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Energy surfaces and electronic properties of hydrogen Suoride
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Results of first-principles calculations on a single hydrogen fluoride molecule as well as on poly-

meric hydrogen fluoride are reported. The results are compared with other theoretical calculations

as well as with experiments and the agreement is found to be good. A model for solitonic excita-
tions is proposed and examined. The parameters entering the model are extracted from the first-

principles calculations. The model represents the first attempt to include electronic interactions in

the discussion of solitonic excitations in hydrogen-bonded polymers. It predicts the soliton to be a

sharp kink and that the soliton induces electronic states slightly outside the energy bands of the un-

perturbed system. The first-principles results are also used in investigating the frozen optical
stretch phonons at the zone center within both a harmonic and an anharmonic approximation. The
latter is found to give rise to an extra mode compared with the former. Finally, we compare our to-
tal energies with those predicted by various proposed model potentials for describing dynamical

properties of the gas and liquid phases. Some discrepancies are found, and it is argued that varia-

tions in the molecular bond length as well as electronic interactions are to be included in realistic

model potentials.

I. INTRODUCTION

Hydrogen lluoride crystalizes in an orthorhombic
structure consisting of parallel chains of polymeric hy-
drogen fluoride with a smallest interchain distance equal
to 6.05 a.u. Each chain has a planar zigzag arrangement
of the fluorine atoms (see Fig. 1) with the hydrogen atoms
placed asymmetric between neighboring fluorine atoms.
X-ray diffraction has shown that the F—F nearest neigh-
bor distance, d„, is 4.71 a.u. ,

' the F—F—F bond angle,
a, is 120.1', ' and from NMR spectroscopy the smallest
hydrogen fluorine distance, dH, is found to be 1.80 a.u.
(Ref. 2).

The cohesion of hydrogen fluoride can be interpreted
as being due to weak van der Waals and dipolar interac-
tions between the chains, whereas hydrogen bonds be-
tween diatomic HF monomers are responsible for the in-
trachain cohesion. Because of its structural simplicity
and of the small energies related to the interchain and in-
termonomer interactions, hydrogen fluoride may serve as
a prototype of the very big class of compounds with
bonds that are so weak that they can play a part in reac-
tions at room temperature.

Most of the properties of hydrogen fluoride can be as-
cribed to isolated chains thereby neglecting the inter-
chain interactions. Furthermore, properties of a single
chain may also be relevant for studying gaseous and
liquid hydrogen Auoride. Infrared (ir) measurements on
gaseous HF have shown that under normal conditions
the molecules are primarily found as cyclic hexamers,
and ir experiments on the liquid suggest that this phase
consists of zigzag chains which in contrast to the solid
need not be planar. ' In all three phases the HF mono-
mers tend to cluster such that they have the same local
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FIG. 1. The geometry of a single hydrogen fluoride chain.
The solid (dashed) lines represent the molecular (hydrogen)
bonds. We will refer to structures with a=120 (180 ) as zigzag
(linear) structures.
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surroundings.
In this paper we present results derived from self-

consistent, first-principles calculations on a single hydro-
gen fluoride chain. We have calculated the electronic
ground state properties for a large number of fixed values
of the geometrical parameters a, d F, and dH. The method
is described in detail elsewhere but a small introduction
is given in Sec. II. In Sec. III we report results of calcula-
tions on a single HF monomer. Section IV contains self-
consistently obtained total energies, single-particle ener-
gies, and electron densities for the polymer. A prelimi-
nary account of parts of these results has been given ear-
lier but here we focus on using them in predicting prop-
erties of solitonic excitations (Sec. V), calculating phonon
frequencies (Sec. VI), and in examining model potentials
for describing dynamical properties of gaseous and squid
hydrogen fluoride {Sec.VII). Finally, we conclude in Sec.
VIII.

II.THE FIRST-PRINCIPLES METHOD

or zigzag) symmetry is explicitly taken into account by
defining basis functions in local atom-centered right-
handed coordinate systems with the z axis parallel to the
polymer axis and the x axis pointing away from it. Bloch
waves are formed from the local basis functions. Accord-
ingly, the unit cell of polymeric hydrogen fluoride con-
tains only a single HF monomer for all values of a.

The sizes of the muffin-tin spheres were kept constant
for all calculations. s, p, and d functions were included
on both fluorine and hydrogen atoms, and the basis set
was doubled by having two fixed, common a values for
both atoms and all I's. However, due to almost linear
dependencies, those linear combinations of the basis func-
tions that corresponded to the smallest eigenvalues of the
overlap matrix were excluded. ' The size of the basis set
was therefore 32 functions per monomer.

Since polymeric hydrogen fluoride is expected to be an
insulator with narrow energy bands we use only six k
points in half part of the Brillouin zone.

For fixed positions of the nuclei (the Born-
Oppenheimer approximation} we seek the single-particle
eigenvalues, sj, and eigenfunctions, g~(r} to the Kohn-
Sham equations in Rydberg atomic units

8 P, (r)=[—V + V(r)] QJ(r)=e, g, (r), .

where the potential V(r) is the sum of the Coulombic po-
tential of the nuclei, VN(r), that of the electrons, V, (r),
and the exchange-correlation potential, V„,(r). For the
latter we use the Barth-Hedin local approximation such
that it becomes a simple function of the electron density:
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where the sum goes over all occupied levels.
The potential can be expanded around each nucleus in

angular dependencies:

V(r)=g VL (ra } YL, (ra )
L

where r„=r—R, and the nucleus is assumed placed at R.
The eigenfunctions, P (r), are expanded in linearized

muffin-tin orbitals (LMTO's). They are defined as being
numerical solutions of (I) with the potential being re-
placed with the spherical component [i.e., I.=(0,0}]of
(4) inside nonoverlapping muffin-tin spheres centered on
the nuclei. On the spheres they are matched smoothly to
spherical Hankel functions, h& "(mrs )YL (rs ), rc &0. The
basis functions are hence defined as being eigenfunctions
of a muffin-tin potential but in setting up the Hamiltoni-
an matrix the full potential is considered. This is done by
including the full expansion (4) inside the muffin-tin
spheres and by fitting the potential in the interstitial re-
gion outside aB muffin-tin spheres to a sum of overlap-
ping, atom-centered spherical Hankel functions. For de-
tails, see Ref. 6.

For the polymer of Fig. l the "helical" (translational
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FIG. 2. (a) Total energy of a single HF monomer as a func-
tion of the bond length. The curve labeled "exact" is the results
of the first-principles calculations, the other the result of the fit

of the exact curve with a Morse potential. Note, that the two
curves are very close to each other. (b) The single-particle
valence energies of the monomer as a function of bond length.
The four orbitals split into two single degenerate o orbitals and
one double degenerate m orbital. To the right the local (spin)
density single-particle valence energies of the isolated atoms as
well as their experimentally found first ionization potentials (IP)
are shown.
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III.THE HF MONOMER

First we consider a single monomer, i.e., the limit
d„-+oo. In Fig. 2 we depict the total energy [Fig. 2(a)]
and the single-particle eigenvalues ej. [Fig. 2(b)] as a func-
tion of the molecular bond length dH.

The minimum for the total energy is found for
dH ——1.70 a.u. in good agreement with the experimental
values 1.71 a.u. (Ref. 11) and 1.73 a.u. (Ref. 12}. Ab ini-
tio Hartree-Fock calculations' give dH ——1.70 a.u.

As shown in Fig. 2(a) we can fit the total energy in the
range 1.4-3.0 a.u. very well with a Morse potential

E~ ——DOI 1 —exp[ Po(r —ro)]I— (5)

except for an additive constant. The parameters are
Do ——4.63 eV, Po ——l. 334 a.u. , and ro ——1.684 a.u. , and the
root-mean-square deviation (rmsd) was found to be only
0.009 eV showing how good the fit is in this range. The
minimum of the Morse potential is slightly shifted away
from the position of that of the total energy. As a very
careful inspection of Fig. 2(a) shows the Morse potential
fit tends to underestimate the total-energy for dH close to
3.0 a.u. The dissociation energy predicted by the Morse
potential fit (Do) is therefore smaller than the experimen-
tal value [6.12 eV (Ref. 11)]. On the other hand, the
properties close to the equilibrium are excellently de-
scribed by the fit. Using (5) in describing the total energy
of the molecule the vibrational eigenvalue spectrum be-
comes'

e„=(n+ ,' )co,hc —(n+—,' } co,x,hc—,

with

co,hc =CAPO(2DO/p)'

x, =(ru, hc)l(4DO).

(6)

(7)

Here, p is the reduced mass. The vibrational frequencies
are then

v„=e„eo=neo, hc —n( n + 1—}ei,hcx„ (8)

which is [4089n —112n(n+1)] cm ' for HF and
[2964n —59n(n+1)] cin ' for DF. For HF the first five
calculated vibration frequencies (with the experimental
values of Di Lonardo and Douglas" in parentheses) are
(in cm ') 3865 (3961), 7506 (7750), 11034 (11 372), 1'4118
(14 831), and 17 088 (18 130).We see that the agreement is
good for the lowest frequencies but that it becomes worse
for the higher ones due to the wrong description of the
dissociation. The anharmonicity [last term in Eq. (8)] is
found to be important; without it the fifth frequency
would have been 20445 cm '. Ab initio Hartree-Fock
calculations on the HF monomer' yield 4272 and 8383
cm ' for the first two vibrational frequencies, whereas in-
clusion of correlation gives' 3593 and 7728 cm ', re-
spectively.

For DF we find the first two frequencies to be 2847 and
5576 cm-'.

Although the single-particle energies calculated within
the densi. ty functional formalism in principle are not to be

related with excitation energies experience has shown
that it is a good approximation to neglect this formality.
In Fig. 2(b) the valence energies for the HF monomer are
shown as a function of dH. Furthermore, the exact nu-
merical local (spin) density quasiparticle energies for the
free atoms together with their experimental ionization
potentials are shown. As has been discussed by, e.g. ,
Trickey, ' we notice a general failure of the local (spin}
density to reproduce the correct ionization potentials for
the hydrogen and fluorine atoms.

In Fig. 3 we depict the electron densities for the three
valence orbitals for the optimized equilibrium geometry.
From Figs. 2(b) and 3 we easily realize that all valence or-
bitals are bonding orbitals. The uppermost valence orbit-
al is a double degenerate m orbital formed by p orbitals
perpendicular to the molecular axis, whereas the other
two orbitals are of 0 symmetry and formed by s and p or-
bitals, respectively. It is seen in Fig. 3 that the orbitals
have only small hydrogen components.

