
PHYSICAL REVIEW B VOLUME 38, NUMBER 1 1 JULY 1988

Solid-fiuid phase transition of quantum hard spheres at finite temperatures

Karl J. Runge
Courant Institute ofMathematical Sciences, New York University, 251 Mercer Street, New York, New York 10012

Geoffrey V. Chester
Laboratory ofAtomic and Solid State Physics, Cornell University, Ithaca, New York 14853

(Received 3 February 1988)

Path-integral Monte Carlo simulation is used to study a system of distinguishable quantum hard
spheres at finite temperatures. Extensive tables of the energy and pressure in the fluid and fcc solid
phases are presented along with a careful study of the convergence of these properties with "time-
slice discretization. " The Helmholtz free energy in the solid phase is computed via a thermodynam-
ic integration that continuously transforms the system into a harmonic Einstein crystal. The free

energy in the solid is compared to that computed by the Debye model. Input data for the Debye
model is provided by performing Monte Carlo computations of the elastic moduli, C», C», and C~
at T =0. The two methods of computing the free energy are in qualitative agreement, with some
uncertainty induced by the lack of dispersion in the phonon spectrum, co(k), in the Debye model.
The solid-fluid phase transition is located along three isotherms, that correspond to 4, 10, and 20 K
in a simple mapping of the hard-sphere system onto He. From these data we postulate a generali-
zation of Lindemann s melting criterion for quantum systems at finite temperatures. The hard-

sphere free energy and pair distribution functions are used to predict the equations of state and

freezing transition in 'He and He via a first-order perturbation theory. The liquid-vapor phase
transition of He at 4 K is located as well. The agreement between these predictions and experiment
is very good, except at very high density where a more sophisticated choice of hard-sphere reference
system is required.

I. INTRODUCTION

During the history of Monte Carlo simulation the
hard-sphere system has been remarkably durable. The
form of the interaction, zero potential energy if no pair of
spheres overlap and infinite otherwise, makes the system
a simple, but realistic, model of interacting atoms or
spherical molecules, as well as a very straightforward
problem computationally. Metropolis, Rosenbluth,
Rosenbluth, Teller, and Teller' studied the classical sys-
tem of hard spheres in the first important test of their ex-
tremely powerful sampling algorithm (to be referred to
here as MRRTT) that has proved so important in simula-
tion studies in statistical mechanics. Hoover and Ree
were the first to locate the thermodynamic phase transi-
tion between the solid and fluid states of the classical sys-
tem. The first "exact" simulation study of the quantum-
mechanical ground state of Bose hard spheres was per-
formed by Kalos, Levesque, and Verlet using the tech-
nique of Green's-function Monte Carlo (GFMC) in which
the melting transition was located by computing the ener-

gy of the solid and fluid phases. Our work attempts to
bridge the gap between the high-temperature, classical re-
sults of Hoover and Ree and the ground-state, T=O,
study of Kalos et al. , by providing the equation of state,
structural properties, and the location of the solid-fluid
phase transition for quantum-mechanical hard spheres at
finite temperatures along several isotherms.

In our work we have assumed the hard spheres obey
Boltzmann (distinguishable particle) statistics, which
proves to be of great computational convenience because

particle exchanges need not be considered. We have
chosen the temperature high enough so that the correc-
tions due to Bose or Fermi statistics are small, although
the system is still strongly quantum mechanical. This sit-
uation can be achieved in strongly repulsive systems be-
cause the corrections due to statistics involve particle ex-
changes and can be shown to go to zero exponentially
with increasing temperature. On the other hand, correc-
tions from diffraction effects" (of wave mechanics) van-
ish only as an inverse ower of the temperature in the
classical limit T~ ao. ' There, therefore, exists a rather
large range of temperature where the system is quantal
and yet the statistics of the particles play a very minor
role. It is easy to show that in this regime Bose, Fermi,
and Boltzmann systems governed by the same Hamiltoni-
an will all have identical structural and thermodynamical
properties. Furthermore, it is almost certainly true that
in the solid phase of strongly repulsive systems the
influence of statistics is negligible for all temperatures.
This belief follows from the observation that the solid
phase is relatively "crowded": particle exchanges are ex-
tremely infrequent.

The paper is organized as follows. In Sec. II the prob-
lem to be studied is defined and the path-integral repre-
sentation of it is outlined. The interpretation of the
quantum path integral as an "effective" classical system
is also discussed in this section. Three important compu-
tational details are described in Sec. III: the short (imagi-
nary) time approximation for each "step" in the path in-
tegral; the choice of the random Markov process to sam-
ple paths of the system; and the thermodynamic integra-
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tion techniques to compute the free energy of the system.
In Sec. IV we discuss our computational results for the
equation of state and the structure of the hard-sphere
solid and Quid phases. The data include tables of the en-
ergy, pressure, free energy, and pair-distribution function
in both phases and Lindemann's ratio for the solid. Ana-
lytic fits to the density dependence of the energy and
pressure are provided as well. We also present a study of
the elastic properties, the location of the freezing transi-
tion, and a comparison of the structural results at T &0
with ground-state GFMC studies of hard spheres and
realistic models of helium. In Sec. V we demonstrate that
a first-order perturbative scheme employing the finite-
temperature hard spheres as a reference system can be
successfully used to study the equations of state and
phase diagrams of He and He.

II. PATH INTEGRALS

In this section we define the problem to be investigated
and develop its path-integral representation. Consider N
distinguishable particles in a periodic box of volume V.
Let R denote the positions of all the particles:
R =(r, , . . . , rN ). The nonrelativistic Hamiltonian for
the system shall be taken as

N g2H= g V2+U(R),
2pp2

which is related to the Helmholtz free energy by
F(N, V, T)= —k+T ln(Z/N!). The average of an opera
tor 8 is given by

Z= dRp R,R, (6)

where the integral implies integration of every coordinate
over the volume

(B ) =—Tr(Be ~H) .
Z

The trace in the above equations is over a basis of quan-
tum states with the appropriate symmetry and boundary
conditions: for Boltzmann statistics the sum is over
states of all symmetry, whereas for Bose or Fermi statis-
tics one would sum only over totally symmetric or totally
antisymmetric states, respectively.

The density matrix in the coordinate representation,
p(R, R ',P), is given by the matrix element

p(R, R', 13)=(,R
l

e-i'"l R') .

This function is often referred to as the propagator of the
system in imaginary time P because of its similarity to the
time evolution operator e' ' of ordinary quantum
mechanics. If the trace in Eq. (3) is performed in the
coordinate representation basis we obviously have

where

v(r)= '
0, r&cr

where cr is the hard-sphere diameter.
Our goal is to study the equilibrium statistical mechan-

ics of the above system. Let P denote the inverse temper-
ature, 1/k+T, where ks is Boltzmann's constant. The
partition function of the system is defined by

U= g v(rj) .
(i,j)

The mass of each particle is m, the sum in the potential
energy U is over all pairs of particles (i,j ), and r; is the
distance between particles i and j (actually the minimum
distance between the particles and all of their periodic
images). For the hard-sphere system v (r) is given by

dR~ r) '' rN

Since the integral (6) is formally equivalent to a classi-
cal system with Boltzmann factor

e ' =p(R R P), (7)

if one knew p(R, R,P) as a function of R, then one could
imagine using the standard simulation techniques for
classical systems (MRRTT, for example) to study the
quantum system. Unfortunately, for interacting systems
one does not know the density matrix exactly for any
nonzero inverse temperature P. To proceed further we
resort to path integrals.

Following the standard derivation of the path in-
tegral, ' '" one uses completeness,

fdR IR&&R
l
=1

Z =Tr(e ~ ) (3) to arrive at the identity

p(R, R', P)= fdR
& f dRM ~p(R, R~, &) ' p(Rsr ~, R'~&)

~

where r=P/M This identity i.s found by inserting M —1

complete sets between the M factors in e ~ =(e '
)

For fixed P, one notes that in the limit M~ ~, r corre-
sponds to very high temperatures or very short imaginary
times. Not surprisingly, one may "expand" about the
classical result (r= 0) to arrive at accurate expressions
for p(R, R ', ~) when 7 is small.

The simplest high-temperature approximation is the

"primitive approximation":"

+0(r')],
where I( denotes the kinetic energy operator of the sys-
tem. The matrix element involving the kinetic energy is
simply the ideal gas propagator and is given by'
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3N/2

2~iL'T

N

Xexp — g (r; —r',. )
2kT l. 1

with the de Broglie thermal wavelength defined by

1
2

——k~T= —.
mk' P

'

(10)

,(r; —r,') in Eq. (10).
Although the primitive approximation is not used in

this work (see Sec. III), we shall display its use in the path
integral since it clearly demonstrates the structure of the
probability distribution used in path-integral Monte Car-
lo (PIMC). If one uses Eq. (10) in Eq. (9) and substitutes
the result into expression (8), one gets the following for
the partition function:

Z f dR i
' ' ' dR~e

We shall use the notation (R —R') to denote terms like where

' 3NM!2—U.r~~ l exp
2~A'T

M M

g (RI RI+i—) exp ~g—U(RI )
2A, T l=1

P(%)=—e
—U tS)

Z
(12)

The collection may then be used to compute thermo-
dynamic averages. Suppose, for example, one is interest-
ed in estimating the average energy (,H ) of the quantum
system. One has

(note that RM+, ——R, ). In its present approximate form,
we now know analytically the integrand in Eq. (11) and
(8) as a function of R, , . . . , Rsr. The positivity of the in-

tegrand implies that the quantum problem we want to
solve is formally equivalent to a classical system consist-
ing of 3NM coordinates, R, , . . . , Rsr, with a potential
energy of interaction U,z. As has been noted many
times, ' the equivalent classical system resembles a sys-
tem of N classical ring polymers each consisting of M
monomers. A single polymer is actually the quantom
path of a particle in three-space. The intrapolymer in-
teraction originates from the kinetic energy term in Eq.
(9) and is given by harmonic forces with spring constant
M/A, z. The interpolymer interaction comes from the
potential-energy term in Eq. (9) and is the sum of rU(RI )

over each "time" index l. As opposed to real polymers,
the interpolymer interaction here acts only between
monomers with the same time index l.

One may now use the standard technique of MRRTT
to simulate the classical system of polymers. Let % be
shorthand for R „.. . , RM. it denotes one configuration
of the N polymers (in other words, a discretized path of
the system through configuration space). The simulation
will give rise to a collection of paths IA) sampled from
the normalized probability distribution

I

The average of a function 8 (R ) is defined by'3

(8(%)& =—fd% 8 (W)e

=fdz8(ey(z) . (16)

III. COMPUTATIONAL METHOD

Precisely as is done in classical simulations, one con-
structs an estimate for (8(R)) by taking the arithmetic
mean of 8 (A) evaluated at each A in the collection (A ).
As usual, the error in this estimate goes as the inverse
square root of the number of "independent"
configurations in ted}. Although we have only con-
sidered the estimation of the total energy in the above ex-
ample, the construction of observables for other proper-
ties (e.g., kinetic energy, potential energy, pressure, pair-
distribution function, and Lindemann parameter) is rela-
tively straightforward, and will be discussed in the next
section.

Before closing this section, we note a few points. In
the absence of "interpolyiner" interactions ( U =0 or low
density), the size of a path scales as A, r (it is the width of
the Gaussian). With interactions present, this statement
will be more or less true until A, T exceeds the average size
of the "cage" that confines each path. On the other
hand, as the temperature increases A, T goes to zero, so
that each path collapses to a point and the integrand in
(11) reduces to e ~ '"', which is the classical limit.

