
PHYSICAL REVIEW B VOLUME 38, NUMBER 2

dc conductivity and the Meyer-Neldel rule in uWi:H

15 JULY 1988-I

Xiaomei Wang, Y. Bar-Yam, D. Adler, and J. D. Joannopoulos
Center for Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139

(Received 4 April 1988)

Disorder in amorphous semiconductors results in unusual properties of dc conductivity. We
demonstrate a quantitative description of the temperature dependence of conductivity in a-Si:H.
The universal activation energy dependence of the conductivity prefactor (the Meyer-Neldel rule)
is reproduced. Excellent agreement with experimental results is obtained by describing disorder
and defects using the general thermodynamic ensemble theory for the structure of disordered sys-

tems.
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FIG. 1. Comparison of the experimental (Ref. 1) and
theoretical Arrhenius plot for various doping levels of
phosphorusMoped a-Si:H. (1) 1 ppm, (2) 3 ppm, (3) 250 ppm,
(4) 1000 ppm, and (5) 10000 ppm.

Hydrogenated amorphous silicon (a-$i:H) has been in-
tensively studied in recent years. In comparison with crys-
talline semiconductors, a-$i:H exhibits certain new
features. One of them is dc conductivity. Unlike crystal-
line semiconductors, for which the Arrhenius plot is a
straight line, n-type doped a-$i:H shows a kink at a tem-
perature around 400 K. ' Just below the kink tempera-
ture, the Arrhenius plot possesses a concavity which was
most clearly indicated in recent experiments. 2 We display
a typical experimental plot in Fig. l. While possessing
these unique features, a-Si:H exhibits a more important
universal property of the conductivity, known as the
Meyer-Neldel rule: 3

rrp appexp(E /kit Tp) .

Here, crp is the extrapolation of the Arrhenius plot from
room temperature to T ~. The associated slope defines
the activation energy E,. opp and Tp are constants for a
given material. This relation unifies the behavior of

different samples prepared under different conditions and
has been universally observed in various kinds of disor-
dered systems, inhomogeneous semiconductors, and or-
ganic semi-insulators. 4

A number of theoretical models have been proposed to
explain the interesting properties of conductivity. For ex-
ample, the kink for n-type a-$i:H has been described
within the two-path conduction model5 and the compensa-
tion model. s More recent detailed experiments2 have at-
tributed it to a transition of structural equilibrium above
the kink temperature. The Meyer-Neldel rule has been
investigated in the thermally assisted tunneling model. 7

The idea of a disorder-induced shift of the Fermi ener-
gys 9 has also been suggested. However, to date no theory
has successfully given a quantitative description which is
in agreement with measurements.

In this paper, we use the general thermodynamic-
ensemble theory for disordered systems'p to model the
electronic structure, and use the extended state conduc-
tion model to describe the transport of carriers in a-Si:H.
We provide a quantitative analysis of the properties of the
Fermi energy, the temperature dependence of dc conduc-
tivity, and the Meyer-Neldel rule. The theoretical results
are in excellent agreement with experiments.

In the temperature regime we are interested in, elec-
tronic transport in amorphous solids is likely to be dom-
inated by extended states. Therefore, the Greenwood for-
mula" provides

a(T) p(e, T)g(e, T)f(e, T)de,

where Is (e, T), g (e;T), and f(e, T) are the mobility, densi-
ty of states, and Fermi-Dirac distribution function, re-
spectively. We further assume that the inobility is(e, T) is
a constant pp for all extended states e) e„and that it
vanishes for e( e, (e, is the conduction mobility edge).
Thus, we focus on the properties of the electronic density
of states and the Fermi energy.

The central point of the thermodynamic-ensemble
theory is that the amorphous solid structure itself is deter-
mined by the formation free energy of deviations from the
effective ground state —an ideally bonded network. This
theory assumes that there exists a freezing temperature
T, above which both structural and electronic equilibri-
um can be reached, but below which the structure is
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frozen. Thus, when T & T*, the defects with formation
energy Fd have the number density Nd 1Vpexp( —Fd/
kaT). Np is the associated atomic density. When
T & T, the total defect number of one type is fixed, e.g.,
for a defect which can exist in three charge states,
Nd 1Vd++Ng+Nd is fixed. The formation energy of a
defect in a charged state is Fermi energy dependent. As
the Fermi energy rises the negative (positive) defects be-
come lower (higher) in energy. For a three-charge-state
defect,

Fs Fdo+—eg(0/ ) p,
Fd+ ~Fdo eg(+/0) +p,

while for a two-charge-state phosphorous impurity

F ~ -Fpo —ep(+/0)+is .

