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Elastic constants and phonon frequencies of Si calculated
by a fast full-potential linear-mu5n-tin-orbital method

M. Methfessel
Max Pla-nck Ins-titut fur Festkorperforschung, Heisenbergstrasse I, D 700-0Stuttgart 80, Federal Republic of Germany

(Received 26 January 1988)

A new approach for including full-potential terms in a linear-mu5n-tin-orbital calculation is
presented. The implementation for crystals leads to a method which is at the same time fast and ac-
curate. Calculated elastic constants and phonon frequencies for Si agree well with experiment.

I. INTRODUCTION

During the last decade, the linear-muIn-tin-orbital
(LMTO} method' for solving the one-particle
Schrodinger equation self-consistently has become very
popular for the calculation of the electronic structure of
crystalline systems, and modifications of it have been ap-
plied successfully to molecules. ' The LMTO method
combines the following advantages: (1) It uses a minimal
basis, which leads to high efficiency and makes calcula-
tions possible for large unit cells; (2} it treats all elements
in the same way, so that d and f metals as well as atoms
with a large number of core states can be considered; (3)
it is very accurate, due to the augmentation procedure
which gives the wave function the correct shape near the
nucleii; (4) it uses atom-centered basis functions of well-
defined angular momentum, which makes the calculated
properties transparent.

Because of its accuracy and efficiency in handling large
unit cells, one expects that the LMTO method is well
suited for first-principles self-consistent frozen-phonon
calculations or for the Car-Parrinello combined local-
density molecular-dynamics approach. However, the
potential approximation which leads to the efficiency of
the standard solid-state LMTO method (the atomic-
sphere approximation or ASA} disregards the symmetry-
breaking terms which are crucial for energies of frozen
phonons and the forces on the nucleii. On the other
hand, it has been shown for molecules and recently for
crystals that good results can be obtained using the
LMTO basis set if all potential terms are evaluated
correctly. In these calculations, the overlapping atomic
spheres were shrunk to nonoverlapping muffin-tin
spheres. The potential matrix elements were then split
up into contributions from the atomic spheres and from
the coniplicated interstitial region. Whereas the former
are straightforward to evaluate by means of expansions in
spherical harmonics, the interstitial contributions are
quite difficult to calculate and are treated in different
ways by the various methods. The techniques used in-
clude numerical integration methods ' ' and the expan-
sion of all interstitial quantities in plane waves or in
spherical Hankel functions and time-consuming evalua-
tion of three-center integrals. In each case, the evalua-
tion of the interstitial potential matrix elements is the

dominating factor for the speed of the method and for the
number of atoms which can be treated simultaneously,
both being reduced by at least an order of magnitude rel-
ative to the standard LMTO-ASA method.

In this paper a new and very efficient approach for
evaluating the matrix elements of the interstitial potential
in a full-potential LMTO method is presented. As in Ref.
8, Hankel functions are used to represent interstitial
quantities, but here the three-center integrals are reduced
to linear combinations of two-center integrals (which are
easy to evaluate analytically} by numerical means. An
advantage of the method is that no plane waves are re-
quired throughout, so that the applicability of the LMTO
basis to both periodic and nonperiodic systems is re-
tained. Below, a specific implementation for crystals is
described whose computing speed is close to that of the
standard LMTO-ASA method. Calculations for the opti-
cal phonon at I in Si and diamond reproduce the accu-
rate results obtained by the more time-consuming full-
potential LMTO method (using plane-wave expansions}
of Weyrich. Finally, calculated elastic constants and
phonon frequencies at I and X for Si agree well with the
experimental values.

II. DESCRIPTION OF THE METHOD

The task is to calculate the interstitial-potential matrix
elements

V,I,.I.—— „*L VI „L x x, (2.1)

where I is the interstitial region, VI is the interstitial po-
tential, and X z is a LMTO envelope function centered at
site v with angular tnomentum L. [Upper-case letters L
and K are abbreviations for the angular-momentum
quantum numbers (l, mi ) and (k, mtt). ] A related prob-
lem is to bring into a tractable form the output charge
density in the interstitial region, which is given as a linear
combination of the products X*LX L . This second prob-
lem is frequently solved by fitting a linear combination of
atom-centered Hankel functions of negative energy to the
charge density. ' It seems reasonable that the separate
contributions can be represented in a similar way, albeit
with a higher angular-momentum cutoff because they
vary more strongly. Thus, coefficients A „'z are sought
with the property that, throughout the interstitial region,
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X,'z(x)X„,z,(x)= g A„'» H„x (x},
p, K,a

(2.2}

H„~ (x)=hk(iA[x. —R„~ )Y~((x—R„)/[ x —R„~ ),
(2.3)

i.e., the H„K are of the same general form as the LMTO
envelope functions themselves. For crystals, the latter
are k-dependent Bloch sums of Hankel functions whose
kinetic energy is usually chosen to be zero and the H„K
are replaced by periodic Bloch sums. In general, func-
tions of at least two different decays, A,„must be included
in the fit so that the localization can vary.