E=(H) =—a lnZ,

U„(X) .

and so

E =(E(&)&,

where

(13)

(14)

The computational techniques required in this work
can be broken up into three categories: (a) the choice of
high-temperature approximation in the path integral; (b)
the choice of Markov transition probability in the
MRRTT algorithm; and (c) methods to compute the free
energy of the solid and fluid phases. These three items
mill be discussed in detail in the following subsections, al-
though an understanding of them is not needed to inter-
pret the results presented in Secs. IV and V.
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A. High-temperature approximation

Recall that in order to arrive at the large-dimensional
integral of the form of Eq. (11), where the integrand is
known analytically, one must make some sort of approxi-
mation to the short-time propagator. Therefore, one
must always perform consistency checks by varying M to
see that the results have converged to the M = ~ value.
In lieu of this, one must carefully extrapolate the results
to M = ~. In order to go to a lower temperature (higher
P) and retain the same level of accuracy ( r)-one must
choose a larger value of M, thereby increasing the com-
puter time required by the calculation.

If the primitive approximation [Eq. (9)] is used in a
PIMC simulation of hard spheres, one finds that the rate
of convergence of physical properties with M is disap-
pointingly slow. For example, consider the pair-
distribution function g (r) that is a measure of the average
density of particles a distance r away from one Axed at
the origin, and is defined by

g(r)=V 1 ——(5(r; —r, —r))1
(17)

pz(r;, r. , r,', r', r)
p(r,, r', .,r)=

p, (r;, r,', r }p,(r, r,', r }
(19)

where p2 is the exact two-particle density matrix with po-
tential u (r) and p& is the one-particle density matrix (ideal
gas). Equation (18) is a very good approximation because
it has the solution to the quantum two-body problem
built into it. The primitive approximation clearly does
not have this feature. When used in a PIMC simulation,
the density matrix in Eq. (18}will give exact results for

for any pair of particles ij For. hard spheres g(r) goes
continuously to zero as r ~cr since all eigenfunctions of
the Hamiltonian vanish continuously as one brings any
pair of spheres to contact. The use of the primitive ap-
proximation in a PIMC simulation of hard spheres leads
to a g (0 ) that does not vanish for finite M, but rather
goes slowly toward zero as M tends to infinity. Barker'
and Jacucci and Omerti' have performed careful tests of
the convergence of physical quantities with M on model
systems with "hard" boundary conditions (including the
two-hard-sphere system). These authors come to the con-
clusion that one may enjoy a substantial decrease in the
required value of M if the high-temperature approxima-
tion incorporates the boundary conditions. All of the re-
sults presented in this paper are derived from a high-
temperature density matrix with this property.

As suggested by Barker and by Bruch et al. ,
' and im-

plemented in many-body simulations by Pollock and
Ceperley, *' the following density matrix is much more
accurate than the primitive approximation:

p(R, R', r)=(R
~

e
I
R & g p(r,, r'J, T), (18)

(i,j)

where the first factor is given by Eq. (10) and r; =r; —r .
p is the exact two-particle density matrix divided by the
ideal two-particle density matrix, both at inverse temper-
ature ~,

two-particle systems even with M =1. This fact implies
that in a many-body simulation, the resulting equation of
state with M =1 will be correct to O(p ) at low density
(p=N/V). [Note that Eq. (18) gives the correct second
virial coefficient. ] These statements are correct for all
temperatures (although the range of density where the
second virial coefficient gives good results goes to zero as
T~0}. Bruch et al. ' have studied the density matrix in
Eq. (18) with M =1 by integral equation techniques and
has located the liquid-vapor critical points of He and
He semiquantitatively. For fixed temperature, as the

density increases one will need to make larger choices of
M because Eq. (18) is not exact. However, for any tem-
perature and density the value of M required for conver-
gence should always be much smaller than that required
by the primitive approximation because Eq. (18) contains
more information about the quantum problem than Eq.
(9) does.

Having discussed the merits of the approximation den-
sity matrix (18), we now describe the high-temperature
density matrix used in this work. Instead of the exact
two-body density matrix mentioned above, we use a con-
venient analytic approximation to the hard-sphere two-
body density matrix known as the "image approxima-
tion. "' ' The approximation follows from the observa-
tion that when A, r/&M «cr (true for small r), the cur-
vature of the spheres may be neglected. The two-body
density matrix p2 is replaced by a free-particle density
matrix that vanishes on a tangent plane approximation to
the hard-sphere surface. The derivation is discussed by
Jacucci' and we shall only quote the result:

(20)

with p=o if either r & o or r' & o.
The path-integral representation used in this paper is

found by substituting p of Eq. (20) into Eq. (18) and the
result into Eq. (8). In this case one gets

—U N(H)
e

M M

Xexp —,g (R( —R(+))
2AT I ]

M

X g g p(r;, (I),r;, (I+1),r),
1=1 (i j )

(21)

K(A ) = U, tr(A ) . (22)

where A = ( R &, . . . , R~ ) as in Sec II. .
One may next construct estimators for physical observ-

ables by taking the appropriate derivatives of the parti-
tion function as was done in Eqs. (13) and (15). None of
the resulting detailed expressions shall be shown here
since the formulas become rather cumbersome.

For the kinetic energy (there is no potential energy in
the hard-sphere system) one may take the P derivative of
Z.
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This estimator of the energy shall be referred to as the
"P-derivative" estimator. A second estimator for the ki-
netic energy may be found from the following relation:

(V;) =—JdR V;p(R, R', P)
R'=R

(23)

One may evaluate the Laplacian after substituting the
high-temperature approximation into Eq. (g). A factor of
( —fi /2m) multiplied by Eq. (23) is the average kinetic
energy of the ith particle, and thus, the sum over all i
gives an estimator for the total kinetic energy of the sys-
tem. Having the two estimators, (22) and (23), proved to
be very useful in testing the convergence of our results
with M. The two will be equal on average only if M has
been taken large enough. Indeed, the Monte Carlo re-
sults for the two are observed to come together as M is
increased. Because the same set of paths, IR I, is used to
average both estimators, the systematic difference be-
tween the two may be estimated with a much smaller sta-
tistical error than either estimator by itself. ' The Monte
Carlo results will be discussed in more detail in Sec. IV.

The pressure P of the system is related to a volume
derivative of the Helmholtz free energy

P(% )7(%~R') =P(R')'T(R'~R ), (27)

for all % and A'. Let 7 also have the property that it is
possible to get from any R to any other %' in a finite
number of steps. With these conditions one can prove
that, regardless of the starting configuration, if the ran-
dom process T is iterated long enough then the
configurations will be asymptotically distributed by
P(R ).

The choice of transition probability due to MRRTT is
of the form

ty distribution P(A ). One should try to choose this ran-
dom process so that the system samples different regions
of configuration space as quickly as possible per unit of
computational time. If this can be achieved, the results
are more reliable because a larger region of configuration
space is sampled and the configurations are more statisti-
cally independent. In the following we shall describe our
attempt to incorporate the above desirable feature into a
Markov random process.

Consider a Markov process with transition probability
V'(%~A') that satisfies the equation of "detailed bal-
ance" '

BF
k

8lnZ
BV BV

(24) 7(R~R') =7'(R ~R') A (%~R'), (2S)

By using this equation an estimator for the pressure of
the system may be found in the standard fashion. ' One
performs a change of variables in Eq. (11) so that each
coordinate ranges over the unit cube, the differentiation
of the partition function with respect to the volume may
then be easily carried out. The resulting derivative of
U,z that comes down out of the exponential forms the es-
timator. Another estimator for P may be found by the
use of the virial theorem

P =——+p g"(0),2K 2 mr%
3 V 3m

(25)

where g"(o ) is the curvature of the pair-distribution
function at contact. As with the kinetic energy estima-
tors, Eqs. (24) and (25) give the same value for the pres-
sure in the limit M~ 00. The latter estimator for P was
found to be much less accurate than the former, and so
none of the pressures derived from it are reported here.

If an operator B is diagonal in the coordinate represen-
tation then it is a simple matter to show that its thermal
average is equal to the PIMC average of B(R

&
). Since all

steps along the path are equivalent, one gets
M

B(A)= g B(RI)
MI (26)

as a valid estimator as well. The pair-distribution func-
tion, Lindemann's parameter, and any other spatial
correction function fall into this category.

B. Choice of transition probability

The MRRTT algorithm allows much freedom in the
choice of the random process used to sample a probabili-

where 7' is an a priori transition probability and A is an
acceptance probability: One samples a trial configuration
R' from 7'(A~%') and accepts it with probability
A(J7~%'), otherwise the configuration remains at R.
The acceptance probability is given by

(~ ~, )
. P(A' )T'(%'~Ji').

P(% )7'(%~R' )
(29)

In the simplest choice for V', a single "bead" on one
path is selected and a new trial position for it is sampled
uniformly in a cube of side length 6 centered about the
bead s initial position, and then one accepts the new posi-
tion with probability A. This process is repeated for each
monomer, in turn, many times. Typically, one adjusts 6
so that on average A is roughly 0.5 (i.e., 50% accep-
tance). The above is a valid choice for use in the
MRRTT algorithm, and one obtains correct averages of
observables from it. Its major drawback, that becomes
worse as M is increased, is that the random walk diffuses
through configuration space very slowly. This is because
the harmonic force constant between adjacent beads goes
as M/A, T. The largest displacement one can achieve for a
single bead is roughly A, T/&M and so for large M
configurations of the path are very correlated during the
walk. The autocorrelation time of observables can be so
long that it is often difficult to obtain meaningful aver-
ages with "reasonable" expenditure of computing time.
Since the harmonic forces of the free-particle propagator,
rather than the hard-sphere interaction, are evidently the
determining factor in the diffusion through configuration
space, we have developed a random walk that takes the
free-particle piece into account as much as possible. The
a priori transition probability we use is based on the "nor-
mal modes" of the free-particle part of the density matrix
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(30)

with

1 8
sin k

g~ g~ M
(31)

By definition, the normal-mode coordinates I q] are those
that diagonalize the harmonic forces on the right-hand
side of Eq. (30). They are

M
2m

q, ,(k)= g r, (l)cos k(l —1)
1=1

(32)

and q, 2(k } is obtained by replacing the cosine by sine in
the above formula. The normal-mode index k lies in the
range 1 & k & (M —1)/2 for M odd and 1 & k & M /2 for
M even [when M is even and k =M/2 there is no a=2
mode and the right-hand side of Eq. (31) must be reduced
by a factor of 2]. One may extend the definition in Eq.
(32) to k =0 in which case the mode corresponds to the
center of mass of the path.

The a priori transition matrices used in this work can
be summarized by the following separate types of transi-
tions for each particle's path.

(1) Choose a trial position for the center of mass of the
path q'(0) uniformly in a cube of side length b centered
about the initial center of mass. Compute A [Eq. (29)]
and accept the new position with this probability.

(2) For each k & k ', in turn, choose a trial value for the
normal-mode coordinate q'(k) uniformly on the segment
[q(k) yok, —q(k)+yo„], compute A and accept the
new position with this probability.

(3) For all modes with k & k', simultaneously sample
trial values q'(k) out of Gaussian distributions with zero
mean and width o k(([q'(k)] ) =o „}.Compute and ac-
cept with probability A.