The ionization potential is found to be 13.0 eV, which
is considerably smaller than the experimental value' 16.2
eV, the ab initio Hartree-Fock value' 17.7 eV, and the
ab initio Hartree-Fock plus correlation value' 16.0 eV.
The error is almost the same as found for the free atoms
[see Fig. 2(b} and Ref. 16], so we will ascribe it a general
failure in the density functional formalism in its local ap-
proximation.

From the coefficients q„and qH (q„=—qH) to the
long-range 1/r Coulomb potential centered on the nuclei
we can estimate a dipolar moment of 1.62 D, which is
smaller than the experimental value' 1.80 D. At the ab
initio Hartree-Fock level the dipolar moment is overes-
timated, ' ' being about 1.93 D, whereas inclusion of
correlation reduces the error to a few percent. '

In closing this section we would like to point out that
the calculations give results in good agreement with ex-
periments. This is important, since we will apply exactly
the same approximations (except, of course, for approxi-
mations in connection with summations in direct and re-
ciprocal space} for the infinite polymer. Here, most previ-
ous parameter-free calculations (see the following section)
have been performed with the Hartree-Fock method with
less converged basis sets than those with which we have
compared our results on the monomer.

IV. ELECTRONIC GROUND STATES
OF THE HF POLYMER

We now pass to the infinite periodic polymer. In this
section we will report the results of the first-principles
calculations of the electronic ground state properties for
various values of a, d&, and dH. Since the calculations
have been performed with the same approximations as
used for the monomer a direct comparison is possible. In
three subsections we describe the calculated total ener-
gies, band structures, and electron densities, respectively.

A. Total energies

For a kept fixed we depict in Fig. 4 the relative total
energy as a function of d„and dH. a is chosen to be 120
[Fig. 4(a)] and 180 [Fig. 4(b)]. The results have been de-
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FIG. 3. The electron density outside the interior of the muffin-tin spheres for the optimized geometry of a single HF monomer for
the three valence orbitals, (a} the o

&
orbital, (b) the o.

& orbital, and (c) the ~& orbital. The contour values are 0.10, 0.08, 0.06, 0.04, 0.02,
0.01, and 0.005 a.u.

scribed in detail in our earlier report so we will here
mainly give a short discussion of them, suScient for un-
derstanding the following sections. Furthermore, we will
make a detailed comparison with earlier works on polym-
eric hydrogen fluoride. This is done in order to make an
evaluation of the results of this work and of others
presented in the following sections possible.

Interchanging the molecular and hydrogen bonds in
the structure of Fig. 1 gives a structure with the same to-
tal energy. This symmetry manifests itself in a symmetry
of the total energy about the point dH =d„/2 for fixed a
and d F as seen in Fig. 4.

For a=120' we find a minimum for (dF, dH )

=(4.77, 1.87) a.u. The energy related to the hydrogen
bond (hereafter denoted E„and defined as the total ener-

gy of the isolated optimized monomer minus that per
monomer of the polymer) is found to be 0.61 eV. For a
kept Axed at 120' the smallest barrier for a collective shift
of a/I the protons to the energetically equivalent position
(i.e., dH~d„—dH) is found for dH=d„/2=2. 28 a.u. ,
where the barrier height is 0.30 eV.

For a=180' we 6nd indications of two local minima
[see Fig 4(a)]. However, the energy barrier between them

is so small (0.05 eV) that we cannot exclude it being a nu-
merical artifact. The two minima are found for
(d„,dH)=(4. 39, 1.94) a.u. and (4.80, 1.89) a.u. , respec-
tively. The hydrogen bond energy (EH) for these is the
same (0.31 eV) within 0.01 eV for the two structures.
Since the length of the unit cell is d„sin(a/2) the zigzag
structures are more compact than the linear structures
for the same value of dF. Therefore, in the range of dF
(i.e., dF-4-5 a.u. ) where not only nearest neighbor in-
teractions but also next-nearest neighbor interactions
(e.g., dipole and quadrupole interactions) are important,
the total energy of the more open linear structures will
show a weaker dependence on d„ than the zigzag struc-
tures will. Hence, the area circumscribed by the inner-
most contour curve in Fig. 4(b) is larger than that of Fig.
4(a). Therefore, the energy barrier for a collective shift of
all the protons from one minimum to the symmetry
equivalent minimum is smaller for the linear than for the
zigzag structures. The smallest barrier height is for
a = 180' found to be 0.18 eV for d H =d„/2 =2. 16 a.u.

Varying all three parameters a, dF, and dH but still re-
stricting ourselves to polymers of the type sketched in
Fig. 1 we find a global minimum for a=125', dF ——4.72
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FIG. 4. Relative binding energy per HF monomer for the polymer of Fig. 1. The energy is plotted as a function of d F /2 and dH for
a kept constant at 120 (a) and 180 (b). The local minimum in (a) corresponds to a hydrogen bond energy of 0.61 eV; those of (b) to
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a.u. , and dH ——1.85 a.u. The hydrogen bond energy, EH,
of this structure is 0.64 eV. The geometry is to be com-
pared with the experimental values' quoted in the be-
ginning of this paper, i.e., a=120.1', dF ——4.71 a.u. , and
dH ——1.80 a.u. , or with the more recent work on deu-
terium fluoride, i.e., a=116', d„=4.72 a.u. , and
dH ——1.83 a.u. We find the agreement to be good. Since
the hydrogen bond energy of a HF dimer is 0.30 eV' and
since that of the polymer is expected to be roughly
50-100 9o larger ' our value of EH seems to be reason-
able.

Comparing Figs. 2(a) and 4 we see that for fixed dF the
optimal value of dH for the polymer only slowly ap-
proaches the optimized value of the monomer as a func-
tion of increasing 1F.

There exist a number of papers on calculations of total
energies of polymeric hydrogen fluoride or related struc-
tures. However, most of them either are based on sem-
iempirical methods or consider a fairly limited number of
geometries within the Hartree-Fock method where corre-
lation effects per definition are excluded. We will now dis-
cuss the results of some of these papers without claiming
to be complete.

Santry and co-workers ' used the semiempirical
complete neglect of differential overlap (CNDO) method
in examining the relative stability of a monomer, a dimer,
a polymer, and the two crystal structures where neigh-
boring chains are parallel or antiparallel. They find EH
for the polymer to be 0.55 eV, in good agreement with
our value.

Also Karpfen et a/. ' applied the CNDO method.
Their hydrogen bond energy for the zigzag structure,
0.61 eV, is in excellent agreement with ours, but that of
the linear structure, 0.60 eV, is significantly larger than
ours. This might be due to the lack of a proper parame-
trization of the CNDO method for this nonexisting struc-
ture.

A very detailed analysis was undertaken by Zunger

within the semiempirical intermediate neglect of
differential overlap (INDO) method. He considered the
total energy for a large number of geometries as done in
the present work. His optimized structure has a=122,
but surprisingly dH ——dF/2=2. 13 a.u. The hydrogen
bond energy is significantly overestimated, 1.28 eV. Fix-
ing dF at 4.71 a.u. he finds a = 124, dH ——1.92 a.u. , and
EH ——0.78 eV.

Finally, Lochmann has also performed semiempirical
calculations on polymeric HF. His method, perturbative
configuration interaction using localized orbitals for crys-
tal calculations (PCILOCC), gave quite small hydrogen
bond energies: 0.22 eV for both zigzag and linear struc-
tures.

Kertesz et a/. have calculated an ab initio Hartree-
Fock hydrogen bond energy of 0.44 eV for a fixed zigzag
geometry.

Karpfen and co-workers27-29 have within the ab initio
Hartree-Fock approximation considered a limited num-
ber of geometries of both linear and zigzag chains. They
report optimized structures with a=129.7', d„=4.91
a.u. , dH ——1.74 a.u. , and EH =0.28 eV for the zigzag po-
lymer, and dF ——5.05 a.u. , 1„=1.72 a.u. , and EH ——0.26
eV for the linear polymer. These values are in consider-
ably worse agreement with the experimental values than
ours.

I'Haya et a/. reported ab initio Hartree-Fock as well
as model potential calculations on fixed linear and zigzag
geometries. They report very varying energy differences
for equivalent calculations on the two structures: from
0.21 eV to 12.2 eV. We have no explanation of this large
spread, which seems very unsatisfactory.

Otto and Steinborn ' have included parts of the corre-
lation effects perturbatively on results from an ab initio
Hartree-Fock calculation for a fixed geometry of the
three-dimensional crystal structure. They report a hydro-
gen bond energy for the single chain of 0.39 eV (0.40 eV)
without (with) correlation effects.

5.0

0.0
(b) (c)

5.0

0.0

-5.0 -5.0

-10.0

-15.0

C
-20.0

ai (2x) -10.0

-15.0

-20.0

-25.0 -25.0

-30.0 a, -30.0

-35.0
0 I 0 l 0

-35.0
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Finally, Jansen et aI. have presented a very detailed
examination of some solid hydrogen halides. For HBr
they applied the density functional formalism and the
pseudopotential method on linear chains (i.e., for
simplification they did not consider the experimental
known structure with zigzag chains) for a number of
bond lengths equivalent to Fig. 4(b). As they should, the
results resemble many similarities with Fig. 4(b). To our
knowledge this is the only other example of application of
the density functional formalism on systems containing
hydrogen bonds. For HF they used the ab initio Hartree-
Fock method on the cyclic hexamer. Their optimized
values of dz and dH are 4.81 and 1.70 a.u. corresponding
to slightly too long (short) hydrogen (molecular) bonds as
also the ab initio Hartree-Fock calculations by Karpfen
et al. z7 zo gave, and their hydrogen bond energy seems
to be too large, 1.58 eV. For a collective shift of all
the protons to the symmetric position the smallest barrier
(-0.25 eV) is found for dH ——d„/2=2. 12 a.u.

In total we find that our results show the best general

agreement in structural parameters and total energies
compared with the experimental values.

B.Band structures

For the three local minima of Fig. 4 we depict in Fig. 5
the single-particle eigenvalue spectra. For all three struc-
tures the valence bands are easily related to the molecular
eigenvalues of Fig. 2(b). For the zigzag structure the
lower symmetry splits the double degenerate molecular
n.

&
level up into a o 3 and a m

&
band as seen in Fig. 5(a).

