings. There-
fore, rules 1.1 and 1.2 can be rewritten as in the follow-
ing.

Rule 2. Almost all three-edge vertices are allowed sites
and almost all non-three-edge vertices are forbidden sites.

Exception 2.1. In the region surrounded by a first S
string, five three-edge vertices are forbidden sites and six
non-three-edge vertices (S,J) are allowed sites.

Exception 2.2. In the zeroth S5 string a non-three-edge
vertex (S5) is an allowed site.

If we ignore the above exceptions, this rule is just the
conjecture of Kohmoto and Sutherland. ' We will see
later that these exceptions crucially influence the fraction
of confined states.

Now we prove these rules. Rules I and 2 are
equivalent, so we treat rule 2. First, we prove the next
two theorems.

Theorem 1. Around S5 vertices the solid-dotted sites
in Fig. 3(a) are forbidden sites.

Theorem 2. In the region surrounded by strings, two
adjacent rhombuses always share one three-edge vertex.
If two non-three-edge vertices on one rhombus are for-

+~&dkk~d

FIG. 2. (a) The results of numerical calculation. The forbid-
den sites are shown by squares. One-dimensional alignments of
forbidden sites are shown by bold lines. (b) Enlarged part of (a).
The central S vertex of the fivefold symmetry is located near the
upper left-hand corner. The one sublattice consists of allowed
sites and the other consists of forbidden sites. The sublattice of
forbidden sites changes from one to the other on strings.

FIG. 3. (a) The local configuration around S5 vertices. The
solid-dotted vertices are always forbidden sites. (b) An example
of the local configuration around three-edge vertices. Three-
edge vertices are shown by circles.
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bidden sites, non-three-edge vertices on adjacent rhom-
buses are also forbidden sites.

Theorem 1 is easily shown using the local configuration
around S5 vertices. Theorem 2 is clear from Fig. 3(b)
and from the fact that rhombuses have three-edge ver-
tices locating diagonally. Then rule 2 can be proven in
the following way. Between one (n +1)th S (S5) string
and one nth S (S5) string for n & 2 (n ) 1) there always
exist zeroth S5 strings. Therefore, except in the region
surrounded by a first S string or between one first S string
and one second S string, all rhombuses can be ap-
proached from some zeroth S5 string using rhombuses
with two three-edge vertices. By using theorems 1 and 2
we find that non-three-edge vertices, except S5 vertices,
are forbidden sites in these regions. In a first S string and
between one first S string and one second S string we can
easily verify rule 2 by solving Eq. (2.1). Thus we have
proven rule 2.

III. VARIOUS CONFINED STATES
AND THEIR FRACTION

We present various confined states under rules 1.1 and
1.2. KS-ring states are easily generalized. Fat rhombuses
in the Penrose lattice are also connected by strings. ' We
call them rings in order to distinguish from strings. A
thin rhombus in strings shares a I%' vertex with two fat
rhombuses in strings. Another fat rhombus also shares
the K vertex. If we use the fat rhombus instead of the
thin rhombus, we get a ring. Therefore strings and rings
have a one-to-one correspondence. If we put amplitudes
+ 1 or —1 on D vertices on these rings, these states are
eigenstates with E =0 and a generalization of KS-ring
states. We refer to them also as KS-ring states. Other
eigenstates with E =0 which have amplitudes only on
three-edge vertices are shown in Fig. 4. The state in Fig.

(a

+s
2

(3.1)

where 4Is is the amplitude on an S vertex and %J is that
on the J vertices around the S vertex. Thus, similarly to
type 5, type 6 is the unique confined state which has am-
plitudes on an S-vertex and J vertices around it. There-
fore, there do not exist other kinds of confined states
which have amplitudes on non-three-edge vertices. On

4(a) is denoted by type 3 and the one in Fig. 4(b) by type
4.

The KS-ring states have the same feature as the string
states defined in Ref. 18, namely they have a self-similar
and fractal feature. However, the most important
difference between KS-ring states and string states is that
the KS-ring states can be constructed from the linear
combination of smaller states (type 3, type 4, etc.). For
example, consider the region between one second S string
and one third S string. Along the second S string, KS-
ring states exist. However, there are five bridges which
connect five equivalent smaller regions (Fig. 5). On these
bridges, type-3 and type-4 confined states exist. If we
want to get an eigenstate which is linearly independent of
type 3 and type 4, we can impose a condition that the
wave function vanishes on the bridges. Thus we can treat
five regions independently, and the ring structure is not
essential along the second S string. The above argument
is easily generalized. Along any string (except first
strings) the bridges exist. Since we can impose a condi-
tion that wave functions vanish on the bridges, we need
not consider ring states except types 1 and 2.