Steps 1, 2, and 3 are repeated for each particle's path in
turn. For the most part, the parameters 5, y, and k* are
adjusted so that each of the three types of moves have an
acceptance probability around 50% (y may be chosen
differently for each k). At very low densities or high tem-
peratures when the interpolymer interaction is weak the
acceptance of type (3} moves approaches 100% since in
these cases the probability distribution of the normal
modes closely resembles the Gaussian that is sampled.
Moves of type (1) are the analog of the standard Monte
Carlo moves of classical solids and fluids; since the
free-particle piece of the density matrix is held fixed only
the interpolymer interaction comes inta play. We
developed moves of type (2} and (3) with the free-particle
density matrix in mind along with the observation that
the low-k modes (low frequency or long wavelength)
make up the bulk of the size of a given path. The
higher-k modes make up the "fine detail" of the path.
The low-k mades will thus have a stronger interpalymer
coupling than the high-k modes. This feature may be
seen explicitly by observing how far the points on a path
are displaced when one changes q(k) by o.k. The max-
imum displacement in this case is A. z /[M sin(hark/M)],

C. Free-energy estimation

The conditions for two phases to coexist are equal tem-
peratures, pressures, and chemical potentials. These con-
straints can be satisfied by the standard Maxwell double-
tangent construction of the Helmholtz free energy.
Therefore, to implement this technique one must be able
to compute the free energy of both phases. As in classical
simulations, it is difficult to estimate the free energy
directly at a given density and temperature by Monte
Carlo. While "mechanical" properties such as the energy
and pressure are relatively straightforward to compute,
"thermal" properties such as the entropy S (F=E —TS)
tend to be rather troublesome, although some progress
has been made. The difficulty apparently stems from
having to numerically estimate the partition function Z
that is the normalization constant of the probability dis-
tribution the MRRTT algorithm samples.

In the fluid phase we have simply integrated the equa-
tion of state from low density,

f(p)=f;d(p)+k&T f, , —1
I dp' P(p')

0 p' p'k~ T
(33)

where the ideal gas free-energy per particle is given by

f;d(p) =ke T[ln(pk, z )+—', in2n —1] . (34)

The pressure was fit to a polynomial of degree 6 con-
strained to agree with the quantum mechanical virial ex-

which is roughly A, r /n for k = 1 and A.z /M for k =M/2.
Furthermore, as k approaches M/2 the normal modes
become increasingly oscillatory, and so there is a substan-
tial amount of cancellation in the coupling of the mode to
other polymers. The same ideas have been exploited in
the method of "partial averaging" by Doll, Coalson, and
Freeman to include in an approximate way the effect of
all Fourier components beyond the maximum one used in
the simulation. The very weak coupling between the
high-k modes and other paths enables us to sample a set
of them simultaneously from the ideal gas propagator
and still get a reasonable acceptance. As one lowers the
temperature or increases the density it is clear that the
coupling increases. In these cases the set of modes is bro-
ken up into several groups so that the acceptance for a
group never falls below 20%. For a system of particles
interacting with a realistic He-He pair potential (see Sec.
V), we are experimenting with Monte Carlo moves in
which displacements of type (2) are biased in the direc-
tion of the generalized force conjugate to q(k), and for
displacements of type (3) trial values q'(k) are sampled
from slightly narrower Gaussians than those described
above to account approximately for the interpolymer in-
teraction (that tends to confine each polymer to a smaller
region of space). The Monte Carlo moves mentioned in
this paragraph leave averages unchanged since their use
still gives rise to paths sampled from P(R). Neverthe-
less, we have found them to be extremely useful in that
they significantly decrease the autocorrelation of observ-
ables and so one generates more reliable data for fixed
number of passes through the system.
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—U (A) —Ar (A)Z(A)= fd%e

kqTf (A, ) = — lnZ(A, ),
(35)

where

(36)

pansion to order p .
To compute the free energy in the solid phase we apply

the thermodynamic integration technique of Frenkel and
Ladd to the PIMC simulation of quantum hard spheres.
In this method a term is added to the Boltzmann factor
that enables one to continuously transform the system
into an Einstein crystal. Let

o). For pair potentials with an additional energy scale e
(see Sec. V) the de Boer parameter A=(A' /mcr s) must
be taken as a third independent variable in the simula-
tions. The results presented below are computed for sys-
tems with 108 particles, although some runs were per-
formed with N =256, 500, and 864 to test for finite-size
corrections. No statistically significant size dependence
is observed in the energy and pressure. The initial
configuration is usually a perfect fcc crystal (with all the
steps of one particle's path situated on a lattice site). At
low and moderate densities each particle quickly diffuses
away from its lattice site while at higher densities the sys-
tem remains a solid. To obtain results in the high-density
fluid the random walk is started from an appropriately
scaled configuration taken from a previous fluid run at
lower density.

and r'; ' is the lattice position of the ith particle. The situ-
ation where A, =O corresponds to the system of interest,
whereas for large enough A, the system is accurately de-
scribed by an Einstein crystal because each path is tightly
bound to its lattice site. The derivative of the free energy
per particle with respect to A. is given by

(37)

The brackets & ) i indicate an average in the ensemble us-

ing the integrand of Eq. (35) as its probability distribu-
tion. Thus the free energy f (0) of the system is given by

k~Tf (0)=f (A. ,„)— f dA& r'(R))„. (38}

IV. RESULTS

In this section we present our results for the thermo-
dynamical, structural, and elastic properties of the quan-
tum hard-sphere system along with the location of the
melting-freezing transition. All quantities are reported in
reduced units where the hard-sphere diameter o is taken
as the umt of length and (fi /mo. ) as the unit of energy.
A convenient feature of the hard-sphere system is that for
a given (reduced) temperature and density, the mass ap-
pears only through the reduction factor. In other words,
the results at a Monte Carlo data point (p, T) may be ap-
plied to any hard-sphere system (characterized by m and

The value of A, ,„is chosen so that the system is nearly an
Einstein crystal, where one has exact expressions for the
free energy. It turns out that as A. is increased the inter-
polymer hard-sphere interaction becomes unimportant
long before the "intrapolymer" piece from the free-
particle density matrix does. Therefore, in practice A, ,„
is chosen so that the interparticle interaction term is a
small perturbation and f (A, ,„)is very nearly the free en-

ergy of the harmonic system given by the Einstein term
together with the free-particle density matrix. The small
difference between f(A, ,„) and the free energy of the
purely harmonic system is estimated by umbrella sam-
pling. This is achieved by directly sampling the har-
monic portion of Eq. (35} and averaging the remaining
factor.

A. Equation of state and structure

The Monte Carlo data for the solid and fluid phases
were taken along three isotherms of reduced tempera-
ture: T=1.6, 4.0, and 8.0. Using the mass of the He
atom and effective helium diameter of 2.2 A (see Sec. V)
one finds that (A' /ma ) is nearly 2.5 K, so the isotherms
correspond to 4.0, 10.0, and 20.0 K for He. To find the
corresponding values for He, multiply these tempera-
tures by 1.37 (essentially the ratio of isotopic masses).

Tables I, II, and III contain the raw Monte Carlo data
for the energy per particle and the pressure at various
points in the (p, T) plane. By "raw data" we mean the
simulation data for the system with M time slices: these
values are used to extrapolate to the M~ ~ limit. In the
tables, n is the number of passes for each run (in

thousands) where a pass is defined as an attempted ran-
dom move for every one of the 3NM degrees of freedom
(via the three types of moves described in Sec. III B). In
practice several hundred passes at the beginning of the
run were discarded to allow the system to equilibrate to
the probability distribution P(J7), except in some situa-
tions where 1000-4000 passes were discarded to insure
equilibration. The uncertainties are the usual block esti-
mates of the standard error. At T =1.6 with M =20,
we can generate 8000 passes per hour in the fluid phase at
p=0. 2 (using the moves of Sec. III B with k' =2 and the
rest of the modes moved simultaneously} and 6000 passes
per hour in the solid phase at p=0. 38 (with k ' =4 and
the rest of the modes broken up into two groups) on a
Cray X-MP computer.

One can see that most of the computational effort is
concentrated in the high-density fluid. It is here where
we found the longest autocorrelation times in the simula-
tions. At the highest densities in the fiuid a question of
convergence remains since we observe relatively large
( —1 —2 %) fluctuations over long times ( —5000 passes) in
this region. We will see in the following subsection that
these densities are fortunately above the thermodynami-
cally determined freezing density and are thus metasta-
ble. It is possible that the system is attempting to phase
separate in these runs, but it is also likely that the highly
compressed fluid is very sluggish and so the autocorrela-
tion of observables is much increased. In any event, the
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error estimates at the points (p, T)=(0.38, l. 6),
(0.45,4.0), and (0.57,8.0) should be viewed with some
skepticism, although the energy and pressure do not ap-
pear to be significantly inconsistent with the more reliable
results at the lower densities. This behavior is not unlike
that of classical systems in the metastable fluid. We have
performed simulations of the classical Lennard-Jones sys-
tem in the metastable region at reduced temperature 2.74
and have found autocorrelation times similar to those in
our quantum simulations of the metastable fluid.

The quantities hE and hP in Tables I, II, and III are
the differences between the P-derivative and "Laplacian"
estimators (see Sec. III A) of the energy and pressure, re-
spectively. As the discretization M is increased these
differences should go to zero, and, as may be seen in the
tables, the Monte Carlo estimates for hE and hP de-
crease as M becomes larger. The smallness of these
differences is a useful test of convergence, although not
an absolute one. At low densities (roughly less than one-
third of the freezing density) the behavior of b,E and d,P
provided the only reliable measure of convergence,

whereas at higher densities it is evident that there is a
correction term with a slower M dependence that cancels
out in the difference between P-derivative and Laplacian
estimators. For the most part, hE and hP go as M
for large M. This dependence may be argued heuristical-
ly from the functional form of the estimators for the
differences, and is seen in the work of Ref. 15 for the two
hard-sphere pair-distribution function. For most of the
densities studied there is a contribution to the energy and
pressure that vanishes more slowly than M . The
bulk of the data set is best fit by a M ' correction term
(M '~ and M ~ were tried and rejected), and so this
form is used in all extrapolations. A test of this pro-
cedure may be obtained by comparing our extrapolated
M =00 energies with those obtained at T=0 by GFMC
in Ref. 3. Using the Debye theory, it will be shown in
Sec. IV C that for nearly all densities studied here in the
solid phase at T = l.6 and the highest densities at T =4.0
and 8.0 the system is, to within statistical error, in its
ground state. At these points, the computed energy
agrees with that from Ref. 3 to within the statistical error

TABLE I. Finite time-slice energy and pressure data in the fluid and solid phases along the T = 1.-6 isotherm.

0.015
0.03
0.05

0.10
0.15
0.2063

0.25

0.30

0.35

0.38

10
10
10
20
20
20
10
20
40
80
20
40
20
40
20
40
20
40

2.56+0.02
2.72+0.025
2.93+0.02
2.92+0.025
3.76+0.03
5.12+0.02
7.47+0.04
7.35+0.02
7.30+0.03
7.31+0.05
9.65+0.015
9.56+0.025

13.09%0.025
13.0220.03
17.39%0.025
17.18+0.03
20.32+0.03
20.33+0.04

hE
Fluid

0.0025
0.0074
0.013
0.0041
0.012
0.023
0.113
0.049
0.017
0.005
0.083
0.032
0.146
0.061
0.237
0.112
0.319
0.158

P

0.0279%0.0002
0.0645%0.0005
0.1292+0.0009
0.1288+0.0009
0.422 +0.0025
1.031 %0.004
2.41 20.010
2.39 %0.006
2.375 +0.008
2.38 +0.013
4.175 +0.008
4.155 %0.012
7.43 %0.015
7.42 %0.016

12.47 %0.03
12.33 +0.03
16.54 +0.08
16.64 +0.06

hp

0.00003
0.000 15
0.00045
0.000 14
0.000 82
0.0023
0.0156
0.0067
0.0024
0.0007
0.0138
0.0053
0.029
0.012
0.055
0.026
0.081
0.040

8.4
4.8
4.8
4.8
4.8
9.0
4.2
7.8

10.2
5.4

20.4
12.3
15.6
10.8
14.4
54.0
21.6
14.4

0.32

0.34

0.3768

0.42

0.46

40
80
40
80
10
20
40
80
40
80
20
40
80

13.87+0.07
13.82+0.10
15.44+0.06
15.42+0.08
19.43+0.07
19.09+0.05
18.80+0.03
18.63+0.04
23.41+0.06
23.37+0.08
29.53+0.04
28.95%0.04
28.65+0.09

Solid

0.082
0.027
0.107
0.037
0.697
0.437
0.171
0.056
0.285
0.098
1.03
0.46
0.16

8.25 +0.04
8.32 +0.04

10.02 +0.04
10.06 +0.05
14.77 +0.06
14.50 +0.04
14.30 +0.03
14.15 +0.04
21.16 +0.08
21.09 +0.06
30.88 +0.04
30.22 +0.05
29.74 +0.12

0.018
0.0056
0.024
0.009
0.175
0.110
0.043
0.015
0.079
0.027
0.317
0.140
0.049

3.6
3.6
3.0
3.0
3.0
6.0
9.0
6.0
3.0
3.0
9.0
6.0
3.0
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P t

f(p)=f(po)+ I dp'
(p')'

(39}

to obtain f at other densities. The values off (po} may be
found in Table VII.