The bandwidths of the zigzag structure and of the
"long" linear structure [i.e., that local minimum in Fig.
4(b) which has the larger dz value, in contrast to the oth-
er, "short, " linear structure] are quite similar: 0.7 eV (o,),
2.9 eV (oz), 0.5 eV (cr3), and 0.7 ev (m, ) for the zigzag
structure, and 0.6 eV (o,), 4.7 eV (o 2), and 0.7 eV (m, ) for
the long linear structure. Since the two structures have
similar molecular and hydrogen bond lengths, and since
the molecular orbitals are well localized close to the sin-
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gle monomer (cf. Fig. 3), the bandwidths should mainly
be determined from nearest neighbor interactions only.
There is one difference in the bandwidths: the o2 band
originating from the molecular az orbital of Fig. 3(b).
This orbital is more delocalized and shows a specific
directional elongation such that the overlap of these de-
pends on their relative orientation leading to the quoted
differences in the bandwidths.

From these considerations it can also be understood
why the bandwidths of the short linear structure are
somewhat larger, i.e., 1.1 eV (o,), 7.0 eV (az), and 1.0 eV
(n, ).

The ionization potential for the three structures is cal-
culated to be 11.9, 12.3, and 12.2 eV, respectively, i.e.,
slightly smaller than that of the monomer. A similar de-
crease has been noticed by Liegener and Ladik' in their
ab initio Hartree-Fock plus correlation calculations.

The band gap, which in general is substantially un-
derestimated in local density calculations, is found to be
12.1, 10.5, and 11.1 eV for the three structures, respec-
tively, and the compound is hence a large-gap insulator.

Our bandwidths are considerably smaller than those
reported by Karpfen et al. ' from their CNDO calcula-
tions. Furthermore, Karpfen et al. did not in general find
the o 2 band to be much wider than the other bands. Also
their ionization potentials were larger than ours, but
here —as discussed for the monomer —we expect the lo-
cal density approximation to give too small values for
HF. The total valence bandwidth, which normally is

reproduced well within the local density approximation,
was by Karpfen et al. found to be some few eV larger.

The INDO bands of Zunger and the CNDQ bands of
Pietronero and Lipari showed many similarities with
those of Karpfen et al. ' The larger bandwidths found by
these semiempirical methods might be related to the
Hartree-Fock approximation inherent in the CNDO and
INDO methods. This approximation is known in general
to overestimate the bandwidths.

In contrast to these results the ab initio Hartree-Fock
calculations by Kertesz et al. and by Karpfen and co-
workers ' clearly gave that the 02 band is significantly
broader than the other bands. However, unexpectedly
their bandwidths were in general smaller than ours. It
could be due to too small basis sets in the Hartree-Fock
calculations, but their results show a decrease in the
bandwidths upon increasing the basis set size. On the oth-
er hand, Liegener and Ladik' have demonstrated that
the width of the uppermost valence band increases from
0.25 to 1.45 eV upon inclusion of correlation effects. So,
the lack of correlation effects might be the reason for the
too narrow bands found by Kertesz et al. z and by
Karpfen and co-workers.

For the sake of completeness and for later purposes we
show in Fig. 6 the ionization potential, band gap, and
bandwidths for both zigzag and linear structures as a
function of d„ for the high-symmetry situation
(d H =d „/2) as well as for a low-energy situation
(dH ——1.9 a.u.). The bandwidths confirm the already es-

(c)

)IQ
I

(e) {h

FIG. 7. Electron densities outside the interior of the muSn-tin spheres for the optimized zigzag structure for the cr, [(a) and (e)], o 2

[(b) and (f)], o, [(c) and (g)], and the n, [(d) and (h)] vale.nce orbitals at the zone center [(a)—(d)] and zone edge [(e)—(h)]. Contour
values as in Fig. 3. In (a)-(c) and (e)—(g) the plane i.s that of the nuclei; in (d) and (h) one perpendicular to that of the nuclei contain-
ing a proton and its two nearest fiuorine neighbors.



1490 MICHAEL SPRINGBORG 38

tablished picture: they are all small except for that of o.2,
which furthermore is larger for the linear than for the
zigzag structures. For dH =d„/2 the molecular orbitals
become more elongated than for dH ——1.9 a.u. such that
the bandwidths (band gaps} become larger (smaller). As
indirectly seen in Figs. 5(b) and 5(c) the nature of the top
of the valence bands can shift between being of cr and be-
ing of ~ type. This causes the small oscillations in Fig.
6(b).

C. Electron densities

In Figs. 7 and 8 we show the electron densities of the
valence orbitals at the zone center and the zone edge for
the optimized zigzag structure (Fig. 7) and the optimized
short linear structure (Fig. 8). Those of the long linear
structure have many similarities with those shown as will
be described in the following, and we have hence chosen
not to include them.

The 0, orbitals [Figs. 7(a), 7(e), 8(a), and 8(d)] show
only little interaction in the zigzag and long linear struc-
tures. Comparing Figs. 7(a) and 7(e) with Fig. 2(a) we see
only a small repulsion at the zone edge [Fig. 7(e)] and ac-
cordingly only a small compression of the molecular or-

bitals. For the short linear structure this compression is
larger.

For the oz orbitals [Figs. 7(b}, 7(f), 8(b), and 8(e)] we

clearly see the maximal overlap when the molecular or-
bitals are parallel. At the zone edge it is recognized how
the proton can be regarded as a "bridge" for the interac-
tion between the elongated fluorine p orbitals; mostly for
the short linear structure, less for the other two.

The molecular m. orbitals, which remain degenerate in
the linear structures, split into two in the zigzag struc-
tures as discussed above. One of these can interact bond-
ingly at both zone center and zone edge [Figs. 7(c) and

7(g)] such that the top of the corresponding rr band is at a
low-symmetry point in the Brillouin zone.

For the n bands the largest interaction is for the zigzag
structure [Figs. 7(d) and 7(h)] whereas the interaction for
the long linear structure is very small. Here, the short
linear structure [Figs. 8(c) and 8(f)] is in between.

V. SOLITONIC EXCITATIONS

Many hydrogen-bonded systems have two degenerate
or nondegenerate conformations, corresponding to all the
protons of the hydrogen bonds being closer to one or the

(a)

((~F1 i

FIG. 8. As Fig. 7 but for the optimized short linear structure for the cr, [(a) and (d)], rr2 [(b) and (e)], and n, [(c) and (f)] valence or-
bitals at the zone center [(a)—(c)] and zone edge [(d)—(f)].
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other of their two nearest neighbors. Whether the two
minima are degenerate in energy or not depends on the
symmetry of the system. It has then been proposed that
such a system might be excited by locally creating a
domain wall between two parts where in one part the
protons are closer to one of their neighbors and in the
other part they are closer to the other. These domain
walls, the so-called solitons or kinks, can move
throughout the system, and are considered important for
a helices, 3 9 but they have also been considered for
other systems including hydrogen fluoride.

Solitons are also assumed important for the excited
states of the conjugated polymers of which the most
well-known example is trans-polyacetylene. Undimerized
trans-polyacetylene, (CH)„consists of a planar zigzag ar-
rangement of carbon atoms each bonded to a single hy-
drogen atom lying in the same plane. The valence bands
are filled deep lying cr bands from carbon sp hybrids and
hydrogen s orbitals and a half-filled ~ band from the last
carbon p orbital. By dimerizing a gap opens up between
the valence and the conduction states. Recognizing that
the ground state is double degenerate corresponding to
the two equivalent patterns of alternating carbon carbon
single and double bonds, it has been proposed (see, e.g.,
Ref. 41) that domain walls (solitons, kinks) between the
two patterns might be excited upon doping the polymer.
The solitons induce single-particle states in the gap and
these states are assumed responsible for the large conduc-
tivity observed for this compound upon doping. z

Since the examinations of the solitonic excitations of
the hydrogen-bonded polymers most often apply a con-
tinuum version of a model Hamiltonian, and furthermore
only focus on the creation energy of a soliton and not on
the single-particle energies, and since the latter are im-
portant for examining the properties of the soliton excit-
ed conjugated polymers, we will here present a simple
model which describes the total energy as well as the
single-particle energies for both the ground state and the
soliton in hydrogen fluoride. The results should then
throw light on the solitons in hydrogen-bonded polymers
as well as in conjugated polymers. The model is a com-
bination of the two used for hydrogen-bonded polymers
and for conjugated polymers.

We will especially focus on the consequences of two
differences from polyacetylene: (i} The geometry
equivalent to undimerized polyacetylene (i.e., dH ——d„/2)
does not have a half-filled band and the soliton induced
states might therefore appear at other positions than at
the middle of a gap; and (ii) the energy of formation of a
soliton might be considerably larger for HF since the "di-
merization" energy of HF is about one order of magni-
tude larger than that normally assumed for (CH)„. (We
will use the word "dimerization" for the process in which
all the protons are shifted from the saddle point for
d„/2=dH to one of the degenerate local minima keeping
a fixed. )

In examining solitons in hydrogen fluoride we shall as-
sume that a is constant and that the protons remain on
the lines connecting neighboring fluorine atoms. Al-
though this might not be precisely true we believe that
the modifications introduced by leaving these assump-

2 4 N

Era ——g g g [ t„„+(x—„)(c„,c„+,, + c„'+, ,c„,}
s=l i =1 n =1

(i) (i) (i)+e (xn —i&xn &xn +1 } ns n, s ]~ (9)

where s labels the spin variable, i the molecular orbitals,
n the unit cells, and c and c are the annihilation and
creation operators, respectively. In this model the hybrid-
ization between the different molecular orbitals is neglect-
ed. This is reasonable when noticing the large separation
of the bands of same symmetry (cf. Fig. 5).

In a ring of E monomers {which has periodic boundary
conditions) the introduction of a kink-antikink pair, each
with zero width, will lead to a fluorine atom and a hydro-
gen atom each with no neighbors to form molecular
bonds with {see Fig. 9}.We will assume that in this situa-
tion the single-particle energies of the eight electrons of
this hydrogen fluorine pair are determined from those of

tions will only be small. We shall furthermore assume
that for any proton the molecular and hydrogen bond
lengths d„—dH and dH follow a unique curve in the
(dz, dH) plane, and that this curve for a=120 corre-
sponds to the curve connecting the two degenerate mini-
ma in Fig. 4(a). Since the bonding properties of HF main-

ly are determined by local interactions between neighbor-
ing molecular orbitals and slowly varying long-range
electrostatic interactions (see, e.g., Ref. 7) this assump-
tion seems justified. The curve will be a "least-descent-
of-total-energy" curve and pass through the saddle point
on the dH ——d„/2 line. We will use a parameter x to label
positions on the curve with x being the distance in the
(dz/2, dH } plane from the saddle point. x =+x~0~ is the
two degenerate minima. The parameters x„are accord-
ingly to describe the positions of the fluorine atoms with
respect to those of the protons, and the model is to de-
scribe to which extent the protons participate in molecu-
lar and hydrogen bonds with the two neighboring
fluorine atoms.

