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High-field balance equations for electronic transport in weakly nonuniform systems
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Balance equations for the spatial distribution of particle number density n (R), drift velocity v(R),
and internal energy u {R) [or electron temperature T,{R)] in high-field electronic transport of a
weakly nonuniform electron-impurity-phonon system are derived using a model in which the dy-
namic interactions between difFerent 6uid elements are removed by a self-consistent mean-field ap-
proximation and thermodynamic forces are neglected. The resistive forces due to impurity and
phonon scattering and the electron energy-loss rate to the phonon system have expressions similar
to those in uniform case except that now the drift velocity and electron temperature are replaced by
the corresponding spatially variable field parameters. Being a form of first-order space-time
difFerential equation, the balance equations determine v(R) and T,(R) as well as the total electric
potential if the initial and boundary conditions are given; thus they can easily be applied to the dis-
cussion of high electric field transport in weakly nonuniform systems.

I. INTRODUCTION

It has long been an unresolved problem to devise a
tractable method of calculating high-field electronic
transport in semiconductors. ' Interest has recently
been intensified with the development of submicron
solid-state electronics. In addition to widely used
Boltzmann-equation treatments and Monte Carlo simula-
tions, balance-equation analyses, ' which eliminate the
need for a distribution function and give rise to the most
important transport information nearly analytically, have
proven useful in practical calculation. Recently a
balance-equation approach for high-field uniform systems
was developed on the basis of a separation of the
center-of-mass degrees of freedom from the relative
motion of electrons in the system. Besides its simplicity
of mathematical structure, the advantages of this ap-
proach include its generality of description for nonlinear
transport in the presence of both an electric field and a
magnetic field of arbitrary strength, and its ease of treat-
ing dynamic, nonlocal jntercarrier coupling. All the im-
portant transport properties are expressed in terms of
carrier density-density correlation function in the absence
of electric field without electron-impurity and electron-
phonon scattering, but with magnetic field (if any} and
full carrier-carrier interaction [in random-phase approxi-
mation (RPA) and beyond]. In this paper we extend this
balance-equation method to a weakly nonuniform system
as a step toward the need for the calculation of nonlinear
transport in submicrometer devices, microstructures, etc.

II. HAMILTONIAN OF THE ELEMENTS

%'e consider an interacting electron system under the
influence of an external field E,(r) = —VP, (r). The
Hamiltonian of the system is

+eP, (r, )+4(r, )

where e and m are particle charge and effective mass, p;
and r, are the momentum and coordinate of the ith elec-
tron, and

tP(r;)= g u(r; —R, )+ gut Vut(r, R—
a I

(2)

1 ~ e~
5H= T~, +—Y

2trt 2 .{,.) 4m.eo
~
r, —i

+eP, (r;)+@(r;)

Here the. second term in the parentheses is the Coulomb
interaction potential of the ith electron with all the other
electrons. We can divide it into two parts: contribution
from electrons inside d~ and those from outside d~. We
will use a mean-field treatment for the latter. For small
dr it becomes the macroscopic induction potential P;(r; }

represents the scattering potential due to randomly distri-
buted (R, ) impurities and lattice vibrations (Rt stands
for lattice sites). The whole system can be divided into
many small subsystems. A subsystem is composed of
electrons in a small volume d~ around a position R. Ma-
croscopically dr is small over which all the expectations
of physical quantities change little, whereas microscopi-
cally d~ is large enough that a great number of particles
are within it. Such a subsystem is called a fluid element,
or simply an element. The Hamiltonian of the element
d~ can be written as
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caused by the electron charge distribution (plus positive
charge background), such that

2
1 ~ e6H= Y„,

{P(R))=mn(R}v(R),

where n (R)={N(R)) is the statistical average of the
electron number density. It is convenient to use the rela-
tive electron variable p,

' and r,', defined by

p,
'. =p, —mv(R), r,'=r, —R . (12)

+eP(r; }+4(r;) (4)

with p(r) =f(),(r)+f}I),(r) being the total potential. In the
limit of small d ~ the restricted sum gd, over the particles
inside d~ around R can be conveniently represented by a
5 function, {H, (R) ) = u (R)+—,'mn (R)U (R), (13)

They are momentum and coordinate of the ith electron
relative to the center of mass in element dv. . With these
relative electron variables the statistical average of H, (R)
can be written as

gz, -dr g 5(r, —R},

such that

(5) where

p
2

«(R)= Z
'

5(r, —R))2m
(14)

5H =drH(R) and H = fd~H(R) .

