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The ground-state and binding energy of a %'annier exciton in a quantum well with a small
valence-band offset are calculated by generalizing the variational approach normally used to study
excitons in GaAs/Al„Gal „As quantum wells. The central issue is to properly include the addi-
tional confinement of the hole caused by the electron-hole Coulomb interaction in the direction per-
pendicular to the quantum-well interface. In addition to the relative motion part of the exciton
wave function, the envelope function of the hole in that direction is also determined variationally.
The application of this method to II-VI-compound semiconductor quantum wells studied in recent
experiments is discussed.

There is strong experimental evidence from recent
optical spectroscopy that among II-VI-compound semi-
conductor heterostructures the band-gap discontinuity
in a CdTe/Cd, ,Mn„Te, Znse/Zn&, Mn„se, or
CdTe/ZnTe superlattice is accommodated in such a way
that the valence-band offset is rather small. ' In terms
of excitonic properties, which may be a source of optical
device applications, this is an intriguing situation as it
implies the presence of a quasi-two-dimensional (2D)
electron interacting with a quasi-three-dimensional (3D)
hole. From a fundamental point of view, study of such
excitons can provide useful characterization of the elec-
tronic states if sufficiently reliable theoretical insight is
available. However, most of the existing variational
theories on excitons in GaAs/Al„Ga, „As quantum
wells in the envelope function approximation have
been constructed on the basis that the entire exciton is
strongly con6ned by the band-gap discontinuities, i.e., the
barrier heights in both conduction band ( V, ) and the
valence band ( Vt, ) should be large compared with the ex-
citon binding energy, the latter given by the effective
Rydberg. In the wide-gap II-VI-compound semiconduc-
tor heterostructures mentioned above, VI, is typically
comparable to, or even smaller than, the excitation bind-
ing energy [in CdTe/Cd& „Mn„Te for example, the large
Zeeman effects which can be induced in a dilute magnetic
semiconductor may even reduce the efFective barrier
height to zero or slightly below zero (type II) in an exter-

nal magnetic field ' ] so that the applicability of the usu-
al theory to these structures is questionable. In this pa-
per we extend the variational approach in a particular
way to derive accurate solutions for excitons in this type
of quantum well where one quasiparticle is weakly bound.

Within the effective-mass approximation, the exciton
Hamiltonian in a single quantum well of width L can be
written as (after subtracting the constant energy gap of
the well material)

H= g [p„/2ttt;+ V, 8(
~
z;

~
L/2)] p+f/2—p

i =e, h

2/e[r 2 + (z z )z]t/2

—:h, (z, )+hi, (zt, )+ps/2Fc e /e[r~+(z, ——z„) ]'

where m, and ml, are the electron and the hole effective
masses in the z direction (superlattice growth axis), p and
rz are the reduced mass and the relative coordinate in the
xy plane, and e is the background dielectric constant.
With appropriate numerical values assigned to these pa-
rameters, Eq. (I) is valid for describing rectangular well
heterostructures of any material composition. We em-
ploy a notation in this paper where the exciton binding
energy Ett as a result of the electron-hole Coulomb in-
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teraction is defined by writing the energy eigenvalue of
Eq. (1) as

E =E +Ep —E (2)

where E, and Eh are eigenvalues of h, (z, ) and hh (zh ), re-

spectively, and E,„ is the total exciton energy (less the
band gap of the well material). An exact solution to Eq.
(1) is not possible. The common practice of finding ap-
proximate solutions is a variational approach in the en-
velope function approximation by using separable trial
wave functions of the form6

0'(rx, z„zh )=g(z, )g(zh )P, h (r~, z, —zh ) . (3)