At low density the equations of state in Tables IV, V,
and VI go over to the ideal gas values, namely, pk~T,
—', ka T, and Eq. (34) for the pressure, energy, and free en-

ergy, respectively. Furthermore, the low-density Monte
Carlo data for P and E agree within its statistical error
with the second virial expressions for these quantities.
Therefore, our Monte Carlo data provide the hard-sphere

( = 1%). This is a fairly stringent test because the GFMC
algorithm makes no short time or small v. approximation
and so its results have no extrapolation errors. However,
since GFMC is an iterative process it may still be subject
to error due to lack of convergence.

Tables IV, V, and VI contain the extrapolated values
for the energy, pressure, and free energy for the three
temperatures studied. The free energies are obtained by
the thermodynamic integration techniques discussed in
the previous section. In the solid phase we compute the
free-energy at one density po for each isotherm using the
method of Ref. 28, and then use the expression

fluid equation of state all the way from the imperfect gas
regime up to the solidification density.

In the solid phase the entropy, S =(E F—)/T, de-
creases to zero with increasing density. This result can
be interpreted in terms of the elementary excitation pic-
ture of quantum solids, where the excited states are long-
wavelength phonons. The expressions for the thermal
properties in terms of the phonon spectrum are well
known. ' ' We will show below that this phonon descrip-
tion is qualitatively correct for nearly all the densities
studied here in the solid. We only note in passing that as
the density increases the amount of thermal excitation
must diminish because the solid becomes more "stiff" to
the excitation of longitudinal and transverse phonons.
Thus for fixed temperature, as the density increases the
solid goes into its ground state. This behavior is seen
clearly in Tables IV, V, and VI. In the cases where com-
parison may be made, the energy matches onto the T =0
values of Ref. 3. The equality of E and F at high density
is a strong test of the correctness of the free energy corn-
puted by transfornung the system into an Einstein crystal
as well as of the convergence to the M~00 limit. The
"energy" of the system is computed by two different
methods; the P-derivative (or the Laplacian} kinetic ener-

gy estimator and the thermodynamic integration implied
by Eqs. (38) and (39), and they are found to agree.

TABLE II. Same as in Table I except T =4.0.

0.02
0.04
0.07
0.13
0.20
0.26

0.32

0.38

0.42

0.45

10
10
10
10
10
10
20
10
20
40
10
20
40
10
20
40
10
20

6.27+0.06
6.54+0.06
6.90+0.07
8.16+0.07

10.30+0.07
13.13+0.05
13.14+0.07
17.20+0.08
17.06+0.05
16.88+0.08
22.49+0.04
22.34+0.08
22.33+0.09
27.08+0.04
26.85+0.04
26.90+0.23
30.90+0.08
30.89+0.06
30.60+0.12

Fluid

0.0032
0.0069
0.0127
0.0302
0.059
0.11
0.039
0.16
0.068
0.020
0.24
0.13
0.047
0.35
0.21
0.077
0.41
0.26
0.11

0.0909+0.0008
0.207 +0.0016
0.431 +0.0034
1.190 +0.0060
2.92 +0.015
5.72 +0.02
5.72 +0.02

10.56 +0.07
10.49 +0.04
10.54 +0.04
18.52 +0.04
18.39 +0.09
18.22 +0.08
26.22 +0.06
26.04 +0.05
26.36 +0.25
33.56 +0.11
33.72 +0.09
33.35 +0.33

0.00004
0.000 18
0.000 59
0.0026
0.0079
0.018
0.0067
0.034
0.015
0.005
0.061
0.033
0.014
0.093
0.053
0.021
0.122
0.078
0.030

3.6
4.8
4.8
4.8
4.8
9.6
9.6
4.8
9.6
7.2

14.4
9.6
7.2

14.4
33.6
3.6

19.2
14.4
7.2

0.43

0.46

0.48

0.51

20
40
20
40
20
40
20
40

25.73+0.13
25.37+0.13
29.39+0.09
29.27+0.15
32.35+0.10
31.89+0.10
37.01+0.11
36.66+0.15

0.23
0.078
0.33
0.11
0.42
0.15
0.60
0.20

Solid

24.19 +0.12
24.05 +0. 12
30.81 +0.09
30.43 +0.12
36.36 +0.11
35.91 +0.09
46.07 +0.14
45.63 +0.14

0.067
0.022
0.10
0.035
0.13
0.046
0.20
0.069

4.8
4.8
4.8
4.8
4.8
9.6
4.8
4.8
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The uncertainty estimates of the energy and pressure in
Tables IV, V, and VI are obtained by taking the standard
errors of the finite Idata (from Tables I, II, and III) and
using the usual formulas for the propagation of errors in
the linear extrapolation process. The error estimates of
the Helmholtz free energy are computed by the following
"synthetic-data" method. In both the Quid and solid
phases the pressure is fit to a polynomial in the density by
the least-squares method. These polynomials are next in-

tegrated via Eqs. (33) or (39) to obtain the free energy

f (p). One may compute a rough estimate of the uncer-
tainty in f (p) by repeating the above least-squares fit and
integration not with the original pressure data {P,], but
rather with synthetic data {P;+o;g,], where cr, is the
standard error of P; and g; is a random deviate sampled
from a Gaussian distribution with zero mean and unit
variance. Typically, several hundred such synthetic data
are generated and the resulting variance in f (p) is a mea-
sure of its error. The same technique is used to compute
the error estimates in Table VII where the corresponding
integral is Eq. (38) and the fitting function is a polynomial
in 1 l(c +A, ) and c is an additional fitting parameter. is

In order to put the computed equations of state in a
convenient form, we provide the coeScients of the fitting
polynomials mentioned in the preceding paragraph. The
pressure P and the energy per particle E/N are fit to the
following functional forms for each isotherm:

3

P(solid)= g al(p —p)',
I =0

6

P(fluid)=pksT 1+hip+ g hip'
1=3

—(solid) = g Ai(p —p)',E
I=0

6—(fluid) =—',ks T(1+—,'Bqp)+ g B(p
1=3

(40)

The values of the coeScients aI, bI, A&, 8I, and p may be
found in Table VIII. Except for p and the second virial
coefficients, b2 and B2 (obtained from Ref. 27), the
coeScients in the table are determined by fitting the
PIMC data. Because the values bI and BI with! ) 3 have
been used to fit the entire range of the fluid phase, they
should not be interpreted as estimates for the actual
coeScients of the virial expansions of the pressure and ki-
netic energy. Rather, they are simply the parameters of a
smooth function that fits our Monte Carlo data within its
error bars. As the fitting functions rapidly become un-
reliable when the density is taken outside the region of
the simulation data, it is suggested that the functions only
be used in the range indicated by Tables IV, V, and VI.
The integration of the pressure as in Eqs. (33) and (39)

TABLE III. Same as in Table I except T=&.0.

EE
Fluid

0.025
0.05
0.09

0.16
0.25
0.32
0.39
0.43
0.46

0.50

0.54

0.57

6
6
6

12
10
10
10
10
10
10
20
10
20
10
20
10
20

12.39+0.15
12.71+0.11
13.38%0.09
13.35+0.13
15.31+0.12
18.90+0.13
22.91+0.08
28.82+0.17
33.56+0.13
37.24+0.11
37.35+0.13
43.58+0.12
43.47+0.22
51.24+0.14
51.22+0.21
57.92+0.13
57.76+0.16

0.0080
0.016
0.035
0.010
0.029
0.063
0.107
0.17
0.23
0.29
0.13
0.39
0.20
0.50
0.29
0.61
0.39

0.226+0.003
0.505%0.004
1.104+0.007
1.100+0.009
2.83 %0.02
7.13 %0.04

13.53 +0.05
24.5 +0.15
33.8 +0.14
42.5 +0.15
42.4 +0.17
57.9 +0.2
57.9 +0.3
78.6 +0.4
78.7 +0.7
98.5 %0.3
98.3 +0.7

0.000 14
0.000 55
0.0021
0.0007
0.0032
0.0105
0.023
0.044
0.065
0.088
0.041
0.129
0.069
0.18
0.10
0.23
0.15

4.8
4.8
4.8
4.8
4.8
4.8
9.6
4.8
4.8

19.2
19.2
24.0
9.6

28.8
28.&

19.2
19.2

0.53

0.56

0.59

0.65

20
40
20
40
20
40
20
40

43.06+0.22
42.95+0.15
48.14+0.14
47.78+0.19
54.81+0.17
54.36+0.17
71.88+0.14
70.92+0.13

0.27
0.09
0.37
0.12
0.58
0.17
1.04
0.36

Solid

58.0 +0.3
57.3 +0.2
71.9 +0.3
70.9 +0.3
89.2 +0.3
88.6 +0.3

142.3 +0.3
140.1 +0.3

0.096
0.031
0.139
0.046
0.21
0.069
0.45
0.16

4.8
9.6
4.8
4.8
4.8
9.6
4.8
9.6
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TABLE IV. Energy, pressure, and free energy {E,P, and f, respectively) for the hard-sphere system
at temperature T =1.6. The hard-sphere diameter 0 is the unit of length and A

/mcus

is the unit of en-
ergy. The first column is the number density. The data above the line are results from the Quid phase,
and below the line from the solid.

P

0.015
0.03
0.05
0.10
0.15
0.2063
0.25
0.30
0.35
0.38

2.56+0.02
2.72+0.03
2.91+0.05
3.76+0.03
5.11+0.02
7.26+0.03
9.49+0.05

12.97+0.06
16.97+0.07
20.34+0.09

0.0279+0.0002
0.0644+0.0005
0.1285+0.002
0.4220+0.003
1.029 +0.004
2.368 +0.008
4.14 +0.025
7.41 +0.035

12.19 +0.07
16.75 +0.15

—4.757+0.001
—3.396+0.004
—2.207+0.009

0.04 +0.02
2.22 +0.03
5.05 +0.03
7.70 +0.03

11.39 +0.03
15.95 +0.04
19.17 +0.05

0.32
0.34
0.3768
0.42
0.46

13.8 %0.2
15.4 +0.17
18.57+0.03
23.4 +0.2
28.43+0.07

8.4
10.1
14.1

21.0
29.5

+0. 1

%0. 1

+0.03
+0. 15
+0.10

13.45 +0.2
15.15 +0.2
18.55 +0.2
23.25 +0.2
28.4 20.2

yields analytic expressions for the free energy in the fluid
and solid phases, respectively.

The two curves in Fig. 1 are our results for the pair-
distribution function g(r) at representative densities in
the solid and fiuid at T =1.6. The points are the T =0
hard-sphere values from Ref. 3 at the same densities. In
both cases the agreement is quite good, although the sys-
tematic difference in the solid phase is not yet under-
stood. The discrepancy is evidently too large to be ex-
plained by thermal fluctuations at T)0 that tend to
reduce the structure in the correlation function. In the
solid the only excitations are phonons that in a finite sys-
tem give rise to a thermal energy roughly proportional to
T . In the fluid of distinguishable particles, however,
there are many free-particle-like excitations that lead to a
thermal energy proportional to T. As seen in Ref. 4, g (r)
in the fluid is nonetheless quite insensitive to temperature

in this region and may be successfully compared to T =0
results.