Here

(6)

H(R)=H, {R)+g [eftf(r, )+4(r;)]5(r, —R), (7)

is the average of the kinetic energy of the relative elec-
trons in d~. The interaction potential energy between
electrons inside dv. , which is a higher-order quantity in
d~, has been neglected.

and

P) 1 e
H, (R)= g +—gd, 5(r, —R)

2m 2 .
~

d,.
~

4meo
~
r, —r, ~

(8)

N(R) = g 5(r, —R) (9)

is the number density of electrons in the element around
R. It is convenient to identify R as the coordinate of the
center of mass of the electrons in d ~:

R= gd, r;/5N .

The total momentum of the electrons in element d~ is

is the kinetic and Coulombic interacting energies of elec-
trons in element dr Note .that, under the present ap-
proximation, different elements consist of different sets of
electrons, and the Coulomb coupling between electrons in
different elements has been included in the total potential
P(r), which is a parametrized variable to be determined
self-consistently by the resulting equations. Therefore
different subparts of H are independent and commuta-
tive. The number of electrons in element d v is
5N=drN(R) and

III. RATES OF CHANGE OF
PARTICI.E NUMBER, MOMENTUM, AND ENERGY

We now consider the rates of change of particle num-
ber, momentum, and energy. The rate of change of parti-
cle number density N(R) = i [N (R—),H]/R can be easily
calculated and this (after taking statistical average) re-
sults in the continuity equation:

n +V (vn)=0. {15)

Secondly, from Eq. (11),

—(P(R)) =m v+mn
a 'f)n f)v

Bt Bt Bt
(16)

On the other hand, we can calculate P(R) according to
P(R) = i [P(R},—H]/A' to give

P(R}=—V g 5(r; —R)
m

—g [V@(r;)+eVQ(r, )]5(r, —R) .

Changing to relative electron variables and taking the
statistical average we have

5P= gd, P;=drP(R),

with

P(R) = g p;5(r; —R) (10}

{P(R) ) = —V[—', u (R}]—V.[mn (R)v(R)v(R)]

+en (R)E(R)+ f(R),
where

(18)

(19)

being the momentum density. Letting v(R) be the aver-
age velocity of the electrons in element d v, which is a pa-
rameter to be determined self-consistently by the result-
ing balance equations, we can write the statistical expec-
tation of the momentum density as

is the resistive force experienced by the fluid element due
to impurity and phonon scatterings. Equating Eq. (18) to
Eq. (16) and making use of the continuity equation (15),
we obtain an Euler-type momentum-balance equation:
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Bv 2Vu e 1
+v(V v)= —— +—E+

at 3 mn m mn
{20) 5Hr = yd.e(r'+Z ) (27)

Thirdly, the rate of change of (H, (R) ) is calculated from

Eq. (13}to be

a du m dn 2 dv—(H, {R))= . +— u +mnv ~

at ' dt 2 dt dt
(21)

which should be equated to that obtained averaging the
expression

H, (R)= —i [H, (R),H]/A':

(H, (R) ) = —V v(R)—,'u (R)+ n—(R)u (R}

where

+en(R)v(R) E{R)—w(R), (22)

I

w(R)=(X VS(r,'. ~R)()(r', ))
—v(R) f(R)

l

(23)

is the electron energy-loss rate. Combining Eqs. (21) and
(22) with considering Eqs. (15) and (20) we obtain an en-
ergy balance equation:

5HI denotes impurity and phonon scattering interactions.
Numerous relative electrons in d~ can be treated as an
ordinary many-particle system with volume dv. . Accord-
ing to Eqs. (25)—(27), they are coupled with the center of
mass and the electric Seld only by way of impurity and
phonon scatterings. We will include the scattering in-
teraction to lowest order in terms of linear response of
the system, choosing the unperturbed state (a state in the
absence of 5HI} as follows. We imagine turning off the
scattering interaction at some time in the transport pro-
cess, and note that the decoupled relative electrons and
phonons will separately approach quasiequilibrium states,
in which electrons have a temperature T,(R) and pho-
nons have a lattice temperature T (assumed mode and
space independent, thus the nonequilibrium phonon effect
is neglected). Accordingly the unperturbed state is
chosen to be described by a density matrix pp of the local
equilibrium form,

pp= —exp —f [5H p(R)5N—]/ks T, (R)1

Q +v Vu= ——'u(V v) —w —v f .
t 3 (24) Xexp( —H~h /k& T), (28)

IV. ELECTRON-TEMPERATURE FIELD

5H, =( ,'mnu +en/—)di, (25)

To calculate the resistive force f and the energy-loss
rate w, we need the density matrix p, which can be ob-
tained by solving the Liouville equation with the ap-
propriate initial condition. In the present model the in-
teractions between different Quid elements are included
approximately in the total potential with mean-field treat-
ment. Therefore different Quid elements, though geome-
trically correlative, are dynamically independent, and
thus evolve separately from their own initial states.