As is easily seen from this expression, the one-particle
function g, (gh) describes the motion of the electron
(hole} in the z direction with respect to the quantum well,
while the relative motion between the electron and the
hole is contained in p, h. So far, in applying the theory to
type-I heterostructures of GaAs/AI„Ga&, As and other
III-V-compound quantum wells, both tp, and gh are tak-
en to be the one-dimensional solutions of h, (z, ) and

hh(zh },respectively. However, this approach loses validi-

ty in the case of those II-VI quantum wells where the
valence-band offsets are demonstrably small and exciton
binding energies relatively large. ' In these systems, the
electron is tightly confined inside the well in a quasi-two-
dimensional form so that the Coulomb potential induced
by its presence is actually significantly enhanced in the z
direction, i.e., the confinement of the hole to the well has
a large Coulomb contribution. In other words, if the
"bare" quantum well in the valence band is shallow, gh
should be much more tightly bound than the simple solu-
tion of hh(zh ) predicts, and therefore should be deter-
mined with Coulomb interaction properly taken into ac-
count.

The relative part of the wave function p, h can be
chosen to be of the form of the solution to the hydrogen-
atom problem in either three or two dimensions. The
former is generally more accurate especially for systems
deviating from the quasi-two-dimensional limit. To be
specific, we fallow Ref. 7 and use the expression

P, h(r~, z)' =c exp[ (r~+z }' /A.]— (4)

to present results in this paper, although the following
discussions are applicable to both types of choice of a rel-
ative function. Some results from a similar calculation
are briefly summarized in Ref. 10 where the additional
complexity of effective-mass anisotropy was also taken
into account.

In performing the variational calculation for excitons
in GaAs/Al„Ga, „As quantum wells, p, h is the only
part containing variational parameters [such as A, in Eq.
(4)]. As already noted in the case of a small valence- or
conduction-band off'set ph (or g, ) needs to be determined
more accurately if strong excitonic elects are present.

We generalize the above variational approach by start-
ing with an exciton trial wave function of the same form
as in Eq. (3), but then determine both gh(zh) and p, h

variationally. The influence of the Coulomb interaction

E,„=E,+Eh+(A /2@A, )(I( I2+I(+I ) )/—I2

(e /eA, )I, /I&,—

where the second term is defined by

Eh =fdz, I 0(z, }
I

'f dzh [4«h +h(zh 4'(zh )]

x f d ri I 0 «(rj. z-

(6)

(7)

which, in our refined calculatian, is in general different
from the eigenvalue Eh of hh(zh }. Other quantities in Eq.
(6) are defined by

I„=(A/n )f dQ[.l+(QA, /2) ]

z, exp i z, , z,

)&m f dzh exp( iQzh) ( gh(—zh)
~

on the motion of the hole in the z direction is included by
assuming fh(zh ) to be the solution to an "eff'ective quan-
tum well" (EQW} of the same width I. and an efFective
barrier VI„which represents the combined effective
confinement for the hole arising from its bare quantum
well (Vh) and the electron-hole potential. The quantity
Vh is used as an additional variational parameter. For
simplicity, f, (z, ) is still taken to be the solution of h, (z, )
without losing appreciable accuracy when the condition
V, g&Ez is satisfied.

Before detailing our results, we note that proper choice
of both the general form of the hole envelope function gh
and the degree of variational freedom is the key in
achieving meaningfully accurate results. For example, as
shown below, our choice of the variational function con-
sistently yields better results (lower exciton interband
energy) than the traditional approach to 6aAs/
Al, Ga&, As quantum wells (Ref. 7). Furthermore, the
method compares favorably also with other choices of
fh(zh ) with a simple analytical form. As an illustration,
we found that results obtained by taking gh(zh } as a
Gaussian wave packet with an adjustable size [i.e.,
ph(z) ~ exp( —a z ) with a being a variational parame-
ter] is generally even worse than those from using the
"fixed" yh(zh ) of Ref. 7.

The total exciton interband energy (less the band gap
of the well material) as the eigenvalue to the Hamiltonian
in Eq. (1) is, making the variational parameters explicit,

E,„(Vh, k, )=fdz, f dzh f d r~%"(rz, z„zh )H,„+(r~,z„zh )

=ED+ED Ett( Vh, k—), (5)

where the exciton wave function is normalized through
the choice of the constant c in Eq. (4). Note that, in em-

ploying Eq. (5), the variational parameter Vh will be in-

cluded only in defining the trial function gh, while the
operator hh always takes on its form defined by the
valence-band "natural quantum well" ( Vh ) in Eq. (1).