In Fig. 2 we compare our solid and fluid hard-sphere
pair-distribution functions to those determined at T =0
in Ref. 34 for He using a realistic helium pair potential.
The choice of the hard-sphere diameter is the same as in
the perturbation theory to be discussed in Sec. V. In this
theory the perturbative reference system is determined by
matching the hard-sphere diameter to the scattering
length of the repulsive part of the pair potential. Al-
though this prescription involves two-body information
only, the comparison in Fig. 2 indicates that the mapping
is accurate even at high densities where many-body corre-
lations are important. The agreement between these
pair-distribution functions strongly suggests the validity
of the hard-sphere perturbation theory to be used in Sec.
V.

TABLE V. Same as in Table IV except T =4.0.

E

0.02
0.04
0.07
0.13
0.20
0.26
0.32
0.38
0.42
0.45

6.26+0.06
6.53+0.06
6.89+0.07
8.15+0.07

10.27+0.07
13.2 +0.14
16.85+0.1

22.25+0.1

26.60+0.1

30.65+0.1

0.0909+0.0008
0.206 +0.0016
0.431 +0.003
1.189 +0.006
2.915 +0.015
5.72 +0.05

10.51 +0.05
18.15 +0.09
25.9 +0. 1

33.8 +0.2

—16.323+0.003
—13.018+0.009
—9.90 +0.02
—5.32 +0.04
—0.38 +0.05

4.31 +0.05
9.86 +0.06

16.68 +0.07
22.14 +0.07
26.83 +0.08

0.43
0.46
0.48
0.51

25.0 +0.3
29.2+0.3
31.5+0.2
36.4+0.3

23.9 +0.3
30.1 +0.3
35.5 +0.2
45.2 +0.3

24.25 +0. 1

28.3 +0. 1

31.3 +0. 1

36.2 +0. 1
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TABLE VI. Same as in Table IV except T =8.0.

0.025
0.05
0.09
0.16
0.25
0.32
0.39
0.43
0.46
0.50
0.54
0.57

12.4 +0.15
12.7 +0.1

13.3 +0.3
15.3 +0.1

18.9 +0.1

22.85+0.08
28.7 +0.2
33.4 +0.15
37.5 +0.3
43.4 +0.5
51.2 +0.5
57.5 +0.4

0.226+0.003
0.505+0.004
1.10 +0.02
2.83 +0.02
7.13 +0.04

13.52 +0.05
24.4 +0.15
33.7 +0.15
42.3 +0.4
57.9 +0.6
78.8 +1.5
98.1 %1.5

—39.217+0.006
—32.65 +0.02
—26.15 +0.05
—17.8 +0.10
—7.9 +0.14

0.7 +0.14
10.9 +0.14
17.7 +0.15
23.5 +0.15
32.1 +0.2
42. 1 +0.2
50.7 +0.2

0.53
0.56
0.59
0.65

42.9 20.4
47.5 +0.4
54.0 +0.4
70.1 20.3

56.7 +0.5
70.0 +0.6
88.0 +0.6

137.9 +0.7

38.9 +0.2
45.2 +0.2
52.4 +0.2
69.7 +0.2

Table IX provides a solid and fluid pair-correlation
function for each isotherm. In this study we have corn-
puted g (r) at 45 points in the (p, T) plane for various
values of M. We are present1y preparing these functions
for availability via electronic mail or other means.

B. Melting-freezing transition

The Monte Carlo calculation of the free energy enables
one to locate the thermodynamic phase transition be-
tween the solid and fluid phases by the Maxwell double
tangent construction. The resulting coexisting densities

pf and p„pressure P, and fractional density change
(p, —pf)lp„appear in Table X. The errors in these
quantities are computed by the synthetic data method
elaborated on above. The coexisting densities increase
with increasing temperature; varying from the T =0
values near p=0.27 toward the classical values near

p = 1.0. Similarly, the fractional change in density is seen
to increase toward the classical value of 0.094. The melt-
ing pressure P increases, of course, because the two-
phase region moves to higher density. Figs. 3(a), 3(b),
and 3(c) display the simulation data for the pressure in
the two phases as a function of density. The coexistence
region is indicated by a horizontal line at the melting
pressure.

The hard-sphere solid-fluid phase transition is interest-
ing because in the classical regime the total energy is
(3/2)k&T and so the energy difference between the two

~ P, O

g(r)
.40

phases bE =E, Ef van—ishes, while the entropy (per
particle) difference b,S =S,—Sf ———1.16k~ does not. At
T =0, on the other hand, hS is zero by the third law and
EE-1.2. Therefore, the transition is purely entropic at
high temperature and purely energetic at T =0. The hE
here should not be confused with the same symbol used
in Sec. IV A. Table XI contains hE and the latent heat
L = —ThS for the isotherms of this work and the T =0
results of Ref. 3. From the table one can see that the la-
tent heat of fusion approaches the classical hard-sphere
value from below with increasing temperature. Evidently

1.6
4.0
8.0

Po

0.34
0.43
0.53

15.1 +0.2
24.25+0.1

38.9 +0.2

TABLE VII. Free energy per particle f at temperature T and

density po computed by the thermodynamic integration tech-
nique that transforms the system into an Einstein crystal.

0 I I I I

0 1

I l I I I I I I I I I I I I I

2 3

FIG. 1. Pair-distribution functions of the quantum hard-

sphere system in the fluid and solid phases. The circles are the
results of Ref. 3 computed at T =0 by GFMC. The solid lines
are the PIMC results of this work at T = 1.6 The fluid data are
shifted up by 1.5. r/cr is the pair separation divided by the
hard-sphere diameter.
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the crossover to a purely entropic transition occurs at a
lower temperature than those studied in this paper since
our hE is zero within the statistical error. This result is
somewhat surprising because the system is far from the
classical regime (the coexisting solid is still very close to
its ground state). At these temperatures nearly all of the
entropy resides in the coexisting quid, except at the
highest isotherm where the solid's entropy reaches 30%
of the Quid's entropy. Using the hard-sphere mapping

onto He at the temperatures 4, 10, and 20 K mentioned
above, our results of —bS/k~=0. 67, 0.87, and 0.98
compare favorably with the experimentally measured
values of Grilly and Mills that are 0.69, 0.81, and 0.88,
respectively. The He experimental results indicate that
ZLS goes to zero Uery rapidly below about 3 K, whereas
above this temperature the dependence is fairly small. It
is quite possible that the same mechanism that takes hS
to zero very quickly in He causes an equally rapid cross-

TABLE VIII. Polynomial fitting coeScients for the thermodynamic functions. The first column indicates the reduced tempera-
ture at which the fit is made. The top two sections contain the coeScients for the pressure and energy per particle in the solid and
fluid phases of the hard-sphere system [see Eq. (40)]. The bottom two sections contain the coefficients for the free energy in the solid
and fluid phases of 'He and 4He computed by the perturbation theory of Sec. V [see Eq. (65)).

1.6
4.0
8.0

0.341
0.46
0.56

ao

1.011 543e + 1

3.011 766e + 1

6.999 369e + 1

Hard-sphere pressure
a]

9.179291e + 1

2.428 155e +2
5.218 706e +2

Q2

5.354 980e +2
1.190265e + 3
2.589 526e +3

Q3

5.291 513e +2

1.6
4.0
8.0

b2

9.3173
5.9794
4.6061

b3

4.748 849e + 1

2.015 351e + 1

1.146099e + 1

2.243 319e +2
7.027 258e + 1

4.175 994e + 1

b5

1.133930e +2
1.992 319e + 1

—2.036 726e + 1

b6

1.278 039e +2
1.976 852e +2
1.410626e +2

1.6
4.0
8.0

0.341
0.46
0.56

Ao

1.537 828e + 1

2.885 257e + 1

4.768 538e + 1

Hard-sphere energy
A]

7.882 443e + 1

1.337 482e +2
1.840 619e +2

A2

3.024 776e +2
3.096 735e +2
7.261 958e +2

A3

—3.621 555e +2

1.6
4.0
8.0

10.225
5.0355
3.0730

2.866 135e + 1

3.925 610e + 1

5.754 747e + 1

3.342 756e +2
5.126 965e + 1

—1.056 026e +2

B5

—7.390 349e +2
2.023 030e +2
5.025 265e +2

9.684 652e +2
—4.549 980e + 1

—2.269 225e +2

1.6
4.0
8.0

0.341
0.46
0.56

Co

1.917247e +0
9.074 765e +0
2.153 975e + 1

'He free energy
C]

3.581 421e + 1

9.527 020e + 1

1.835 558e +2

C2

1.506 804e +2
3.176 667e +2
5.636 364e +2

C3

5.126 445e +2

1.6
4.0
8.0

—1.874 896e +0
4.487 117e +0
1.730043e + 1

—6.054 717e + 1

—5.780 431e + 1

—6.340 031e + 1

2.473 671e +2
3.089 573e +2
3.770 909e +2

—9.273 062e + 1

—3.650 207e +2
—4.421 434e +2

2.062 746e +2
5.002 176e +2
4.947 304e +2

1.6
4.0
8.0

0.341
0.46
0.56

Cp

—1.840 057e +0
3.351 235e +0
1.421 756e + 1

He free energy
C]

1.993 071e + 1

7.855 647e + 1

1.682 361e +2

cp

1.389 877e +2
3.210000e +2
5.785 354e +2

C3

5.620 179e +2

1.6
4.0
8.0

—6.669 998e +0
—1.888 019e +0

9.972 807e +0

—8.019329e + 1

—6.861 202e + 1

—7.456 2SOe + 1

2.375 545e +2
2.817 800e +2
3.744 508e +2

d4

—3.914038e + 1

—2.986 434e +2
—4.410 566e +2

d5

1.670 411e +2
4.613 137e +2
5.079 694e +2
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g(r)

I I I t a0
0 1

r/(r
FIG. 2. Pair distribution functions of quantum systems in the

Quid and solid phases. The circles are the T =0 results of Ref.
34 for the helium pair potential. The solid lines are the hard-
sphere results of this work at T =2.0. The Quid data are shifted

up by 1.0. The choice of hard-sphere diameter o is that de-

scribed in Secs. IV and V.

over from the hS+0, BE=0 regime to the
b,S=O, EE&0 regime in the Bose quantum hard-sphere
system.

Lindemann s ratio y is the root-mean-square-deviation
of a particle from its lattice position divided by the
nearest-neighbor distance d,

As in classical simulations, there is a technical problem in

that particles may exchange among lattice sites during
the course of the simulation. There is nothing physically
wrong with this diffusion; it merely complicates the com-
putation of y since it is not always clear to which lattice
site a particle belongs. In practice this did not turn out
to be a problem because the exchange is very infrequent
and was not observed in our simulations. To take care of
the slow drift of the system's center of mass, after each
pass the starting fcc lattice is shifted by the amount the
center of mass of all NM monomers has diffused during
the pass. Table XII contains our values of y for the
hard-sphere solid.