We will introduce a number of parameters in the mod-
el. These we will determine from the total-energy results
of the perfect undistorted polymer. It should be pointed
out that many of them are to be considered approximate
but our results should remain almost unchanged when
modifying the parameters within certain reasonable lim-
its. Furthermore, the model is explicitly made for exam-
ining the solitonic excitations in this polymer and should
therefore only with care be transferred to other proper-
ties of hydrogen fluoride. On the other hand, the model is
easily modified in order to describe solitonic excitations
in other hydrogen-bonded systems.

First of all, we will describe the interaction between the
molecular orbitals within a tight-binding formalism.
From the calculations on the monomer (Sec. III) we no-
tice that the energies of the molecular orbital depend on
the bond length. Compared with the Su-Schrieffer-Heeger
model ' for trans-polyacetylene we will therefore have
additional x depending on-site matrix elements, and since
we have four double occupied valence orbitals the tight-
binding Hamiltonian becomes
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the polymer where all the protons are placed in the sym-
metric position, dH=d„/2. These energies are slightly
higher than those of the undistorted polymer and will
therefore be reasonable estimates of the energies of the
nonbonding orbitals. This model will therefore give that
the soliton-antisoliton pair lead to a negatively charged
fluorine ion and a positively charged hydrogen ion. We
will denote the charges kq.

The soliton so created gives what has been called ionic
defects ' as can be understood from the discussion
above and from Fig. 9(b). Another possible defect is the e"(x„,,x„,x„+,) =so"(x„)+Q(x„,,x„,x„+,). (10)

so-called oriental defect, ~ where the soliton is a
domain wall between two orientations of the monomers
and where there then are two identical ions as next neigh-
bors across the kink. Neither this possibility nor the pos-
sibility that the kink-antikink pair generates a HFH tri-
ple and a single F atom will be considered here.

The on-site matrix elements e"(x„&,x„,x„+,}contain
a coupling between the nearest neighbors which we will
relate to the electrostatic interactions. We ~rite

(a)

(b)
6

C 3'

Q ~

0-

The last term is due to the potentials from the charges of
the two neighboring monomers on site n —1 and n +1,
respectively. Using the experimental' dipole moment
and bond length of the isolated monomer quoted in Sec.
III (1.80 D and 1.73 a.u. , respectively) we will set
q=0.41e for the ground state of the polymer, i.e., for
x„=x(p~. We will furthermore assume that q is propor-
tional to x„,although this is a very crude approximation.
Nevertheless, the major purpose by including Q is to in-
clude a coupling between neighboring monomers and for
that purpose the approximation is acceptable.

For the ground state of the polymer each monomer
creates a dipole Seld. We will assume that for the excited
states the electrostatic potentials only are caused by the
dipoles, that only nearest neighbors need to be con-
sidered, that the potential on the nth monomer from the
(n —1)th [(n+1)th] monomer is a linear function of
x„,[x„+,], that it is 0 for x„,[x„+,] =0, and that it
for x„& [x„+,] = x~p) equals that of the monomer at a
typically intermonomer distance of the solitonic excited
polymer (which we will choose to be 4.6 a.u. ). Then

&n —] &n+iQ(x„„x„,x„+,) = —1.05 cosa eV.
x(p)

FIG. 9. Schematic representation of a HF polymer ring mole-
cule formed by N =12 monomers. In (a) without and in (b) with
a sharp kink-antikink pair. Black (white) circles represent
fluorine (hydrogen) atoms and the monomer units are shown by
enclosing a HF pair in an ellipse. It is seen that the introduction
of the kink-antikink pair generates a well separated pair of a hy-
drogen and a fluorine atom, which are both not part of any
monomer. Letting x„be the shift of the nth fluorine atom away
from the position in the middle between the two neighboring
protons in counterclockwise direction we have in (a) x„=—x(0),
n = 1, . . . , 12, whereas we have in (b) x„=x(0),
n = 1,2, 3, 10, 11,12, x„=—x(p) n =4,5,6, 7,8, and x9 ——0. Here
x(0, is the common optimum value of x„of the undistorted sys-
tem (a), and the numbering refers to that of the figure.

and the total electronic energy from (9) becomes

4

ETa(xo)= 2N g eo'(xo). — (13)

For the isolated monomer (i.e., d„~00, N = 1}ETn de-
pends approximately exponentially on dH [see Fig. 2(b)]
and since ETa(xc) of (13) is to be an even function of xo
we will assume that

ETa(xo )= AN[ 1 cosh(Qxo }]~ (14}

We will furthermore assume that each of the on-site

We would like to point out that this is a very simplified
model. But by comparing the results obtained without
and with Q included we should be able to get some in-
sight into the consequences of including electrostatic po-
tentials.

We see that the potential Q is equal to 0 for the per-
fect chain [Fig. 9(a)]. For the solitonic excited chain
[Fig. 9(b)] Q gives rise to a perturbation around the single
kink.

For the perfect undistorted chain we have

(12)
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matrix elements s"(xo) have the same functional depen-
dence (14},i.e.,

eo'(xo ) = A "[1—cosh(axo )].
The coeScients A" obey the constraint

2(A ' +A +A +A' }=A,

(15)

(16)

and we assume a to be independent of i. From the single-
particle eigenvalue spectrum of the isolated monomer
[Fig. 2(b)] as well as from the ionization potential of the
polymer [Figs. 6(a) and 6(b)] this is seen to be reasonable.

In this model we have neglected constant shifts of the
positions of the energies of the molecular orbitals such
that the relative positions of the bands are not repro-
duced correctly. Only being interested in energy
difFerences this is acceptable.

a and A "are determined from the calculations report-
ed in the previous section, such that the total relative
sum of the single-particle energies for each valence band
is reproduced as well as possible.

The hopping integrals t„'„'+,(x„)=t"(x„)are unim-

portant for the total energy of the perfect polymer but
will be of importance for the total energy of the solitonic
excited polymer and for the single-particle eigenvalue
spectrum. We will assume that t„'„) + &

only depend on the
hydrogen and molecular bond lengths of the nth proton
and not on the neighboring bond lengths, i.e., only on x„
and not on x„+&. They are even functions of x„so we will

expand them as

t ' (xo)=to' —t2' xo,(i) (i) (i) 2

where tp' and t'z' are determined from the bandwidths
4t "(xo) for x0=0 and xo=x~o~. The bandwidths of Figs.
6(c) and 6(d) indicate that such a dependence is justified.

To the attractive total tight-binding energy (9) we will
add a repulsive term E„.We will assume this to have a
functional form similar to (14), i.e.,

NE„=g 8[1—cosh(bx„)].

x„=x~o~tanh[(n —50.5 5—)/L ]tanh[(n —150.0—Q)/L ].
(21)

This corresponds to exciting a soliton-antisoliton pair,
each of width L„at the positions 50.5+5 and 150.0+5.
Due to the periodicity we have to have an even number
of kinks plus antikinks. In general the widths of the soli-
ton and antisoliton need not be the same but in order to
simplify we here require them to be so. By varying 5 the
propagation of a soliton can be modeled. It should be
pointed out that the form (21) corresponds to that pro-
posed by Su, Schrie6er, and Heeger foe a soliton-
antisoliton pair in trans-polyacetylene.

A special case is that of neglecting the coupling be-
tween neighboring monomers which corresponds to set-
ting Q of Eq. (11}equal to 0. Then the model permits only
integral values of 5, and the propagation is therefore to
be considered as hopping. Therefore, we can in this case
not examine the energy barriers for soliton propagation.

In Table I we list the parameters used in the calcula-
tions and some few key results. We have considered one
route connecting the two degenerate minima keeping

TABLE I. The parameters used in examining the solitonic ex-
citations of the hydrogen fluoride polymer. For the precise
definitions, see the text. The table also gives the calculated equi-
librium value of x(0), the "dimerization" energy Ed;, and the
creation energy of the soliton-antisoliton pair E„~ using the pa-
rameters of the table. Two sets of parameters —both derived
from the first-principles calculations on the perfect undistorted
polymer for fixed a—are reported; one for the zigzag structures
(a=120') and one for the linear structures (a=180'). For
a=180' the parameters with superindex (3) or (4) are identical
since they correspond to the double degenerate m& bands. As
discussed in the text the results should be considered semiquan-
titative.

x~ =xp (20}

and vary xp in the range 0 to 2x(p) in order to check the
computer codes and in order to obtain reference calcula-
tions for the perfect chain to compare the results for the
solitonic excited chain with.

In the next set of calculations we set

B and b are determined from the conditions that the total
energy per monomer of the perfect undistorted polymer

E„,(xo)/% =[Era(xo)+E„(xo)]/N
= A [1—cosh(axo)]+8[1 —cosh(bxo)] (19)

has a minimum at xp =x(p) and reproduces the "dimeri-
zation" energy Ed; =—E„,(0}—E«, (x~o~).

With this we have introduced all the parameters enter-
ing the model.

We have modeled the polymer with a ring of N =200
monomers. In the first set of calculations we set

w (ev)
a (bohr ')
8 (ev)
b (bohr ')
w") (ev)
w(2) (ev)
g (3) (eV)
w(4) (ev)
t 0 (eV)
to(

' (ev)
t,"' (ev)
t 0 (eV)

t'," (eV/bohr')
t~" (eV/bohr )

t2 ' (eV/bohr )

x (o } (bohr)
Ed; (eV)
E ) (eV)

a = 120'

1.30
4.1

—0.64
5.1

0.25
0.16
0.16
0.08
0.24
0.84
0.23
0.23
0.32
0.57
0.52
0.27
0.475
0.35
0.35

a = 180'

0.41
7.2

—0.14
10.1
0.105
0.100
0.0
0.0
0.28
1.85
0.26
0.26
0.08
1.52
0.21
0.21
0.246
0.124
0.124
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a=120', and another route connecting the two degen-
erate short linear minima for fixed a=180. In this way
we believe that the parameters have that large a spread
that the results cover the whole range of possibilities. It
should also be mentioned that by only including few
significant figures in the parameters the model does not
reproduce the results of Sec. III exactly but the
differences should for the present purpose be unimpor-
tant.