Here, ed(0/ —), ed(+/0), and e~(+/0) represent thermo-
dynamic transition energies defined as the position of the
Fermi energy at which the defect energies in the two
different charge states are the same. The effective corre-
lation energy is determined by U ep(0/ —) —ed(+/0).
In principle, the freezing temperature has a complex
dependence on the properties of the defects as well as the
experimental conditions. For different types of defects,
T is not necessarily the same.

Applied to a-$i:H, this model has qualitatively ex-
plained the properties of band tails, dangling-bond defect
states, and the doping dependence of the Fermi energy. 'p

In our calculation, we again consider bands, band tails,
intrinsic three-charge-state defects, and phosphorus dop-
ants. We assume zero correlation energy and one single
freezing temperature for both intrinsic defects and phos-
phorus defects. The modification of T by the doping is
given by the simple form tP'2

T' -Tp —a Ioglp[N(p)+ I],
where N(p) measures the doping level in ppm, Tp and a
are independent of the doping, and are deduced from ex-
perimental data. '2 The bands can be conveniently chosen

to have the Tauc form g, (e) A,Je-e,' for e&e, and

g„(e) A.Je,' —e for e& e„where e,'-e„'is the Tauc
optical gap. The band tails have exponential forms (Refs.
10 and 13) g,&(e) A„exp[(e e, )/kaT—,] and „&(e)

A„,exp[ —(e —e, )/kaT, ], where T, TP, T, T, (for
T& T ), and T, (TP/T )T, T, (T„/T )T (for T
& T ). Defect states are chosen to have Gaussian distri-

butions. Table I is the summary of input constants used in
the evaluation of the density of states. There, the mobility

gaP, the Tauc oPtical gaP, TP, TP, and Tp are chosen
directly from experiments, while constant A, (A„)is deter-
mined by the density of states at the joining point e„
N, (e, )-3X102' eV ' cm 3; the peak position of transi-
tion energy for the intrinsic defect is determined by the
Fermi energy of undoped material which is 0.6 eV below
the conduction mobility edge; the peak of the phosphorus
impurity level is -0.1 eV below e,; the formation free en-
ergies FP and FP are calculated from the measurements
n(e)/n(D )—10 ', n(D ) /[n(p)n(si)] —10 7 (see
Ref. 10). In Fig. 2 we display the density of states togeth-

TABLE I. Collection of input constants used in the evalua-
tion of the density of states.

CV bands 0.9 eV, e,' —e„' 0.87 eV
A, A„S&10'(cm 'eV ')

Freezing temp. (K) To 440, a 15

Band tails (K) T~ 325, T, 500

Intrinsic
defect

N o~5&10 2(2cm 3eV '), FP 0.75 eV
eq, peak: 0.3 eV; width: 0.15 eV

Phosphorus
constants (eV)

Fq 0.4S
e~(+/0), peak: 0.8; width: 0.04
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FIG. 2. The density of states of a-Si:H. (a) At 300 K:
dashed line for undoped samples and solid line for 10-ppm
phosphorus-doped samples. (b) 1000-ppm phosphorus-doped
samples: dashed line for T & T and solid line for T & T .

er with the shallow states of a few typical cases in our
model. It is in general agreement with the experimental
data '4

Having the knowledge of the density of states deter-
mined by experimental data and our model, the Fermi en-
ergy as a function of any quantity related to our model
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can be calculated self-consistently from the charge neu-

trality,

n(e )+n(D ) n(It+)+n(D+)+rt(P4+) .

We obtain the dc conductivity by using Eq. (2) where po
is the only fitting parameter. We assume that the atomic
concentration of dopant atoms in the solid phase C 1 is

the same as that in the gas phase Csss.
'5 Finally, we ap-

proach the problem of understanding the physics behind

the Meyer-Neldel rule by isolating the various com-

ponents that give rise to the complexity associated with

the experimental conditions. In order to draw out the gen-

eral features, we consider several intrinsic physical quanti-
ties independently: doping level, freezing temperature

T, dopant formation energy, and transition energies.
Our results are presented and discussed below. We begin
with the dc conductivity.

dc conductivity. The temperature dependences of the
dc conductivity for different doping levels are plotted in

Fig. 1 together with the experimental data. The agree-
ment is excellent with the fitting parameter pp