The quantity y has long been a tool for measuring a
solid's proximity to melting. Lindemann's "law" is that
when y reaches a critical value y the system melts. The
belief is that y should be nearly independent of temper-
ature and roughly the same for different pair potentials
(provided that they have a repulsive core). Both experi-
ment and Monte Carlo simulation have shown that this
melting law is fairly accurate for simple classical systems
(e.g., argon, xenon, and sodium) where y is approxi-
mately 0.15 (for classical hard spheres y =0.13). In
quantum solids such as helium the light mass of the parti-
cles gives rise to a very large zero-point motion in which
each particle pushes out against its cage of neighbors
thereby stabilizing the solid to much lower densities than
would be allowed classically. For example, the classical
hard-sphere system melts at p=1.04, whereas quantum
mechanically at T=0 it melts near p=0. 27. Ground-
state studies have shown that at these lower densi-
ties where quantum melting takes place the Lindemann
ratio is much increased. For the Lennard-Jones model of
He at T =0 in Ref. 37 Lindemann's ratio at melting is

y =0.27. The last line of Table XII contains y interpo-
lated at the melting densities. As expected, there is evi-
dently a smooth transition between the classical and
T =0 values of 0.13 and -0.27, respectively.

We note that y may have a large number dependence

TABLE IX. Pair-distribution function g(r) in the fluid (f) and solid (s) phases.

1.000
1.025
1.050
1.075
1.100
1.125
1.150
1.175
1.200
1.225
1.250
1.275
1.300
1.325
1.350
1.375
1.400
1.425

T=1.6 (f)
p=0. 30

0.0000
0.0050
0.0342
0.0866
0.1625
0.2535
0.3554
0.4686
0.5826
0.7029
0.8159
0.9316
1.0380
1.1364
1.2259
1.3036
1.3694
1.4284

1.6 (s)
0.3768

0.0000
0.0064
0.0417
0.1094
0.2040
0.3176
0.4503
0.5911
0.7378
0.8911
1.0421
1.1801
1.3129
1.4352

5AAA

1.6301
1.7051
1.7593

4.0 (f)
0.38

0.0000
0.0084
0.0559
0.1436
0.2636
0.4079
0.5635
0.7342
0.9005
1.0590
1.2075
1.3470
1.4639
1.5596
1.6369
1.6935
1.7269
1.7416

4.0 (s)
0.46

0.0000
0.0096
0.0647
0.1657
0.3076
0.4791
0.6713
0.8752
1.0818
1.2857
1.4701
1.6432
1.7940
1.9088
2.0007
2.0559
2.0770
2.0702

8.0 (f)
0.46

0.0000
0.0142
0.0921
0.2382
0.4286
0.6551
0.8872
1.1259
1.3462
1.5360
1.6958
1 ~ 8176
1.9001
1.9452
1.9520
1.9337
1.8865
1.8131

8.0 (s)
0.56

0.0000
0.0164
0.1073
0.2775
0.5069
0.7783
1.0777
1.3779
1.6652
1.9273
2.1429
2.3091
2.4124
2.4572
2.4363
2.3604
2.2396
2.0777
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TABLE IX. (Continued).

r /o.

1.450
1.475
1.500
1.525
1.550
1.575
1.600
1.625
1.650
1.675
1.700
1.725
1.750
1.775
1.800
1.825
1.850
1.875
1.900
1.925
1.950
1.975
2.000
2.025
2.050
2.075
2.100
2.125
2.150
2.175
2.200
2.225
2.250
2.275
2.300
2.325
2.350
2.375
2.400
2.425
2.450
2.475
2.500
2.525
2.550
2.575
2.600
2.625
2.650
2.675
2.700
2.725
2.750
2.775
2.800
2.825
2.850
2.875
2.900

T=1.6 (f)
p=0. 30

1.4751
1.5057
1.5297
1 ~ 5423
1.5454
1.5384
1.5247
1.5004
1.4731
1.4431
1.4057
1.3660
1.3232
1.2818
1.2386
1.1918
1.1470
1.1073
1.0646
1.0240
0.9880
0.9541
0.9207
0.8929
0.8668
0.8431
0.8253
0.8090
0.7942
0.7847
0.7789
0.7758
0.7749
0.7762
0.7804
0.7887
0.7987
0.8098
0.8239
0.8401
0.8547
0.8719
0.8919
0.9110
0.9320
0.9518
0.9705
0.9904
1.0097
1.0254
1.0453
1.0611
1.0731
1.0837
1.0949
1.1051
1.1123
1.1175
1.1206

1.6 (s)
0.3768

1.7969
1.8133
1.8160
1.7966
1.7657
1.7230
1.6663
1.5971
1.5269
1.4473
1.3625
1.2779
1.1970
1.1137
1.0359
0.9635
0.8970
0.8351
0.7810
0.7362
0.6969
0.6642
0.6392
0.6215
0.6094
0.6058
0.6055
0.6091
0.6182
0.6338
0.6522
0.6748
0.7017
0.7293
0.7638
0.7974
0.8356
0.8740
0.9160
0.9584
0.9997
1.0408
1.0815
1.1188
1.1544
1.1821
1.2088
1.2306
1.2460
1.2548
1.2605
1.2587
1.2516
1.2405
1.2240
1.2049
1.1817
1.1574
1.1324

4.0 (f)
0.38

1.7365
1.7178
1.6814
1.6393
1.5855
1.5229
1.4595
1.3913
1.3231
1,2565
1.1899
1.1255
1.0649
1.0106
0.9620
0.9133
0.8738
0.8345
0.8063
0.7800
0.7556
0.7410
0.7280
0.7207
0.7171
0.7178
0.7202
0.7284
0.7388
0.7535
0.7696
0.7891
0.8112
0.8345
0.8579
0.8834
0.9114
0.9360
0.9629
0.9889
1.0140
1.0384
1.0610
1.0823
1.0994
1.1178
1.1306
1 ~ 1419
1 ~ 1510
1.1592
1.1609
1.1616
1.1606
1.1557
1.1501
1.1401
1.1296
1.1158
1.1025

4.0 (s)
0.46

2.0302
1.9683
1.8842
1.7815
1.6637
1.5405
1.4113
1.2844
1.1591
1.0423
0.9354
0.8418
0.7601
0.6910
0.6366
0.5933
0.5644
0.5442
0.5346
0.5325
0.5351
0.5426
0.5555
0.5710
0.5889
0.6114
0.6367
0.6639
0.6985
0.7355
0.7770
0.8266
0.8790
0.9366
0.9968
1.0568
1.1180
1.1749
1.2288
1.2757
1.3136
1.3426
1.3586
1.3648
1.3600
1.3457
1.3201
1.2908
1.2514
1.2104
1.1661
1.1223
1.0785
1.0386
1.0009
0.9703
0.9416
0.9208
0.9048

8.0 (f)
0.46

1.7332
1.6427
1.5480
1.4505
1.3550
1.2628
1.1762
1.0980
1.0271
0.9623
0.9028
0.8514
0.8080
0.7745
0.7433
0.7225
0.7033
0.6885
0.6792
0.6784
0.6787
0.6825
0.6921
0.7066
0.7224
0.7433
0.7647
0.7915
0.8188
0.8495
0.8804
0.9113
0.9451
0.9789
1.0107
1.0423
1.0741
1.1003
1.1281
1.1511
1.1704
1.1862
1.1966
1.2028
1.2066
1.2037
1.1967
1.1882
1.1746
1.1588
1.1413
1.1214
1.0999
1.0785
1.0564
1.0325
1.0108
0.9908
0.9711

8.0 (s)
0.56

1.8882
1.6855
1.4787
1.2753
1.0877
0.9185
0.7739
0.6571
0.5656
0.5017
0.4612
0.4419
0.4412
0.4532
0.4747
0.5002
0.5261
0.5506
0.5722
0.5899
0.6036
0.6155
0.6281
0.6469
0.6734
0.7097
0.7608
0.8260
0.9066
0.9980
1.0972
1.2002
1.2978
1.3858
1.4560
1.5048
1.5306
1.5319
1.5087
1.4641
1.4024
1.3327
1.2541
1.1747
1.1009
f.0339
0.9756
0.9269
0.8897
0.8624
0.8429
0.8333
0.8293
0.8323
0.8418
0.8559
0.8746
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TABLE IX. {Continued).

2.925
2.950
2.975
3.000
3.025
3.050
3.075
3.100
3.125

T=1.6 {f)
p=0. 30

1.1225
1.1231
1.1213
1.1177
1.1142
1.1076
1.1010
1.0925
1.0834

1.6 (s)
0.3768

1.1052
1.0799
1.0520
1.0287
1.0063
0.9877
0.9704
0.9552
0.9427

4.0 {f)
0.38

1.0891
1.0745
1.0573
1.0409
1.0232
1.0068
0.9919
0.9775
0.9634

4.0 (s)
0.46

0.8929
0.8880
0.8873
0.8891
0.8942
0.9025
0.9113

8.0 {f)
0.46

0.9527
0.9370
0.9236
0.9083
0.8985
0.8908
0.8846

8.0 (s)
0.56

that has not been extensively studied in this work. The
slow convergence to the N~00 limit is due to a large
contribution from long-wavelength phonons that give a
correction term proportional to N ' for classical sys-
tems and quantum systems at T & 0. At T =0 the correc-
tion goes as N . In both cases it can be shown that
the finite system's y is less than that of the infinite sys-
tem. Assuming the data is in the N ' regime, a test at
p=0. 3768, T=1.6 with N =108 and 256 indicates the
Lindemann's ratio for the 108 particle system underesti-
mates the infinite system result by about 7%
[y(108)=0.214 while y( ~ ) =0.23]. This value could be
an overestimate of the actual extrapolation because at
low temperature there may be a large region where y has
a correction term that behaves more like N before
finally crossing over to N ' . Using the finite system
Debye theory discussed in the next subsection, we find
that near melting (along the three isotherms) 108 parti-
cles is accurately in the N '~ regime and the amount of
extrapolation (5—8%) is comparable to the above test at
p=0. 3768. For the point p=0. 53, T=2.0, well above
the melting density, the Debye theory suggests that the
crossover to the N ' regime does not occur until
N-10000 and there is a total extrapolation of about
3.5%. In the classical hard-sphere system near melting
the N ' dependence of y has been observed using
Monte Carlo and indicates that an 108 particle system is
about 16% below the thermodynamic limit.

It may be possible to generalize Lindemann's melting
law to all temperatures. The idea is that the values of y
as a function of the melting temperature T for the quan-
tum hard-sphere system will form a "universal" curve
that is applicable for all simple systems possessing a
melting-freezing transition. The only di5culty in apply-

ing this generalization to other quantum systems is in ap-
propriately scaling the temperature variable. We conjec-
ture that a reasonable prescription is given by the choice
of hard-sphere reference system used in the perturbative
study of He and He discussed in Sec. V. In the pertur-
bation theory an effective hard-sphere diameter o' is
chosen as the s-wave scattering length of the repulsive
part of the pair potential of interest. For both classical
and quantum systems it is believed that the melting-
freezing phenomenon is essentially determined by the
repulsive core of the interaction and other details (such as
an attractive well) are of secondary importance. Given
that the above choice of hard-sphere reference system
provides a good description of the phase transition in He
and He at finite temperatures (see Sec. V), it is reason-
able to suppose that one may use this mapping in the gen-
eralization of Lindemann's law as well. Specifically, let
a be the s-wave scattering length of the pair potential as
defined above, then define T' by

k~TT*=

m(a')

(42)

We claim that the system will melt when y reaches

y (T'), with y determined from the hard sphere data-
at reduced temperature T*. This formulation agrees
with the classical and T =0 forms of Lindemann's law
since at large T' y goes over to the classical result of
y =0.13 and as T*~0 it evidently approaches
y =0.27. The test of this law in the intermediate tem-
perature regime would require extensive determinations
of the phase transition in a variety of quantum systems
(such as the helium isotopes, the one-component plas-

TABLE X. Parameters of the hard-sphere melting-freezing transition. All quantities are reported in
the reduced units of the text. The solid and Auid densities are p, and pf, respectively. Ep/p, is the
fractional change in density (p, —p+) Ip, . The coexistence pressure is P