For the special case of Q=O our numerical calcula-
tions give that for 5=0 the soliton-antisoliton pair with
the lowest creation energy has L ~0. This result is relat-
ed to the small values of the happing integrals t "(x).
Neglecting them the total energy becomes

N N

E„,= A g [1—cosh(ax„)]+B g [1—cosh(bx„)].
n=1

(22}

The soliton induces at least one n value for which xn =0.
Denoting this value l, (22) can be rewritten as

N N

E„,= A g [1—cosh(ax„)]+B g [1 cosh(bx„—)],

(23)

which is smallest for
) x„~ =

( x~o~ ~

for n&/ The.
soliton-antisoliton pair creation energy E 1 is then

E &- —A [1—cosh(ax~o~)] —B[1—cosh(bx~o})], (24)

which is the "dimerization" energy Ed; . By including
the nearest neighbor interactions t"(x ) as a perturbation
these results are only modified slightly.

When including the dipole potentials (11) it turns out
that the soliton-antisoliton pair with the lowest creation
energy still has L ~0 and that for this value E 1 is un-

changed. This is understandable since Q introduces only
weak couplings between the x„'s.

That E, is comparable to Ed; is difFerent from the
results for trans-polyacetylene where E 1 is typically
found ' to be one order of magnitude larger than Ed;
The distortions of the polymer geometry upon dimeriza-
tion for trans-polyacetylene are however much smaller
compared with those of hydrogen Auoride, which might
cause the differences in the energies.

For trans-polyacetylene the simplest model ' pre-
dicts that the soliton induces a state in the middle of the
gap. This can be interpreted as due to the soliton leading
to an unpaired electronic orbital with a zero total interac-
tion with the rest of the polymer. A similar interpretation
for HF would give that the soliton leads to states, each
above the energies of the band from which it is derived.

We will first discuss the special case of vanishing Q.
Then the soliton induces states slightly above the valence
bands as predicted. They are for a=120 placed 0.4 eV
(o,), 0.1 eV (cr2}, 0.3 eV (o3), and 0.1 eV (m. , ) above the
top of their respective valence bands. For a=180 the
corresponding values are much smaller, 0.04 eV (o &}, 0.02

can be transformed into the scattering problem (see, e.g.,
Ref. 46 for a similar treatment of the conjugated poly-
mers)

Xn+1
=T

Xn " Xn-1
(26)

with

(e„—e)/tn, n+ [ —tn —],n /tn, n+ I

(27)

For a soliton which changes the molecular bond lengths
of the monomers —I, —1+1,. . . , I —l, l and leaves the
rest unchanged we have

r

T —T——n

(s e}/t —1—
1 0 (28)

for n & —I and n & I +1 when neglecting the electrostatic
term Q. The conditions for the soliton to induce a state
localized around n =0 are that it corresponds to an ei-
genvalue A, of T with modulus larger than 1 for n &I
and to an eigenvalue A, of T with modulus smaller than
1 for n & I + 1. Then

—1+1 —I ——l 1
=C (29)

where (A, , 1 ) are the corresponding eigenvectors of T and

eV (o2), and 0.0 eV (nl), because of the smaller value of
x~o]. When increasing L these numbers increase, and also
more levels are moved out from the ranges of the valence
bands. E.g., for a=120' and L=5 we find for each
valence band 5 —11 levels up to 0.7 eV (crl), 0.5 eV (oz),
0.6 eV (o3), and 0.3 eV (m &) above the valence band edges.
This can be understood as a result of the larger L gen-
erating locally a structure with an effective smaller con-
stant xn =xo than that of the rest of the polymer. The en-

ergy levels of this subsystem appear therefore above those
of the rest of the system [cf. Eq. (15)].It is interesting to
natice that for the n, orbitals for a=180' A "=0and the
soliton with L = 5 therefore induces two states symmetri-
cally placed 0.1 eV above and below the band. This is the
only state for which such a feature was found.

For the larger L the mare occupied states above the
band edges lead to an increase in the tight-binding part of
the total energy. This is partly compensated by an accom-
panying decrease in the repulsive part but the total ener-

gy is increased. In our case the creation energy for the
soliton with L =5 is roughly 5 eV. It should be men-
tianed that for L =5 the soliton is so delacalized that a
continuum description might be justified, and our results
can hence be compared with those of continuum models.

For a given geometry of the nuclei, neglecting spin,
and only considering a single energy band, the electronic
eigenvalue problem

g[ t„„+(c„c„+,—+c„+c„)+e„c tc„] gx„~ c„)
n n

=e gx„~ c„) (25)
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c is a constant. The eigenvalues of T are
2 1/2

2t
c—e

2t
(30)

so in order to have two different moduli we must have

e &c,+2t or e &c—2t, (31)

i.e., that the energy of the state is outside the range of the
band. In order to determine the final position of the state
one must solve Eq. (29). In general this becomes a
(4l+4)th order equation in the energy e. Only for the
sharp kink (I =0) this is manageable but still tedious. In-
cluding the extra term Q corresponds to replacing l by
1 +1.

The lowest conduction band orbitals are formed by
molecular antibonding orbitals of the monomers. There-
fore, the A" parameter for these states will be negative
and the soliton induced state will appear below the con-
duction band edge. However, inclusion of Q might modi-
fy this. In total the soliton will lead to a decrease in the
gap but the decrease will be so small that it will be of lit-
tle practical importance.

When including the dipole potentials (11}but keeping
L ~0 some shifts in the single-particle energy spectrum
show up, although as mentioned above the total energy is
unchanged. The shifts should be expected because of the
local electrostatic potentials close to the kink. Our calcu-
lations give that for a=120 the soliton-antisoliton pair
induces states 0.6 eV and 0.9 eV below and 0.2 eV, 0.2
eV, and 1.4 eV above the cr, band; 0.8 eV below and 0.9
eV above the 02 band; 0.7 eV and 0.9 eV below and 0.3
eV, 0.3 eV, and 1.3 eV above the o3 band; and 0.6 eV and
0.9 eV below and 0.1 eV, 0.2 eV, and 1.0 eV above the m&

band. The appearance of more states is in agreement with
the discussion above. Also for a=180' we find that more
states are moved out from the band region and that the
shifts in general are 1-5 times larger compared with the
results for vanishing Q. Thus, inclusion of Q leads to
states both below and above the bands, in contrast to the
results for Q =0 and for trans-polyacetylene.

In a continuum description of the energy of a soliton
Jansen et a/. have obtained a larger value for the
creation energy of a single soliton for HF, 1-3 eV. How-
ever, they fixed not only a but also dF and this will lead
to an overestimate of Ez; and hence also of E &. Furth-
ermore, as our results as well as their results indicate the
region deformed by the soliton is so small that the contin-
uum approximation might not be justified.

Pietronero ' has within the CNDO approximation
examined proton motion in cyclic HF hexamers. He cal-
culated the total energy as a function of the position of
one proton when keeping the positions of all the other
five and of the six fluorine atoms fixed. For d„=4.71 a.u.
his results show that the energy per monomer of the
structure with a11 protons in the symmetric position
(du =d„/2) is 0.6—0.7 eV above that of the ground state.
This energy is about twice our E~; with which it should
be compared. Also for dF fixed at 4.71 a.u. but for the
infinite linear polymer (a=180 ) Karpfen and Schuster
report an ab initio Hartree-Fock value of 0.55 eV. How-

ever, when keeping dF fixed at 4.80 a.u. we find a value of
0.52 eV for a=120 and 0.45 eV for a=180 in good
agreement with the results of Pietronero ' as well as
with those of Karpfen and Schuster indicating that
there is a considerable (-50%) energy gain by allowing
d„ to relax. Pietronero ' reported that the structure
with one proton at the symmetric position and the others
kept fixed at their ground state positions has a total ener-
gy about 1.5 eV above that of the ground state —much
larger than our E, (this structure is in our model
equivalent with that of a soliton with L ~0 from a total
energy point of view). This is surprising since from the
discussion above and from that of Sec. IV A it would be
expected that the CNDO method reproduces correctly
the energies for bent structures. However, it turns out
that for dF kept fixed at 4.35 a.u. , all d&'s except for one
set to 1.89 a.u. , and the last proton at the symmetric posi-
tion the excited state thereby created has a total energy
lower than that of the ground state, so we believe that the
absolute numbers of Pietronero should be taken with
some caution.

Our model indicates that upon exciting a soliton the
length of the polymer is changed. This seems not fully
justified and one could impose the restriction of fixed
chain length. This condition would lead to a correlation
between the position coordinates x„and/or to leaving the
constraint of constant a for all unit cells. We believe that
the resulting more complicated model will give results
only quantitatively but not qualitatively different from
those presented in this section.

Furthermore, the electrostatic interactions which we
only have considered approximately could be included in
a more proper way. But also in this case we believe that
our major findings will not be changed.

VI. PHONONS

The total energies of Fig. 4 can be expanded to second
order in the bond lengths around their equilibrium values
thus defining a force field in which the nuclei move. From
this force field we can determine the frequencies of the
frozen phonons for the stretch modes for the zone center
phonons. The Brillouin zone is defined as being that cor-
responding to the helical symmetry of the single chain as
in detail described by Higgs and Piseri and Zerbi. '

In order to get the full dispersion curves of the frozen
phonons one has to increase the size of the unit cell and
simulate the displacement pattern of a phonon for a k of
a lower symmetry. This procedure has in detail been dis-
cussed by, for instance, Kunc and Martin for the case of
solid GaAs. As discussed by these authors the phonons
considered in this section will lead to long-range electro-
static fields which will change the frequencies. This effect
is however relatively small and we will neglect it here.

By denoting the force constants for the molecular and
hydrogen bond f, and f2, respectively, the optical 8,
stretch phonon frequency at the zone center becomes

~= l(fi+f2)/v l'" (32)

with p being the reduced mass of the single monomer.
Assuming that the total energies for a = 120'

sufficiently well describe those for the optimum a (= 125 }
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V(x) =D [1—exp[ —P(x, —x )]I

+D [ I —exp[ —P(x, +x )]], (33)

we obtain co=3535 cm ' for HF and co=2561 cm ' for
DF, i.e., a shift of 8.5% and 10.0%, respectively, com-
pared with the vibrational frequencies of the isolated
monomers reported in Sec. III. A similar shift has been
observed experimentally by Lisy et al. in vibrational
spectra when passing from (HF)i to (HF)~. The shift is re-
lated to the larger molecular bond lengths in the polymer,
and to the protons being connected with bonds in two op-
posite directions in the polymer whereas it only is under
the influence of one bond in the monomer. (We will in
this section use the word proton for both the hydrogen
nucleus and the deuterium nucleus. )

From infrared (ir) spectroscopy Kittelberger and Hor-
nig obtained the frequencies 3404 and 2526 cm ' for
the two polymers in excellent agreement with our results.
Also the Raman spectroscopy result by Anderson et al.
(3386 and 2511 cm ') and the ir data of Desbat and
Huong (3360 and 2460 cin ') agree well with ours.