Equation (2.2) is the central relation of the present ap-
proach. Since no analytical theorem of this form is
known, the expansion must be obtained by some numeri-
cal means. Leaving this point for later, we consider the
result when (2.2) is substituted in (2.1). The matrix ele-
ment then reduces to a linear combination of integrals of
the functions H„K times the interstitial potential. Next,
it is assumed that the interstitial potential itself is ex-
panded in functions of the type (2.3). This is often done
for self-consistent molecular calculations ' and is con-
nected with the fact that the Poisson equation can be
solved analytically in the Hankel-function basis. The
desired interstitial integral has now been expressed as a
linear combination of integrals of products of pairs of
Hankel functions; i.e., the three-center integral has been
reduced to a sum of two-center integrals. Using Gauss's
theorem and the fact that the H„K are eigenfunctions of
the Laplace operator, it is straightforward to express the
two-center integrals as surface integrals over the spheres.
These are easy to evaluate by means of standard
structure-constant expansions. From the preceding, it is
concluded that once an accurate enough expansion of the
form (2.2) is available, the interstitial potential matrix ele-
ments can be evaluated in a straightforward manner. As
an additional bonus, (2.2) can be used to represent the
output charge density as a linear combination of H„K,
thereby solving the second problem stated above.

The crucial step in this procedure is to determine the
coefficients in the expansion (2.2). Various approaches
could be pursued, but the following leads to a very fast
method for the case that the interstitial region is not too
large. This is the case for crystals if extra empty spheres
are introduced for loosely-packed systems in the usual
way. Then every point in the interstitial region lies close
to one or more atomic spheres. This, together with the
fact that the products are smooth functions, suggests that
a suitable representation can be obtained by interpolating
between the surfaces of the spheres. This can be done by
adjusting the coefficients in (2.2) until the best fit of the
values and slopes of the right-hand side to the values and

slopes of the product is obtained on all spheres simultane-
ously. In effect, the approach described here assumes
that for any smooth function f(x), its values inside the
interstitial region are defined by its values f„x and slopes
f„'x on the sphere surfaces. Once this is postulated, the
integral of f(x) times the interstitial potential must be a
linear functional of the f„x and f„'x. To deterinine the
functional in practice, it is useful to construct special
linear combinations U„x and S&x of the H„x which can
be denoted as functions of "pure value" and "pure
slope, " respectively. U„K is defined as that linear com-

bination which has all values and slopes zero, except for
the Kth value on the pth atomic sphere, which is equal to
one. Similarly, S„x has only the (p, ,X }th slope equal to
one. It is useful to make the number of conditions in the
fit equal to the number of unknowns by choosing the
angular-momentum cutoffs for the expansion and for the
conditions equal and by including functions for exactly
two different A, -values in the set of H„x, then the num-
ber of U„x,S„x is equal to the number of all H„x and
the two sets span the same space. Then the fit to f(x)
can be written down immediately as

j(x)= g If„xU„rc(x)+f„'xS„x(x)I,
p, K

so that the corresponding integral is given as

X VI X X pKQpK + pK ~K
pK

with

(2.4)

(2.5}

X.z(x}=X I a„"xH,x(x)+bl"xJ,x(x) I
K

(2.7)

where H x is given as in (2.3) and J„x is defined similarlypK
for the spherical Bessel function, both at the same kinetic
energy as X„L. The fina result for the interstitial matrix
element then is

a&x ——f U&x(x)VI(x)dx, 13&x
——f S„x(x)VI(x)dx .

I I
(2.6)

Equation (2.5) can be considered as a special, problem-
adapted quadrature formula; the functions H„K then

play the role of test functions for which the formula has
been constructed to give the exact result.

To apply (2.5} for f=X„'zX„z, Clebsch-Gordan
coefficients are used to multiply out the values and slopes
off from those of X„z,X„.z, on each sphere. Substitution
in (2.5} then gives the interstitial integral (2.1) as a quad-
ratic form in the values and slopes of the two envelope
functions. A fina1 linear transformation can be done to
ex~ress the integral as a quadratic form in the coefficients
a„"K,b„"K in the one-center expansions of X„L around the
difFerent sites. That is, the one-center expansion near site

P 1S

f I t L4' HJ L + JH v' L JJ v'L'
X'z(x)V&(x)X 'z'(x)dx= g Ia„"~ D„x~a"„&.+a"„& D„&xb"„&.+b„"&*D„&&.a„&.+b„"x D„,b„.I .

p, K,K'
(2 &)
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The matrices D&z&. are all independent of k and are ob-

tained by straightforward but somewhat tedious linear
algebra from the coefficients in (2.5). This expression for
the integrals has the advantage that the k-dependent
quantities a„"z,b„"z are already available in conventional
LMTO calculations as Kronecker deltas or structure con-
stants. If the recently developed LMTO tight-binding
representation is used, ' the quantities may be given as
Bloch sums of simple expressions involving the tight-
binding structure constants.