The states which have amplitudes on non-three-edge
vertices are shown in Figs. 6(a) and 6(b), and we refer to
them as type 5 and type 6. On zeroth S5 strings enclosed
by first S5 strings there is no confined state which has an
amplitude on an S5 vertex. On zeroth S5 strings not en-
closed by first S5 strings, type 5 always exists. Thus type
5 is the unique confined state which has an amplitude on
an S5 vertex. Around S vertices, local connectivity im-
poses

FIG. 4. Another example of the confined states which have
amplitude only on three-edge vertices [ia) type 3 and (b) type 4].
The meaning of the symbols on the vertices is identical with

those in Fig. 1.

FIG. 5. An example of a bridge. The upper (lower) shaded
rhombuses are a part of a third (second) S string. The solid-
dotted sites are forbidden sites. The confined states which are
independent of types 3 and 4 must vanish on the vertices shown

by circles.



38 STRICTLY LOCALIZED STATES ON A TWO-DIMENSIONAL. . . 1625

the lattice shown in Fig. 2 all confined states are covered
by types 1 —6. The fraction of the states types 1 —6 can be
calculated exactly using the inflation-deflation rule. We
summarize the results in Table I. The total fraction of
types 1 —6 is —50~+81=9.83' 10 . This gives a lower
bound on the fraction of confined states. If we restrict
ourselves to the confined states which have amplitudes
only on three-edge vertices, the total fraction of types
1 —4 gives their lower bound. The result is 8.01 & 10

IV. ANOTHER ESTIMATION OF THE FRACTION

In this section we estimate the fraction of confined
states by another method. According to rule 1.1, a set of
equations [Eq. (2.1)] can be separated into groups of
finite-dimensional simultaneous equations. A set of
simultaneous equations corresponds to a finite indepen-
dent region divided by linear alignment of forbidden sites

Confined states Their fraction

Type 1

Type 2

Type 3

Type 4

Type 5

Type 6

=5.883 x 10
1

r'( + 1 )

=1.540x 10-'1

r'(r'+ 1)

7+&0 4 257 x10
1 1 —2

1 5 = 1.626' 10r"( +1)
= 1.316x 10-1 1 —2

1 1„=5.025x 10-'

Total —50~+ 81=9.830x 10-'

TABLE I. The fraction of various confined states.

on strings. The number of variables is equal to that of al-
lowed sites (N, ) in the region. The number of equations
is equal to that of forbidden sites (Nf ). Concerning the
number of confined states (N, ) in this region, it is easily
found that

N, )N, —Nf . (4.1)

Total number of confined states is the sum of N, in all re-
gions. On the right-hand side of Eq. (4.1) there are nei-
ther double-counting nor missing sites, because there is
no forbidden (allowed) site surrounded by forbidden (al-
lowed) sites. Therefore the fraction of confined states, f„
1S

f, &f. ff— (4.2)

where f, (ff ) is the fraction of allowed (forbidden) sites,
and

f.+ff =1 .

From rule 2 we find

(4.3)

fa =f(3)+fts+fpss (4.4)

where f (3) is the fraction of three-edge vertices and f,s
(fpss) is that of first S (zeroth S5) strings. The f(3) is
the sum of the fraction of D vertices and Q vertices. The
fpss is equal to the fraction of S5 vertices. Thus we ob-
tain

1 1f(3)=—+—,
4 (4.5)

1
fPss 6( 2 1)

(4.6)

FIG. 6. The confined states which have amplitudes on non-
three-edge vertices [(a) type 5 and (b) type 6]. Type 5 is the
unique confined state which has an amplitude on an S5 vertex,
and type 6 is that on an S vertex and J vertices around it. The
meaning of the symbols on the vertices is identical with those in
Fig. 1.

where

1+&S
7 =

2

The first S strings are generated by the twice deflation of
zeroth S strings. The total number of vertices increases
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by factor ~ for the twice deflation. Thus we find

1 1
flS 4fS g( P 1)

(4.7)

where fs is the fraction of S vertices. As a result we get
an exact lower bound,

tional phase factors of transfer integrals. We can easily
verify that theorems 1 and 2 are satisfied on the presence
of the magnetic field. Thus the estimation of (4.8) is un-

changed. This conclusion is consistent with previous nu-
merical work. '

V. CONCLUSION

= —50m+ 81

=9.830056)& 10 (4.8)

Up to the extent shown in Fig. 2 the equality in Eq. (4.1)
holds, and the right-hand side of Eq. (4.8) gives the same
fraction as the one in Sec. III. Thus we guess that the
right-hand side of Eq. (4.8) gives the exact fraction of
confined states of the vertex model.

Finally, we consider the influence of a magnetic field.
The effect of the magnetic field is included in the addi-

In this paper we studied the eigenstates with E =0 on
the 2D Penrose lattice in the vertex model. These states
are all confined in some finite region. We have shown
that confined states have amplitudes on some specific ver-
tices called allowed sites. The allowed sites are not re-
stricted to three-edge vertices. The exact lower bound on
their fraction is estimated as —50~+ 81 =0.0983.
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