Model calculations using parametrized force fields by
Tubino and Zerbi gave 3404 and 2526 cm ' for the two
polymers, respectively, whereas those by Tse and Chang
gave 3306 cm ' for HF. Finally, Higgs et al. obtained
3317 cm ' for HF.

From the ab initio Hartree-Fock calculations on the
polymer Beyer and Karpfen calculated the frequencies
to be 4170 and 3023 cm ', respectively. As for the mono-
mer the Hartree-Fock method overestimates the frequen-
cies. It is surprising to notice that they found the largest
basis set to give the largest overestimates.

Trying to use the total energies of Fig. 4(a) to describe
a force field which should be applied to the whole Bril-
louin zone did not work: the width of the band was found
to be roughly 100 cm ', whereas it experimentally was
determined to be 200-300 cm ' wide.

Axmann et al. have reported an experimental root
mean square thermal amplitude for the proton in solid
HF at 175 K of 0.87 a.u. , assuming the amplitude to be
isotropic. This value is so large that the anharmonicities
and the existence of the second degenerate minimum be-
come non-negligible. In the harmonic approximation a
phonon is an excitation from an energy ,' fico to-
(n+ —,')fico. Thus the energy of the first excited state for
the k =0 stretch phonon is 0.66 eV for HF and 0.48 eV
for DF, i.e., above the barrier for a collective shift of all
the protons (see Sec. IV). Thus, the harmonic approxima-
tion is questionable. We will therefore now consider a
simple model which includes anharmonicities.

First of all we notice that the frequency (32} is that of
an isolated dimer with a reduced mass p and an effective
spring constant f=f, +f2. Therefore, we will consider
the effect on the single-particle eigenvalues when includ-
ing anharmonicities in this potential, and thereby neglect-
ing couplings between the neighboring protons (i.e., as-
suming the mode to have no dispersion). The system then
becomes equivalent with the FHF molecular ion, which
has been discussed, for instance, in Ref. 61. We will as-
sume the potential to be a sum of two Morse potentials,
s.e.,

where x =0 corresponds to the saddle point (dii ——dF /2).
The constants D, p, and r, are determined from the con-
ditions that the potential reproduces the correct barrier
height, minima, and curvature at the minima, i.e.,

V(0)—V(+xo }= Vo,

V'(+xo) =0,

V"(+xo }=f.

(34)

By choosing the form (33) for the potential we can fulfill
all the conditions (34) and simultaneously obtain a
reasoriable form of the potential. With V(x ) being a poly-
nomial we would either not be able in general to fulfill all
conditions (34}or introduce extra artificial local extrema.

In total we end up with the one-dimensional
Schrodinger equation

j 2

+ V(x) P(x) = F. f(x).
2p dx

(35)

Xexp[ —pro(x+xo) /2], (36)

with co given by (32} and h„being the nth Hermite poly-
nomial. These functions are the exact solutions to (35)
with V(x ) being replaced by the harmonic potential

V(x ) = ,' f(x+xo) . — (37)

The Hamiltonian and overlap matrices can easily be
calculated numerically by Gauss integration and by using
that the basis functions are eigenfunctions to the
Schrodinger equation (35) with the potential given by
(37). Diagonalizing gives the eigenvalues and eigenvec-
tors.

The computer codes and the numerical integration
were tested by considering the potential (37) with basis
functions up to between n =5 and n =9 included on ei-
ther site. The results were converged to k2 cm ' in this
case.

We then considered the potential (33) where xo was set
equal to d„/2 —dii for the local minimum for a =120' in
Fig. 4(a), i.e., x0=0.51 a.u. We considered two barrier
heights: one corresponding to keeping d F and a constant
(0.52 eV; the high-barrier case), and another correspond-
ing to the smallest possible barrier for a constant (0.30
eV; the low-barrier case). The results should thus cover
the possible outcomes of an experiment. Since f=1.23
eV/bohr we find D =0.298 eV, P=5.23 a.u. , and
x, =0.523 a.u. in the high-barrier case, and D =0.160 eV,
p= 6.64 a.u. , and x, =0.515 a.u. in the low-barrier case.

In Table II we give the results for HF and DF. The ex-
citation energies are all relative to the ground state ener-
gy. It turned out that by including n =8 basis functions
the results were well converged.

Both the ground state and the first excited state are in

As is common practice (see, e.g. , Ref. 61) we solve this
numerically by expanding f(x ) in the eigenfunctions of
the harmonic oscillators, i.e., in the set of functions (in
a.u. )

u„+=(n!2—") '~ (pen/n)'~ h„[(.pa))' ( +xx )0]
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TABLE II. Excitation energies in cm ' for HF and DF as-
suming a proton double-well potential. The numerical uncer-
tainties are estimated to be 10 cm '. Also given are the values
obtained using the harmonic approximation. These values are
indicated with an asterisk. For further details, see the text.

High-barrier

370
1955
3850
3535

HF
Low-barrier

565
2045
4070
3535*

High-barrier

90
1250
2205
2561*

DF
Low-barrier

200
1135
2225
2561

all cases mainly formed by n =0 basis functions. From
proton n =0 basis functions centered in each of the two
half-parts of the double-well symmetric and antisym-
metric linear combinations are formed. The latter is
slightly above the former in energy, the difference being
larger for lighter particles and smaller barriers as seen in
the table. The calculations furthermore give that the
most delocalized function has the smallest n =0 com-
ponents, i.e., the symmetric ground state function for HF
in the low-barrier case.

Since the energies of the first excited state correspond
for DF to a temperature of some few hundred K both
these states can be important from a statistical point of
view.

For k =0 absorptions in the range 350-550 cm ' for
HF and in the range 50-200 cm ' for DF have been ob-
served. These broad-peak absorptions are ascribed
several other vibrations but can accordingly also be relat-
ed to the proton tunneling.

The third excitation energy is in reasonable agreement
with the frequencies calculated above using the harmonic
potential, when noticing the crudeness of the model. The
state is mainly an antisymmetric combination of the n = 1

and n =2 basis functions.
The second excitation energy is found in a region

where to our knowledge no absorption has been observed.
It corresponds to a state which is a mixture of all basis
functions, thus being the excitation energy which con-
verged most slowly of them all, and furthermore being
quite delocalized. Therefore, some adjustments in the en-

ergy can be expected due to slower convergence as a
function of the basis set size and due to coupling to
neighboring sites in the polymer. Since this state has a
quite different shape than that of the ground state we will
expect the Raman and ir cross sections to be small, thus
making it diScult to observe experimentally.

That the energy spectrum changes much upon includ-
ing anharmonicities is not surprising. With the parame-
ters for the Morse potential (33) the anharmonic term
n(n+1)co, hcx, of (8) is for HF in the high-barrier case
for a single Morse potential comparable with the har-
monic term neo, hc already for n =1. Furthermore, the
single Morse potential possesses in all cases only one
bound state, except for DF in the high-barrier case where
there are two bound states. Therefore, the excited states
for the full potential (33) will be delocalized over the
whole double-mell region.

Our finding of the second excited state between those
found in the pure harmonic approximation is in accor-
dance with the results of Brickmann and Zimmermann.
They examined the proton eigenfunctions in symmetric
as well as asymmetric double-well potentials with V(x)
being a fourth order polynomial. They also considered
the case of adding a potential formally written as

T= lim A5(x) (38)

in which case the eigenstates are those of a single well.
For a symmetric potential with a barrier height (without
Q of 7000 cm ' = 0.87 eV and x0=0.57 a.u. they
found, when including T, two energy levels (the ground
state and the first excited state) for energies below the
barrier height and a third level (the second excited state)
well above the barrier. Omitting T the first excited level
was split into two. For the second excited level one level
was roughly not shifted whereas the other was placed ap-
proximately in the middle between the unshifted level
and the positions of the first excited states. Comparing
with our results it is more reasonable to compare their
first excited state with our ground state, since their
ground state is so deep lying in energy that it does not
feel the anharmonicity as much as ours does. According-
ly, a correspondence between their (n+1)th level and
our nth level can be made, and the results are then in
qualitative agreement.

VII. MODEL POTENTIALS
FOR LIQUID AND GASEOUS HF

C6
VCoulomb + ~SR

R
(39)

with Vc „&, b being electrostatic potential between point

As mentioned in the Introduction both gaseous and
liquid hydrogen fluoride consist to a large part of clusters
of HF monomers. Nevertheless, many theoretical exam-
inations of the dynamics of the gas and the liquid take as
their starting point the isolated dimer. From ab initio cal-
culations on the dimer model potentials are derived
which then are assumed appropriate for the dynamical
properties. Obviously these models neglect "multimer"
effects beyond dimers. Here, we will examine how well
some few of these model potentials describe the total en-
ergies found for the polymer. The discrepancies are then
to some extent to be ascribed multimer effects which
should be included in improved models. We will examine
a single model potential for HF vibrational relaxation in
the gas phase, and a few for describing the dynamics of
liquid HF. More sophisticated model potentials than
those have later been proposed ' and we will compare
our results with the results of one of those.

Poulsen et al. examined theoretically the energy
transfer in the HF+ HF system. They fitted ab initio
Hartree-Fock total energies for the dimer calculated by
Yarkony et al. ' for a large number of configurations of
two rigid monomers (i.e., the monomer bond lengths were
kept fixed). With R being the distance between the center
of mass of different monomers their potential was
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charges +q on the nuclei, and Vs& a short-range poten-
tial written as pair potentials

VSR HH + VFF + VFH + VHF ' (40)

Here, VHF and VFH were of the Morse potential form,
VHH an inverse power, and VFF a combined exponential
and inverse power; all as functions of the interatomic dis-
tances. Since they were interested in energy transfers they
had to include an intrarnonomer potential which they as-
sumed to be of a corrected harmonic oscillator form.
Since the precise form of it was not given we will not in-
clude it here.