Note that the evaluation of the nonspherical potential
terms inside the atomic spheres leads to an expression of
the same form as (2.7}, with the D„xlr replaced by in-

tegrals which give the coupling between the augmented
"heads" and "tails" on the pth sphere. Thus, once the
matrices in (2.7) have been calculated, the corrections to
the mufBn-tin potential from inside the spheres and from
the interstitial can be treated together. The effort for the
full-potential calculation has in this way been reduced to
its minimum, namely that of evaluating the effect of the
nonspherical potential in the spheres. The effort in calcu-
lating the matrices in (2.7) is mainly that of constructing

U„z and S„z. This involves the inversion of a matrix
with dimension equal to the number of functions H„z
included. If the angular momentum cutoff for the inter-
stitial fits is taken as 4, and if two decays are included,
the dimension i.s the number of atomic spheres per unit
cell multiplied by 50. While this step can be time con-
suming, it should be emphasized that it depends only on
the positions and radii of the spheres, and does not de-
pend on the k vector or the potential. Thus it can be
done once and for all in the beginning of a calculation.
Therefore, this method for finding the coefficients in the
expansion (2.2) is suitable for self-consistent computa-
tions for fixed atomic positions. In this case, the setup
time is no more than 10%%uo of the total time used. Howev-
er, for the Car-Parrinello method a different strategy will
be needed based on the arguments following Eqs.
(2.1)-(2.3).

III. RESULTS

After a setup program is written to do the fitting to the
values and slopes on the sphere surfaces and to construct
the functions U„x and S„x, it is a relatively minor
modification to introduce the full-potential terms into an
existing LMTO program as described above. For a self-
consistent calculation, it is necessary to compute the
local-density potential for the output charge density. In
the Hankel-function charge-density representation, the
electrostatic potential can be evaluated analytically. The

exchange-correlation terms are treated by interpolating
between the spheres in the same way as the envelope
products. Since all interstitial quantities are now given as
multicenter expansions in Hankel functions, the integrals
for the total energy are straightforward to calculate. As
a test for the accuracy of the numerically derived expan-
sion (2.2), the interstitial potential was set equal to one.
The integrals (2.1) then should be equal to the interstitial
overlap matrix, which is known exactly. The result was
that the errors in the integrals at a general lt point were
of the order of 1 —2%%uo for products of s and p functions
and no larger than 3% for d functions.

Table I presents calculated and experimental data for
Si. In all calculations, the basis used to expand the prod-
ucts of the LMTO envelopes included functions with
k &4 and with decays given by —A,, = —1 and —3 Ry.
This set therefore included 50 functions per atomic
sphere. As is standard practice when using the LMTO
method, an equal number of empty spheres was included
along with the Si atomic spheres. The LMTO basis in-
cluded s, p, and d functions on all spheres. The local-
density potential of Hedin and Lundqvist was used. "
For each phonon, total energies were computed for at
least four amplitudes and a polynomial fit was made to
the energies to extract the quadratic term. The positions
of the empty spheres were kept fixed and the core states
were frozen to increase precision. The elastic constants
were calculated analogously. For C~, the total energy
was minimized as function of the internal strain parame-
ter for each trigonal distortion. The calculations were
done at the experimental lattice constant of 10.26 a.u.
and all sphere radii were taken as 2.13 a.u. The spheres
were not permitted to overlap. For a simple metal with
one atom per unit cell, the computing time per E point
was 0.03 sec on a Cray X-MP. These times increase to
0.45 sec and 2.21 sec for Si (four spheres per cell) and Si
distorted by a phonon at X (eight spheres}, respectively.
The corresponding times for the setup were 0.3, 4.7, and
28 sec, respectively.

An additional calculation for the optical phonon at I
for diamond gave the frequency 39.2 THz, which is close
to the experimental value of 39.9 THz. ' The optical
phonons at I for Si and diamond have also been comput-
ed by Weyrich with a full-potential LMTO method
which uses plane-wave expansions in the interstitial re-
gion, giving values of 15.57 and 42.25 THz, respectively.
Thus, the comparison to the results of the more elaborate
method indicates that the present method is of equal or
better precision. The agreement to experiment for the
other quantities in Table I is good, although similar cal-
culations using norm-conserving first-principles pseudo-

TABLE I. Comparison of calculated and measured properties derived from distortions at constant volume for Si. k„~, is the
third-order force constant for the LTO(I ) phonon (Ref. 13). Experimental data are from Ref. 12 except for k„~, from Ref. 14.

Calc.
Expt.

Cl l-C~2

(mbar)

1.01
1.02

(mbar)

0.79
0.80

LTO(I )

(THz)

15.73
15.53

kxyg
(eVyA')

—41.3
—35.1

LOA(X)
{THz)

11.74
12.32

TO(X)
(THz)

13.20
13.90

TA(X)
{THz)

4.89
4.49
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potentia1s lead to slightly better results' for the phonons
at X. The cause of the 1arger deviations here may be that
the basis functions used have a kinetic energy of zero in
the interstitial region, i.e., in 40%%uo of the volume.

In conclusion, a relatively minor modi5cation of the
LMTO method has been presented which makes possible
fast and accurate calculations for elastic constants and
frozen-phonon frequencies. Plane waves are not used in

any step, so that the approach can be generalized to mol-
ecules. Good agreement was found with the results of a
previous, more elaborate full-potential LMTO method
and with the experimental data.
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