For a given element di. we can separate the electron
Hamiltonian 5K into a center-of-mass part 5H, and a rel-
ative motion part 5H, by making the transformation (12):
5H =5H, +5H, +5HI, with

u =2 g &i,f[(&k p)/kji T&]— (29)

and the local cheinical potential p(R) is related to the lo-
cal density n (R}of electrons via the relation

n =2 g f[(ek p)/ks T, ] . —
k

(30)

where electron-temperature field T,(R) and chemical po-
tential field Ju(R) are parameters to be determined self-
consistently by the resulting balance equations, and H h

is the phonon Hamiltonian.
The process to derive the perturbed density matrix

p=pp+p, to linear order of 5HI and the calculation of
statistical expectations exactly follow those in Ref. (5}.
To lowest nonzero order the average local kinetic energy
density of the relative electrons is determined by pp only:

&2

Pi 1
2

5H, = gd, 2m 2 J(~ ) 4ir&p
I r,

' —rj I

(26}

Here ez fi k l2m ——and f(x)=(e"+1) '. The resistive
force density f(R) and energy loss rate w(R) are found
to be

f=f(n(R},T,(R},v(R))=ni f ~
u(q)

~ q Iiz(q, +p)
(2ir)

dq fiQqi R(Q i+cop)+2f, q. g )~(q, ~) ~'II/(q pip+Q i, ) N
k T

N
k T(2ir } B B e

(31)

w=w(n(R), T, (R),v(R))

dq %Aqua=2f q g ~M(q, )(, )
~

Q,II&(q, cop+Qqi)
(2ir) i ka T

vari(Qqi +P)p)

kBT,
(32)
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Here coo —=q v(R), N(x)—:(e"—1} ' denotes the Bose
function, nr is the impurity density around R, Qq& is the
phonon frequency and, Ilz(q, co} is the density-density
correlation function of relative electrons in unit volume
with density n(R) at temperature T,(R) including the
effect of Coulomb interaction between carriers, which can
be treated in RPA or beyond. We see that although the
intercarrier Coulomb coupling inside the element gives a
vanishing contribution to the average energy of relative
electron system of the element, it plays an important role
in screening.

V. EQUATIONS FOR WEAKLY NONUNIFOR1VI
TRANSPORT

In the present description the velocity field v(R) and
electron temperature field T,(R) are fundamental para-
metric variables; besides, we have u(R), n(R), p(R), as
well as the total electric potential P(R) or field E(R).
They apparently can give most of the important informa-
tion of a nonuniform transport system. These variables
may be time dependent on a macroscopic timescale to de-
scribe time-dependent process. We now have three
hydrodynamic-type equations: continuity equation (15),
momentum-balance equation (20), and energy-balance
equation (24), supplemented by two relations (29) and (30)
plus the Poisson equation relating electric charge density
and potential (n+ denotes the density of positive charge
background}:

All the space-time field variables can be determined for
the given initial and boundary conditions.

In the case of a uniform transport system, these equa-
tions immediately reduce to those discussed in Ref. (7).
For steady state, they simply become

enE+ f=0
and

m+n f=0,

which are force- and energy-balance equations obtained
in Ref. (5) for steady-state uniform transport.

In the present model the dynamic interaction between
different elements is removed by a self-consistent mean-
field approximation; thus heat conduction, diffusion, and
viscosity are neglected. This is justified for a weakly
nonuniform system since all the contributions of these
thermodynamic forces to balance equations are in higher
order of the gradients of parametric fields. Furthermore,
in the high-field regime impurity and phonon scatterings
are major dissipative processes of the electronic trans-
port. Because of this the balance equations obtained are
essentially hydrodynamic type of an ideal fluid. These
equations can be conveniently applied to discuss the
high-field transport in metal-semiconductor contacts, p-n
junctions, interfaces and heterostructures.

V P= ——[n(R)—n+] .
E'p

(33)
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