After some algebraic manipulations, Eq. (5) can be
written explicitly as
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for I& and Iz, and

I', = (A /n )f dQ [I +(QA /2) ]

X fdz, Qz, sin(Qz, )
~ f, (z, )

~

\
60 —

y

and

X d~„exp —~ ~„ (9)
58

E

w 56

I", =(1,/n) fdQ[1+(QA, /2) ]

X fdz, exp(iQz, )
~ g, (z, )

~

X fdz„Qz„sin(Qz„)
~ tel, (z„)

~

. (10)
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With the specific forms of f, and gi, in our calculation,
the integrals over z, and zl, inside Eqs. (8)-(10)can all be
expressed as elementary functions. By rewriting Eq. (7)
as

FIG. 1. The exciton interband energy E,„evaluated from Eq.
(6) as a function of the valence-band barrier VI, . The dashed
line indicates the result following the approach in Ref. 7. Pa-
rameters are given in the text.

E„=— 1+ 2

X f dz
I it. (z )

I
exp(iQz, )

X fdz„exp( iQzq—)

X [fi, (zh )hq(zl, }f&(za )]I2

Eqs. (7)—(10) can be evaluated by numerical integration
of the remaining variable Q. This procedure may reduce
the computing expenditure of calculating E,„substantial-
ly and should be very useful when more degrees of varia-
tional freedom are introduced for improving the calcula-
tion.

%e now illustrate some numerical results of this
refined variational approach by examining the range of
valence-band offsets where substantial improvements by
our approach are in evidence. %e use material parame-
ters which are roughly representative of II-VI hetero-
structures such as CdTe/Cd, „Mn„Te with x =0.20
—0.30; ' '" m, =0.1mp, m&

——0.5mp E'=9, and V, + VI,
=E (x)—E (0)=400 meV. The exciton binding energy
in a bulk material for these parameters is E~ =14 meV.
Complications arising from the finite lattice mismatch,
such as corrections to band energies by the hydrostatic
and uniaxial strain, and mass anisotropies, are not includ-
ed since they can be readily taken into account in this
particular case. The well width is taken to be I. =50 A
which is somewhat smaller than the exciton Bohr radius
of the bulk material.

Figure 1 shows the calculated total exciton variational
ground-state energy (interband energy less the band gap
of well material} in the range of valence-band ofFset
0& Vi, &60 meV (i.e., including the type-I —type-II cross
over limit). A direct comparison is inade with the result
obtained from a calculation along the lines of Ref. 7
where the fixed value VI,

——Vi has been used (dashed line).
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FIG. 2. The exciton binding energy Ea as defined in Eq. (2),
calculated as a function of VI, . The result following Ref. 7 is
plotted as a dashed line. Parameters are the same as in Fig. 1.

The distinct difference shows clearly how the electron-
hole Coulomb interaction influences the valence-band
confinement; indeed, the conventional approach breaks
down as V&~0.

The influence of varying valence-band offset on the ex-
citon binding energy is shown in Fig. 2 for the same set of
parameters. Even at VI, ——0, our calculation predicts a
significant enhancement reflecting the influence of the
quasi-2D electron. Comparison with the conventional
calculation (dashed line} again shows pronounced
differences. On increasing VI„E~ saturates to a value
which is roughly twice that of E as a consequence of
the finite well width L in our calculation. These physical
considerations, and direct application of these calcula-
tions to recent experimental results obtained by photo-
luminescence excitation spectroscopy in the
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CdTe/Cd, „Mn„Te system, suggest that in characteriz-

ing such quantum wells with excitons and small valence-
band offsets, our calculation may have similar accuracy
as those for GaAslAI„Ga& „As quantum wells (few

meV). Finally, we note that within these limits our model
should also be useful for weakly type-II structures.
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