Also Klein et al. fitted the total energies of Yarkony
et al. ' to a model potential. In order to describe the di-
pole as well as the quadrupole moment of the isolated
monomer they modeled the electrostatic interactions by
assuming three charges per monomer, +q on each of the
nuclei and —2q on a point somewhere on the molecular
axis. Since they were interested in simulating the dynam-
ics of the liquid they assumed the monomers to be rigid.
Besides the Coulomb interactions they included short-
range intermonomer potentials of the form (40). VHH was
an exponential, VHF and V„H of the Morse potential
form, and VFF a combined exponential and inverse
power.

In another paper McDonald and Klein fitted the ab
initio Hartree-Fock total energies of Yarkony et aI. '

with a slightly different model potential. The most impor-
tant difference was that the Coulomb interactions were
described assuming only two point charges per monomer,
+q on the nuclei. The short-range interactions were
slightly modified. As above the monomers were assumed
rlgld.

Jorgensen and Cournoyer have performed ab ini
tio Hartree-Fock calculations on the dimer with rigid
monomers. They considered two different basis sets, the
so-called 6-31G ' and the so-called STO-3G basis,
both of which correspond to expanding Slater-type orbit-
als in Gaussians. The results were fitted with electrostatic
potentials from point charges, either two ' or three68

per monomer. The short-range interactions were all de-

scribed by inverse powers.
In Refs. 64-68 the potentials were used in describing

the dynamics of the liquid. The different potentials, ex-
cept for that of Ref. 68, have been compared and dis-
cussed by Klein and McDonald and the reader is re-
ferred to that paper for a more detailed discussion of
those models.

A much simpler interrnonomer potential between rigid
monomers has more recently been proposed by Cour-
noyer and Jorgensen. A three charge per monomer
model (+q on the nuclei, —2q somewhere on the bond)
was used in describing Coulombic interactions, and the
short-range interactions were simplified to a single
Lennard-Jones potential between the fluorine atoms.

All of these models just described were derived from ab
initio Hartree-Fock calculations on the dimer consisting
of two rigid monorners. Therefore, per definition they do
not contain any correlation effects, and the description of
the intra-rnonorner potential is either completely lacking
or quite approximative.

A more detailed anaiysis has been undertaken by Red-
mon and Binkley. They calculated total energies for the
dimer using the ab initio Hartree-Fock method where
parts of the correlation effects were taken into account by
fourth order M51ler-Plesset perturbation theory. Furth-
errnore, they considered different molecular bond lengths
thereby leaving the rigid monomer approximation. The
results were fitted with a quite complicated expression
containing roughly 100 parameters (in contrast to the
other models just described which each have roughly 10
parameters).

The potential was assumed to have the form

Coulomb + LEPS + 3 + 4+ disp' (41)

Vc,„l, b was the electrostatic potential arising from
two point charges per monomer as, e.g. , Poulsen et al.
considered.

VLEps was written as a function of the so-called
Coulomb and exchange integrals Q; and J,, (i and j label-
ing atoms). In using the potential for the polymer one
has to be careful since V&Eps contains both intra- and in-
termonomer contributions. Therefore, VtEps is to be
modified such that the intrarnonomer contribution is only
counted once per monomer.

V3 and V4 were three-body and four-body potentials,
respectively. Since their calculations only considered the
dimer the three (four) sites of V3 (V4) were restricted to
belonging to two monomers, and three- and four-body in-
teractions for atoms of more monorners were lacking.

Although the potential was used in a subsequent work
by Schwenke et al. in examining energy transfers in the
HF+ HF system, the parameters given by Redrnon and
Binkley are erroneous, such that, e.g. , the Coulomb and
exchange integrals for FF interactions diverge as a func-
tion of interatomic distances. Changing a sign, thereby
making them convergent does not lead to reasonable re-
sults. Therefore, we did not consider this potential in our
analysis of the model potentials. (See, however, the Note
added. )

Murad et al. ' proposed a model where the anisotropy
of the polarizability of the monomers was included. How-
ever, only a few details were given, so this potential is
also excluded from our analysis.

Finally, Spackrnan proposed a simple model in which
the monomers were assumed rigid. He included short-
range interactions consisting of a repulsive term written
as exponentials and an attractive dispersion term written
as R terms. The parameters entering these potentials
were given in another paper. He argues that the repul-
sive term should be omitted for the two atoms forming a
hydrogen bond. In order to get reasonable results we con-
cluded that the dispersion term should also be omitted in
this case. He considered electrostatic interactions be-
tween atom centered charges and multipoles. The values
of the charges and multipoles were determined by parti-
tioning charge densities of the monomer into atomic
parts, where the charge densities were obtained from ab
initio Hartree-Fock calculations of Cade and Huo.
Since we are only interested in the electrostatic interac-
tions between well-separated monomers we will model his
atomic monopole, dipole, quadropole, octopole, and hex-
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adecapole by five eqmdistant point charges placed on a
line passing through both atoms of the monomer, and
with the middle one placed on the atom of interest. With
5 being the distance between the point charges the values
of the point charges are determined from

2

(i5}'q;=PI, 1 =0, 1,2, 3,4, (42)
l = —2

where pI is the value of the 2' pole of the atom of interest.
We considered both 5=0.2 a.u. and 5=0.05 a.u. and
found only minor differences indicating that it is justified
to model the atomic mono- and multipoles by point
charges.

It should be pointed out that this model, although it in-
cludes more terms, differs only a little from the more sim-

pie ones mentioned in this section. The main difference is
the more complicated electrostatic interactions, but there
are no attempts to include the interactions between the
molecular orbitals.

We have calculated the total energy per monomer as a
function of the fluorine fluorine nearest neighbor distance
dF for the zigzag and the linear polymer using these mod-
el potentials. The long-range electrostatic interactions
were calculated by including all terms up to tenth nearest
neighbor interactions, whereas for the short-range in-
teractions we only included up to second nearest neigh-
bors. Although most of the models consider rigid mono-
mer with molecular bond lengths d„equal to those of the
isolated monomers we have chosen to consider three
values of dH. 1.70 a.u. which is close to the value of the
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2.0 2.2 2A 2.6 2.8 3.0 2.0 2.2 2A 2.8 2.8 3.0 20 2.2 2A 2.8 2.8 3.0 2.0 2.2 2.4

2.0

1.5

1.0

0.5

(a)

Present—dH = 1.7
dH = 1.8
dM = 1.9

(b)

~e

C ~ e
C. ~ ~ o

~e'o \ o o o
~re

(c)

Poulsen
Billing

Steinfeld

(d)

Poulsen
Billing

Steinfeld

2.0

1.5

1.0

0.5

0.0
ore«ore

'~ ~ eI' ~ I &O'If so'So'e'or e jaoo *
I

~ 'M

2.0

1.5

1.0

0.5

c 0.0I
g 2.0
0

4$

1.0

e)
iein

McDonald
O'Shear

r +&-'«""- + - ""s'"-"-'x'ee'«tree ~ o

rgensen
urnoyer

~ I

ein
cDonald
'Shear

I vss "2"""''ess+voove«F«

rgensen
Gournoyer

(o)
McDonald

in

I «S '"'-""-+ -" -"""'L'o'ooo

(k)

Jorgensen

(h)

McDonald
Klein

~«
1' ~-" ""t-.

(I)

Jorgensen

2.0

0.0

1.0

10 Zl

C
05

C
ClC

0.5 0.5

0.0

2.0

15

1.0

,~~+ f'o'e o o e e o et o ~

(m)

Cournoyer
Jorgensen

(n)

Gournoyer
Jorgensen

(o)

Spackman

(fs)

Spackman

' 0.0

2.0

1.0

0.5

0.0

~ o

oo e e ~ ooee ~ e r
~ ~ oor«e

e
oo

~ ' '
~ eoo

Ioo
I ~o

dF/2 (a.u.)

I

20 2.2 2.4 2.B 2.8 3.0 2.0 2.2 24 2.B 2.8 30 2.0 2.2 2.4 2.B 2.8 3.0

— 0.5

~ FFFF«

I . I . I . 0 0
2.0 2.2 2.4 2.B 2.8 3.0

G. 10. Relative total energY I eU as a function of half the fluorine fluorine distance dF /2 for three values of the molecular bond
length du (dH ——1.7 a.u. , solid curves; d„=1.8 a.u. , dotted curves; d„=1.9 a.u. , dashed curves) for zigzag [{a},{c),(e), (g), (i), (k), (m},

d (1I}~ 1Iol~mers The esults of the fIrst ~ri ciples calculat'o s [(a) a d (b}~ are corn
cted b} the model 1Iotentials of Ref. 63 [{c)and (d}l, Ref. 64 [{e)and {f)l Ref 65 [{g)a d (h)~ Ref

Ref. 6g[{k} d{1}~ Ref 70[{ }a d{ }~, a dR f. 73[(o}a d(
for both zigzag and linear structures.



1500 MICHAEL SPRINGBORG

isolated monomer, 1.90 a.u. which is close to the optimal
value of the polymer, and 1.80 a.u. as an intermediate
value. In Fig. 10 we show the resulting total energies as a
function of d„/2 together with those extracted from our
first-principles calculations of Fig. 4. For each model po-
tential the results are shown relative to the lowest energy
calculated for the described range of d H and d F for both
zigzag and linear structures.

Our first-principles results [Figs. 10(a} and 10(b)] show
for both zigzag and linear structures a small local max-
irnum for dF/2=2. 5-2.6 a.u. This we believe to be a
consequence of the unusually strong hydrogen bond of
hydrogen fluoride: When pulling the monomers apart the
molecular bond lengths increase so that as a function of
fixed d„/2 the optimum value of dH shows a maximum
of 1.93 a.u. (1.96 a.u.} for d„/2 = 2.7 a.u. (2.6 a.u. ) for
the zigzag (linear) structures. These local maxima mani-
fest themselves as the oscillations in Figs. 10(a) and 10(b).
Unfortunately, the parameter-free calculations by Jansen
et al. allow us not to compare this result with their re-
sults. Comparing now with the model potentials we see
that none of them show this feature, which, however, is
not surprising, since they all consider the monomers to be
rigid with bond lengths as that of the isolated monomers.
Since the elongation of the molecular bond is up to 15%
we find the rigid monomer approximation not to be fully
justified for HF with its strong hydrogen bond. Further-
more, ab initio Hartree-Fock calculations on the dimer
yielded an elongation of the molecular bond of only
0.5%, whereas the ab initio Hartree-Fock calculations by
Swepston et al. gave an elongation of 1 —2% for the
trimer, which is slightly larger than that found by Liu
et al. For the tetramer Liu et al. find an elongation
twice that of the trimer. However, Clark et al. did not
find any elongation for the tetramer from their ab initio
Hartree-Fock calculations. Since the crystal structure of
HF clearly gives a longer molecular bond than that of the
single dimer, this is a point where "multimer" effects
clearly. are recognized, but where it might be difficult for
parameter-free methods to reproduce this trend, such
that theoretical energy surfaces for defining new model
potentials might be difficult to obtain.