1.6
4.0
8.0

ps

0.360+0.017
0.465+0.005
0.537+0.005

0.348+0.016
0.442+0.005
0.503+0.005

12.2+2.0
31.3+1.3
59.5+2.0

0.034 +0.004
0.0495+0.002
0.063 +0.003
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ma, ' and Yukawa nuclear matter systems discussed in
Ref. 39) at finite temperatures. Furthermore, additional
hard-sphere data of increased accuracy for a wider range
of T' along with careful extrapolation to the N~ Qo lim-
it is required to better describe the universal curve

y (T ). Such a computational project is feasible at
present although it is not clear that it is warranted
theoretically. Refinements in the method of choosing T'
are certainly possible, although it would probably be
difficult to decide among different choices [it should be
noted that even among purely classical systems the y of
Lindemann's law is "violated" roughly by 15% (Ref. 5)].
Finally, we note that the effect of Bose and Fermi statis-

ties on Lindemann's law at low temperatures is largely
unexplored. It would be interesting to compare the
melting-freezing transition of He to that of a fictitious
mass-3 boson system interacting with the same pair po-
tential. Since the effect of statistics should be negligible
in the solid, any differences (say in the value of y ) are
solely due to the relative stability of the Bose and Fermi
jluids near freezing. The Fermi fiuid would be less stable
since its free energy is higher than the Bose. Although
the differences may be small, the universal curve y (T")

should depend on the statistics the particles obey. %'e
call attention to the above point to note that any such
difference is not addressed in this study where Boltzmann
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FIG. 3. (a) Pressure P vs density p for the fluid and solid phases of the hard-sphere system along the T =1.6 isotherm. The units
for pressure, temperature, and density are A /me', A /mo. , and o ', respectively. The circles are the path-integral Monte Carlo
data. The solid curves are the least-squares-fitting functions discussed in the text. The horizontal line denotes the thermodynamical-
y determined coexistence region between fluid and solid. (b) The same as in (a) except along the T =4.0 isotherm. (c) The same as in

(a) except along the T =8.0 isotherm.
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TABLE XI. Differences between the coexisting solid and
fluid phases. The energy difference is defined by hE =E,—Ef
and the entropy difference by hS =S,—Sf. Both are per parti-
cle quantities. The latent heat of fusion for the quantum system
is L = —ThS and —TES„ is the corresponding value of the
classical system at the same temperature (from Ref. 2). The
T =0 point is estimated from the result of Ref. 3.

where i and j take on the values 1, 2, or 3 and the repeat-
ed index k is summed over. Let f (rl) and f (0) denote
the free energies per particle of the deformed and unde-
formed crystals, respectively. The elastic constants C,.J«
are defined by the following expansion about the unde-
formed state:

—ThS TESc)
Pf(11}=Pf(0}+T(~ rl j..+ ,'Clk—l rAJ9kI+ (44)

0.0
1.6
4.0
8.0

1.2+0.4
0.1+0.2
0.0+0.3

—0.3+0.6

0.0
1.1+0.25
3.5+0.35
7.9+0.7

0.0
1.9
4.6
9.3

statistics are assumed, although we believe that the effect
should only be seen at temperatures lower than those in-
vestigated here.

C. Elastic properties of the solid phase

BQ; BQJ. BQk Buk

2 Bx Bx; Bx; Bxj
+ + (43)

The elastic constants of the hard-sphere solid at low
temperatures are corr|puted here to explore the validity of
the Debye theory, to test the consistency of the free-
energy computations of Sec. IV A, and to provide exact
Monte Carlo results for the elastic moduli of a quantum
solid. Previously the computation of the elastic proper-
ties of quantum solids has been limited to approximate
theories and variational studies.

The elasticity theory for the system studied in this pa-
per applies only to very long wavelength phonons. The
discontinuous nature of the hard-sphere interaction and
the large zero-point motion preclude the validity of the
standard harmonic theory ' that involves a Taylor
series expansion in the displacement from the perfect
crystal lattice. The strong zero-point repulsion between
particles provides the "restoring force" to long-
wavelength acoustic distortions. The elastic moduli com-
puted in this work provide a quantitative measure of the
system's stiffness to these distortions.

To define the elastic constants, let u(x) be the displace-
ment field of a deformed crystal. The strain tensor is
defined by

I
Z —Zj Z'=Z .

The following relationships are used to determine the
elastic constants:

Pl = =(C44 —I')+O(sl)~ Bf 2

E) BE)
(45a)

Pz= =2(C„—C,~
—P)+O(e2),

ep BE2
(45b)

aa
Bp

= —,'(C)q+2C|2+P) . (45c)

The inverse isothermal compressibility on the left-hand
side of Eq. (45c} is estimated by performing simulations
at densities p hp and finite differencing the pressure
with bp-0. 015. The quantities Bf/Bel and Bf/Bs2 are
computed in a manner analogous to the pressure in Eq.
(24) and the discussion following it. In this case the
derivative of U,z with respect to c. provides an estimator
for Bf/Be„.

where all repeated indices are summed over. T;. is the
stress tensor. We shall use the standard Voigt notation:
C» ——C»»j C,z=c»zz, C44 ——C/z]z, eic. For crystals
with cubic symmetric (such as the fcc) there are only
three independent elastic constants that may be taken as
C», C,z, and C44. Wallace discusses the above expan-
sion and symmetry properties in detail.

As in Ref. 46, to estimate the elastic moduli a small
strain, parametrized by e., is applied to the simulation
cell. During the simulation in this deformed cell the
stress tensor is measured and the resulting linear depen-
dence of it on c. is used to extract the C &. We have used
two types of strain that correspond to the following shear
transformations of the simulation cell:

x'=x+e,y, x'=(1 —ez}x,

y'=(I+e2)y,

TABLE XII. Lindemann s ratio y (rms deviation from lattice site divided by the nearest-neighbor
distance) for the densities and temperatures (p, T) in the solid phase. The last line contains the deduced
value of y at melting for each isotherm.

T =1.6 T =4.0 T =8.0

0.32
0.34
0.3768
0.42
0.46

0.225+0.003
0.236+0.001
0.214+0.001
0.195+0.001
0.181+0.001
0.225+0.010

0.43
0.46
0.48
0.51

0.204+0.001
0.183+0.001
0.175+0.001
0.164+0.001

0.181+0.003

0.53
0.56
0.59
0.65

0.168+0.001
0.154+0.002
0.142+0.001
0.125+0.001

0.165+0.003
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W'e compute the elastic constants at the reduced densi-
ties 0.34, 0.43, and 0.53. In these computations we at-
tempt to take the temperature low enough so that quan-
tum solid is very close to its ground state. In this way we
may use the resulting C

&
in the Debye theory to esti-

mate the amount of thermal excitation above the ground
state at the three isotherms studied in this work. An im-
portant test can be made by comparing the thermal exci-
tation in the free energies of Table VII to that predicted
by the Debye model. We will see below that the Debye
theory qualitatively predicts the magnitude of the excita-
tion, although the temperature is too high (it is near melt-
ing) to yield precise results. The results of our Monte
Carlo determination of the energy, pressure, (BP/Bp), p, ,
and pz at the three densities appear in Table XIII. The
relative errors in (BP/Bp), pi, and p2 are larger than
those for E and P because second derivatives of the free
energy are more difficult to estimate by Monte Carlo than
are first derivatives.

From the quantities in Table XIII one may compute
the elastic constants, the Debye temperature, propaga-
tion speeds, and Poisson s ratio. These quantities are in
Table XIV. W'e define Poisson's ratio v to be minus the
ratio of the strain along y to the strain along x when the
stress is incremented in the x direction:

C12+P
5T„„&0.

11 + 12
(46)

Poisson's ratio actually depends on the orientation for an
anisotropic crystal, but we will consider only the above
quantity in this paper. For an isotropic system
—1&v& —,'. If v is less than zero the system contracts
along y when compressed along x, thus most systems in
nature have v)0. For quantum hard spheres we find
Poisson's ratio is 0.48 at low density p=0. 34 and de-
creases to 0.41 at p=0. 53. These values of v may be
compared to results for the classical hard-sphere sys-
tem ' where v is 0.34 at the melting density p=1.04
and evidently decreases linearly to 0.2 at close packing
p= 1.41.

To define the remaining quantities in the table, we note
from Wallace that the propagation velocities c,(k) of an
acoustic wave traveling in the k direction are related to
the eigenvalues of the following equation:

m pc (k) e; = A, j~ik~klel, , (47)

where repeated indices are summed over, mpc is the ei-
genvalue, e; is the ith component of the eigenvector e
(also known as the polarization vector because it is the
direction along which the displacement field oscillates),
and the tensor A is

~Ijkl Tjl6Ik +Cljkl (48)

Equation (47) is a 3X3 symmetric matrix eigenvalue
equation, so for each direction k there are three mutually
orthogonal polarization vectors e(k, s) s =1,2, 3 with cor-
responding propagation velocities c,(k). The Debye
theory result of low-temperature crystals is that the
thermal energy of a large system is given by

'1 3

E(T)=E(0)+N kiiT
5

(49)

where

3

(k~8~( ':—
4 3 x [c,(t(]

18m pR
(S0)

with the brackets ( ) denoting an angular average over
directions k. The angular average is performed here by a
simple Monte Carlo method in which roughly 5000 ran-
dom directions are sampled. For each direction the ma-
trix in Eq. (47} is diagonalized and the resulting sum of
inverse cubes of the propagation velocities is averaged to
provide an estimate of the right-hand side of Eq. (50). As
expected for a crystal with high symmetry, we find it is
approximately true that the eigensolutions of Eq. (47}
breakup into a longitudinal mode with e nearly parallel
to k and two nearly degenerate transverse modes with e
perpendicular to k. This is exactly true in an isotropic
system. The longitudinal mode has a speed of propaga-
tion larger than that of the transverse modes because the
former modulates the density in space whereas the latter
produce "shear" distortions that keep the density con-
stant. The zero-point repulsion between particles thus
provides a stronger restoring force to longitudinal pho-
nons than to transverse phonons. In light of these ideas,
we define cl to be the angular average of the largest prop-
agation velocity and c, to be the average of the two small-
er ones. These "longitudinal" and "transverse" speeds
and OD appear in Table XIV for the three densities stud-
ied.

TABLE XIII. Monte Carlo data for the elastic study at three density and temperature points (p, T).
E, P, p(BP/Bp) are the energy per particle, pressure, and isothermal compressibility. pl and p2 are the
curvatures of the free energy with respect to strain as defined in the text. The energy, pressure, and
compressibility data for T = 1.6 are actually computed from a fit to the T =0 data of Kalos in Ref. 3.

aP
Bp

0.34
0.43
0.53

1.6
2.5
4.0

15.36+0.1

24.45+0.1

39.9 +0.3

9.91+0.1

22.85+0.1

53.2 +0.2

36.4+1.0
87.0+1.0

234.0+6.0

11.6+0.3
41.5+0.5

128.6+1.3

25.2+0.5
87.0+1.0

296.0+2.0
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TABLE XIV. Elastic properties of the hard-sphere solid at low temperature. The first two columns

give the density and temperature. Cl&, C&2, and C44 are the three independent elastic constants of the
fcc crystal. 8& is the Debye temperature and c& and c, are the angularly averaged longitudinal and
transverse sound velocities, respectively. Poisson s ratio is v. All quantities are reported in the reduced
units of the text.