50(cm2V 's '). The fitting mobility is somewhat

larger than the experimental value —10(cm~V 's '). '3

This deviation should be reduced if we take into account
the differences between C 1 (usually higher' ) and Cs .
Since the Fermi energy plays an essential role in deter-
mining electronic transport properties, we discuss it first.
For various doping levels, the overall behavior of the Fer-
mi energy as a function of temperature (see Fig. 3) is

striking. A kink is observed at T T . For "impure"
materials, at temperature below T*, the dominant

charged defects are P4+ and D . The charge neutrality
condition can be approximately written as n(e )
+n(D )~n(P4+). Since the number of D and P4+

states are frozen out for T & T, as the temperature in-

creases the Fermi level has to decrease to satisfy the
charge neutrality condition. This decrease goes faster as
T goes higher. ts For T& T, n(D ) and n(P4+) in-

crease as exti( —Fd /AT) and exp( —Fz+/kit T), respec-
tively. n(P4 ) will increase faster than n(D ) because

the formation energy of P4+ is smaller than that of D ac-
cording to our model. This results in a slower decrease of
the Fermi energy for T) T . We believe this is the ori-
gin of the kink in the p vs Tcurve at T T . [We point
out here that a similar behavior is actually observed for
Li-doped a-Si:H (Ref. 1).) Full understanding of the
temperature dependence of the Fermi energy leads us to a
clear interpretation of the conductivity behavior shown in

Fig. l. At low temperature, the Arrhenius plot is linear,
because the dependence of the Fermi energy on tempera-
ture is weak. As T approaches T, it becomes concave.
The concavity corresponds to the faster drop in the Fermi
energy (see Fig. 3). When the temperature is above the
freezing temperature, ina is linear with T since the Fermi
level decreases linearly with T in this temperature region.
The larger activation energy for T & T (compared with
that for T & T ) results from the smaller statistical shift
of the Fermi level (compared with that for T & T ).

We conclude that the temperature dependence of the
Fermi energy completely accounts for the properties of
the dc conductivity. In particular, the discontinuity of the
Fermi energy which arises because of changes in structur-
al relaxation processes is responsible for the kink that ap-
pears in the Arrhenius plot.

Meyer-Neldel rule. Motivated by the results just de-
scribed, we next study the physics behind the Meyer-
Neldel rule by describing the effects of the amorphous na-
ture of materials on the dc conductivity. We present the
theoretical and experimental' results of ao as a function
of the activation energy in Fig. 4. The extrapolation is
carried out by fitting the computer data of the Arrhenius
plot linearly in the range of 220-320 K. The theoretical
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FIG. 3. The Fermi energy as a function of temperature for
different doping levels (1) undoped, (2) 1 ppm, (3) 10 ppm, (4)
100 ppm, (5) 1000 ppm, and (6) 10000 ppm.

FIG. 4. The preexponential factor ao as a function of the ac-
tivation energy. (o) Theory and (0) experimental data (Ref.
17). The theoretical data are obtained by varying doping level,
transition energies, formation free energies, and freezing tem-
perature independently.
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results are an accumulation of calculated data obtained by
varying independently doping level, transition energies,
formation free energies, and freezing temperature. In the
plot, we do not explicitly distinguish between the variety
of theoretical data as we are only concerned with their
general behavior. However, we discuss a few typical cases
below. When the doping level is varied systematically
from 0.1 to 10000 ppm, the activation energy decreases
from 0.62 to 0.18 eV and the scattered data fall along the
linegivenbyEq. (1) with To-800K, crte 1 0 'cm
However, the data do not spread over the entire range uni-
formly. A cluster locates in the region of E,-0.19 to
0.35 eV, while a few points representing the lightly doped
samples group around E,-0.61 eV. This behavior is
directly related to the properties of the Fermi energy
dependence on doping. Both the experiments's and our
study show that there is a jump in the Fermi energy in a
very narrow range of doping levels at low temperature,
which we believe is due to the competition between the
D+ and Ps+ states. The data for smaller transition energy
of the intrinsic defect are also presented. The activation
energy is in the range from 0.25 to 0.72 eV. Changing the

dopant formation energy and transition energy is
equivalent to changing the dopant itself in this model.
The behavior is similar to that of the phosphorus dopant.
More surprisingly, the data obtained by varying the freez-
ing temperature from 350 to 520 K (this could mean vary-
ing the substrate temperature or perhaps hydrogen con-
tent in real samples) also obey the same relation. For the
high concentration of dopant, the lower freezing tempera-
ture gives the larger activation energy, while for the low
concentration of dopant, the higher freezing temperature
produces the larger activation energy. We emphasize that
po is kept constant as we change the other variables.

In summary, we provide a quantitative description of
the properties of the dc conductivity and Meyer-Neldel
rule in a-Si:H in our model. We find that the behavior of
the Fermi energy is primarily responsible for the nature of
defect states, doping, and transport.
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