In Fig. 10 we see that all the model potentials in which
only two point charges per monomer are included find
the linear chain to have lower energy than the zigzag
chain [Figs. 10(c), 10(d), and 10(i)—10(1)] or almost the
same energy [Figs. 10(g) and 10(h)]. With three or more
point charges per monomer the zigzag structure is
correctly predicted to have the lowest energy [Figs.
10(e), 10(f), and 10(m) —10(p)]. This is in agreement with
the results for the dimer (see, e.g. , Ref. 81).

The energy difference between zigzag and linear struc-
tures is found to be considerably smaller than what we
predict with the model by Spackman [Figs. 10(o} and
10(p}] giving the best agreement with our results. Since
the energy difference mainly is due to differences in long-
range interactions and since these interactions are those
which Spackman has considered in more detail we believe
these to be improperly described by the other model po-
tentials. This will also affect the hydrogen bond energy of
the polymer compared with that of the dimer.

b( T)= 1 —exp[ —V/(kT) ], (43)

with V being the intermonomer potential. V is 0 for well
separated monomers and otherwise negative. Redington

Redington ' has shown that for one of the better model
potentials [Ref. 64; Figs. 10(e} and 10(A] this energy in-
creases with only 20—25% in contradiction to the results
reported in Sec. IV A.

For the dimer the experimental value of dF/2 is
2.64+0.05 a.u. , which is roughly 10 % larger than that
of the polymer. In Fig. 10 we see that many of the model
potentials [Figs. 10(c)—10(j)] are not able to describe this
decrease. On the other hand, Spackman's model [Figs.
10(o) and 10(p)] predicts a substantial decrease in the
d„/2. By excluding his very large atomic hexadecapoles
(and thereby only having four point charges per atom)
the interatomic distance became in much better agree-
ment with ours.

Many of the model potentials predict a shift in the op-
timum dH value around the optimum d„/2 value [Figs.
10(c)—10(f) and 10(i)—10(l)]. This is in contrast to the
first-principles results of Figs. 10(a) and 10(b).

Finally, the results of Figs. 10(c}—10(p) predict hydro-
gen bond energies ranging from 0.27 to 0.65 eV for d„
fixed at 1.7 a.u. changing to from 0.30 eV to 0.68 eV for
dH in the range 1.7-1.9 a.u. The best agreement with the
first-principles results of Sec. IVA is obtained with the
potential by Jorgensen [Figs. 10(k) and 10(1}],which intui-
tively is clear from the figure. We believe that there are
two main reasons for this general discrepancy. First of
all, none of the considered model potentials includes a de-
tailed description of the interaction between the rnolecu-
lar orbitals of the rnonomers, which we in Sec. IVC
found to be important. Secondly, the models neglect
dielectric screening, which, however, must be important
for these materials in order to get nondiverging macro-
scopic electric fields. The dielectric constant should be
changed such that 4m.eg 1 a.u. , and the electrostatic in-
teractions become then of shorter range.

Recently, Honda and Kitaura have proposed a model
which takes the interaction between the molecular orbit-
als into account. This interaction is written as
parametrized functions of the overlaps between the
molecular orbitals, but where these overlaps on the other
hand have to be calculated. In addition to this they in-
cluded electrostatic interactions between two point
charges per monomer. The monomers were assumed rig-
id. It is interesting to notice that their binding energy and
geometry of the dirner are in excellent agreement with ex-
perimental values in contrast to all other model poten-
tials using only two point charges per monomer. This we
believe to be a further indication of the importance of the
interaction between the molecular orbitals and we find
their model promising for further developments.

Redington ' has shown that the temperature depen-
dence of the second virial coefficient B» is not properly
described by the model potentials. The second virial
coefficient describes deviations of the gas from the ideal
gas law pU=RT and is for rigid diatomic monomers
given as an integral of
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argued that the model potentials (among those he con-
sidered were those of Poulsen et al. ,

3 Klein et al. ,
Jorgensen and Cournoyer, and Jorgensen ) predict 8»
to approach 0 to slow as a function of increasing temper-
ature in the range 250—650 K compared with experi-
ments on water and HC1. Especially HC1 should resemble
similarities with HF.

In order to get a qualitative understanding of this we
will simply assume b( T} to be nonzero only for
V& —ykT, where y is some undefined constant in the
range, say, 1-10.We will furthermore assume that 8» is
proportional to the volume of that part of the integration
region where b(T)+0. Then for T being some 100 K
(-ykT approximately some few tenths of an eV} the
volume for which b(T}&0 is much smaller for the first-
principles results than for the model potential results (see
Fig. 10}.I.e., the much weaker dependence of the model
potentials on the structural parameters is the reason for
the discrepancy.

The geometries we have applied our first-principles
method on are restricted to planar ones where the hydro-
gen atoms furthermore are considered placed on the line
joining neighboring fluorine atoms. They are therefore
not sufficiently general for determining new model poten-
tials. However, we believe that improved model poten-
tials should possess at least three important features.
They should explicitly include variations in d„such that
(i) in the large d„ limit they approach the Morse poten-
tial fit (5) for the single monomer, and (ii) they are able to
describe the changes in the optimal d„value for fixed d„
in the range 4-6 a.u. Furthermore, as demonstrated here
and in the work by Honda and Kitaura they should ex-
plicitly include interactions between molecular orbitals.
Finally, it is important that they are able to describe rnul-
timer effects beyond those of dimers.

VIII. CONCLUSION

In the present paper we have demonstrated how we
from first-principles calculations on polymeric HF can
obtain results that are important in understanding not
only static ground state properties of this compound but
also excited states and dynamical properties.

We have applied our first-principles local-density full-
potential LMTO method for helical polymers to calculate
the electronic ground state properties for a large number
of fixed nuclear geometries for a single HF monomer
(Sec. III) and a HF polymer (Sec. IV). The results agreed
well with those obtained from experiments as well as
from other theoretical methods. Especially, we find
georrietrical parameters of the polymer in better agree-
ment with experiment than other theoretical methods
find. However, the ionization potential was found to
suffer from a general local-density failure to give correct
ionization potentials for such systems.

In three subsequent sections we analyzed different
parts of the geometry space in examining different prop-
erties of hydrogen fluoride.

In the first example (Sec. V) we considered solitonic ex-
citations of the polymer. We found —within a model
Hamiltonian —that the soliton-antisoliton pair with the

lowest creation energy E
~

is a sharp kink-antikink pair
with E

&
being some tenths of an eV. This energy is

larger than that quoted by Yomosa (& 0.21 eV) for a
soliton in an a helix, but the difference is comparable
with the difference in the hydrogen bond energy. On the
other hand E i is comparable with that (0.42 eV) calcu-
lated by Su, Schrieffer, and Heeger ' for polyacetylene.
This we believe to be due to two opposite effects: the
stronger nearest neighbor coupling for polyacetylene will
increase E &, but the smaller dimerization energy will de-
crease it. The soliton induced states slightly outside the
energy ranges of the bands. These states should appear as
shoulders or extra peaks in photoabsorption spectra, and
should thus offer a direct way of experimentally testing
the validity of our model. We believe these shoulders or
peaks to be general for solitons in hydrogen-bonded sys-
tems. Including approximate electrostatic interactions
caused no changes in the general conclusion concerning
the width and creation energy of a soliton but led to
smaller shifts of the soliton induced states. We believe
that this finding will not be changed by more proper
treatments of the electrostatic fields caused by a soliton-
antisoliton pair. Especially, the coupling between neigh-
boring monomers will remain weak and the soliton and
antisoliton will accordingly have almost vanishing
widths. The model includes electronic interactions, which
have not been considered earlier for solitons in
hydrogen-bonded polymers. With modifications the mod-
el can be transferred to other polymers containing hydro-
gen bonds.

In a subsequent section (Sec. VI) we examined frequen-
cies of frozen optical stretch phonons at the zone center.
For a harmonic approximation we found frequencies in
very good agreement with experiment. Because of the
small mass of the hydrogen atoms we also considered a
simple anharmonic double-well potential for a single iso-
lated molecule. By solving the resulting Schrodinger
equation numerically we found excitation frequencies in
reasonable agreement with those just mentioned. Furth-
ermore, we found excitation energies in the low-energy
range, and finally we found excitation energies in an ener-

gy range where no absorption has been reported to our
knowledge. Since the corresponding state is fairly delo-
calized coupling to neighboring sites could lead to shifts
in the energies. Furthermore, we believe that it will have
small Raman and infrared cross sections and therefore be
difficult to observe.

In order to examine the coupling to the neighboring
sites one could add kinetic energy terms of the nuclei to
the model Hamiltonian used for examining the solitonic
excitations and then consider the excitation energies of
ring molecules as done in Sec. V. This could be a topic for
a future paper.

Finally (Sec. VII), we compared our first-principles to-
tal energies with those predicted by simple model poten-
tials used in examining the dynamics of the gas and liquid
phases. Since these phases are known to consist partly of
clusters of monomers it is important that the potentials
can describe the "multimer" effects although they usually
are derived from first-principles calculations on an isolat-
ed dirner. We found that none of the potentials could de-
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scribe all the bond length relaxations when passing from
the dimer to the polymer, that the energy differences be-
tween zigzag and linear chains were usually predicted to
be too small, and that the energy surfaces in general were
too flat. This could explain why the temperature depen-
dence of the second virial coef5cient is not reproduced
correctly by the model potentials.

Pote added. After submission of this manuscript we re-
ceived a revised version of the model potential by Red-
mon and Binkley. With this we obtained the following
results: In contrast to the other model potentials with
electrostatic interactions between only two point charges
per monomer this model correctly predicts the zigzag po-
lymer (and for the dimer: the bent structure) to be the
stable form. But as all the other model potentials of Fig.
10 it is not able to describe the molecular bond length re-
laxations upon forming the polymer from the monomers.

Furthermore, the decrease in d„when passing from the
dimer to the polymer is substantially overestimated. Fi-
nally, as most of the model potentials of Fig. 10, this
model also gives a too flat potential surface. Therefore,
we do not believe this model potential to include all the
effects that are important for understanding and describ-
ing multimers beyond dimers.
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