0.34
0.43
0.53

1.6
2.5
4.0

48.1+1.0
124.0+1.4
351.0%6.0

Clz

25.6+1.0
57.3+1.3

150.0%6.0

21.5+0.3
64.4+0.5

182.0+1.0

OI4

7.9
16.7
30.9

11.7
17.2
26.7

4.5
7.8

13.2

0.48
0.44
0.41

In Figs. 4 and 5 we compare our hard-sphere Debye
temperatures to those obtained experimentally for solid
He and He at low temperatures. The mapping of the

hard-sphere system onto the helium solids is the same
one to be used below in the hard-sphere perturbation
theory. From the figures, the hard-sphere 8D lies sys-
tematically below the experimental values although the
density dependence is well reproduced. As mentioned
above, the longitudinal phonons are more difficult to ex-
cite than transverse phonons because of the modulation
in density that the former induce. Therefore, the Debye
temperature is primarily a measure of the thermal contri-
bution of transuerse phonons (one may estimate that lon-
gitudinal excitations contribute less than 10%%uo of 8D).
The fact that the hard-sphere 8D is smaller than the
values for the helium solids implies that the hard-sphere
system offers less resistance to the formation of long-
wavelength transverse phonons than helium does. This is
a curious result because one might believe that the attrac-
tive part of the He-He pair potential would soften all
phonon modes. We are presently performing PIMC
simulations using an accurate He-He pair potential and
the high-temperature approximation of Ceperley and Pol-

lock' to study both the equation of state and elastic
properties of solid helium. We believe that this study will
illuminate the source of the discrepancy in 8& between
quantum hard spheres and real helium. The discrepancy
may be due to (1) the inability of the hard-sphere refer-
ence system to describe accurately the transverse strain
derivatives of the helium free energy, (2) the lack of an at-
tractive well in the hard-sphere pair potential, (3) a
deficiency in the He-He pair potential of Ref. 49, or (4)
the fact that He and He form hcp crystals (at these den-
sities), while the hard spheres studied here were fcc.

In their experimental study of solid helium, Sample
and Swenson observe that in the range of molar
volumes from 11 to 19 cm the ratio of He to He Debye
temperatures is nearly constant with 83/84 ——1.18. As
mentioned by these authors, within the standard harmon-
ic approximation the tensor A on the right-hand side of
Eq. (47) depends only on the number density p because A

is related to strain derivatives of the potential energy
U = g, J v (r,j ) evaluated at the perfect lattice
configuration. The mass dependence of each sound ve-
locity is thus c o: 1/~m. Observing that kti8& ccp'~3Ac

and that He and He have the same potential Uyields
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FIG. 4. Debye temperature Oz in K for solid He as a func-
tion of molar volume. The solid curve denotes the experimental
values from Ref. 48. The diamonds are our zeroth-order hard-

sphere perturbation-theory predictions for He.
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83/84=(m4/m3)' =1.152,

where m3 and m4 are the masses of the helium isotopes,
and 03 and 84 are evaluated at the same number density.
This prediction is quite close to the experimental ratio al-
though the validity of the derivation is suspect because of
the high degree of anharmonicity in solid helium. The
standard harmonic theory applied to helium for the
above range of volumes yields an unstable crystal (some
of the c are negative). As mentioned above, the large
zero-point repulsion is what actually stabilizes the solid
phase. Therefore, for solid helium we expect that A in
Eq. (47) is strongly dependent on p, m, and i)i'. Note that
for quantum sohds A wi11 contain a large contribution
from the strain derivatives of the kinetic energy as well as
from the potential energy. One may use the scaling prop-
erties with m of the hard-sphere system to compute the
ratio 83/84. This should be a good approach because, as
we have seen, the hard-sphere system contains the large
zero-point motion observed in solid helium. A simple,
but unsuccessful, result may be obtained by assuming
both He and He can be modeled by hard-sphere systems
with the same diameter 0.. Using the hard-sphere scaling
one finds that

turn solid. Presumably, if the shape of the helium pair
potential were different then the ratio cT3/cT4 would be
changed and so would the value 03/04. For example, if
0 3 were only 1% smaller than o 4 then 83/84 would be
1.235. Therefore, it is possible that the proximity of the
experimental ratio to (m4/m3)' is entirely a coin-
cidence.

Rather than use the infinite system result in Eq. (49) to
evaluate the thermal contribution of phonons, one may
easily compute this quantity for a finite system. In this
way we may calculate the thermal excitation in the free
energy of an 108 particle system and compare it to the
Monte Carlo value computed by the thermodynamic in-
tegration in Eq. (38}. To compute the thermal contribu-
tion one assumes that phonon states with excitation spec-
trum %co(k,s) are the excited states of the system, where k
is a wave vector satisfying the Born-von Karman bound-
ary conditions of the periodic box. The excitation spec-
trurn is next approximated as in the Debye scheme

co(k, s) =c,(k)k, (55)

where k =
~

k
~

. This expression is asymptotically exact
as k~0 for the infinite system. The free energy and en-

ergy of the system at temperature T within this approxi-
mation are given by

and

c,(k,p, m)= c,'(k, p')
m cT

k&8D(p, m)= 2OD(p'),
mo

(51)

(52}

and

F(T)=E(0)+k&Tg ln(l —e ~" '"")
k, s

E(T)=E(0)+ Q %co(k,s)(e~" '""—1)
k, s

(56a)

(56b)

8D(p')=cro(p') ' . (53)

The experimental data suggest that this is a fairly reason-
able description of 8D. Use of Eq. (52) yields

m 0' 3y —2

03/04 —— ——1.165,
m3 0'4

(54)

where we have used the value @0=3.05+0.2 that is from
a least-squares fit to the OD data in Table XIV. This
prediction is slightly better than the harmonic theory re-
sult of 1.152, but more importantly it follows from a
model that has the correct zero-point motion of the quan-

where the "asterisk" denotes a dimensionless quantity,
for example p*=po . This dependence on mass implies
that 83/84 ——m~/m3 ——1.327 and is in poor agreement
with experiment. The defect with this model is that o is
not allowed to depend on the mass. In the scattering
length model of helium used throughout this paper (to
compute, for example, OD in Figs. 4 and 5) the hard-
sphere diameter does depend on the mass of the isotope.
As will be seen in Sec. V, the He effective diameter o 3 is
about 1.8% smaller than the He value o4 because the
lighter mass of the He atom allows it to penetrate into
the repulsive core slightly more than He. We choose to
include this mass dependence in the following simple
manner. If one assumes a density-independent Gruneisen
constant yo over the range of interest then one has

where we note that F(0)= E (0) since TS ( T) vanishes as
T~0 for this system. The sum on k is over the
Born-von Karman wave vectors in the first Brillouin
zone and s ranges over the three acoustic modes. Note
that E (0) is not the standard harmonic theory result
given by the static lattice potential energy plus the sum of
fico(k, s)/2, but rather the total ground-state kinetic ener-

gy of the hard-sphere solid. ' With this choice of E(0),
Eqs. (56) are asymptotically exact as T~O for a large
system.

Table XV contains 5E=E(T) F(T) comp—uted —by
both PIMC and the Debye theory. The quantity hE is
convenient to consider because the E (0) terms cancel out
so that only finite-temperature data are required. At the
low-temperature point, T=1.6, the thermal excitation
5E is quite small —roughly the same size as the Monte
Carlo error. At this temperature the PIMC and Debye
model [D(T) in Table XV] predictions for 5E agree
within large error bars. Thus, to within the statistical er-
ror, the thermodynamic integration to compute F( T) is
superfiuous [E( T) may be used to the same level of accu-
racy], but provides a useful consistency check of the
methods used in this work. At the higher temperatures,
T =4.0 and 8.0, 5E is definitely nonzero and is approxi-
mately 3% and 9% of the total energy, respectively.
D(T/2) in Table XV is 5E at temperature T/2 and
demonstrates the rapid increase with temperature for the
finite system [compare with Eq. (49) for the infinite sys-
tein]. We also include the result for the infinite system,
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TABLE XV. The difference 5E =E(T)—F(T) between energy and free energy at temperature T
computed by various methods in the solid phase. The energy unit is A /mo. . The first two columns
are the density and temperature. PIMC is the value determined from Monte Carlo simulation for 108
particles. The last four columns are values computed within the Debye theory using the elastic con-
stants of Table XIV. D ( T) is the Debye result for 108 particles at temperature T. D(N = ~ ) is the re-
sult at temperature T for the infinite system. D (disp) is the same as D(T) except using a phonon spec-
trum with "simulated" dispersion. D ( T/2) is the same as D ( T) except at one-half the temperature.

0.34
0.43
0.53

1.6
4.0
8.0

PIMC

0.32+0.26
0.8 %0.3
4.0 +0.5

D (T)

0.25
0.95
2.4

D (N=~)
0.27
1.08
2.7

D (disp)

0.40
1.6
4.0

D (T/2)

0.018
0.055
0.14

D (N = oo ), at temperature T to show the small effect of
finite size. The prediction of the Debye theory estimates
the size of 5E reasonably well but the temperature is too
high to give quantitative agreement. By this we mean
that at these temperatures there is a significant contribu-
tion from phonons with wave vector k large enough so
that the linear dispersion relation, Eq. (55), is no longer
accurate. The effect may be estimated by putting in
"artificial" dispersion and observing the resulting change
it induces in the quantities. We model the dispersion by
the replacement

sin(ka, )
co(k, s) ~co(k, s)

ka,
(57)

E(T)= g A'co(k, s}[n (k,s)+ —,'],
k, s

(58)

where the "cutoff" distance a, is chosen, somewhat arbi-
trarily, to be one quarter of the fcc conventional cell edge
length. For this choice of a, the argument of the sine
function reaches n. /2 just as k reaches the surface of the
first Brillouin zone along the x, y, and z directions. Ex-
amination of the experimentally measured phonon
dispersion relations in solid helium reveals that this is a
reasonable model of dispersion. As can be seen in Table
XV, the thermal excitation depends strongly on the pres-
ence of dispersion: at the three points studied there is
roughly a 60% increase in 5E when the dispersion is add-
ed. From this observation we conclude that phonons
near the zone boundary are significantly excited. This is
not true at lower temperatures, roughly (T/2, where ex-
pressions (56) should be quite accurate. It is possible that
the use of the unknown "correct" dispersion relation
co(k, s) will bring the 5E computed within the phonon
scheme into agreement with the PIMC results. However,
given that wave vectors k near the zone boundary are ex-
cited (at least when the system is near melting), it is very
likely that for these k the independent phonon approxi-
mation breaks down and there is a nonnegligible anhar-
monic contribution to 5E. This contribution would be
diScult to compute.

An interesting result is obtained if one computes the to-
tal energy E and Lindemann ratio y within the harmonic
theory using the spectra in Eqs. (55) and (57). In this ap-
proximation one has

y (T)= —g [n (k,s}+—,'],
d2 N &, me@ k, s

where

(e Pleo(k, s) l )
—1

(59)

TABLE XVI. Comparison of the total energy E and
Lindemann'. s ratio y computed by Monte Carlo and the Debye
theory. The density and temperature are p and T. All data are
for 108 particles and are reported in the reduced units of the
text. PIMC refers to the path integral Monte Carlo data. "De-
bye" is the Debye theory prediction and "Disp" is the Debye re-
sult using a phonon spectrum with simulated dispersion.

Debye
Disp
PIMC

0.34 1.6 21.6
16.3
15.4

0.271
0.287
0.236

Debye
Disp
PIMC

0.43 4.0 37.9
28.9
25.0

0.209
0.222
0.204

Debye
Disp
PIMC

0.53 8.0 65.6
50.5
42.9

0.168
0.179
0.168

is the mean occupation number of mode (k, s). The addi-
tional term —,

' added to n (k, s) is the zero-point contribu-
tion of the harmonic oscillator. The more accurate treat-
ment discussed above replaces this contribution with the
exact values E(0) and y (0) for the hard-sphere solid.
From Table XVI one sees that the expressions (58) and
(59) yield surprisingly good results given the apparent
severity of making a harmonic approximation to the full
Hamiltonian. For the total energy E the "linear" and
"simulated dispersion" spectra give deviations from the
exact PIMC result by 50% and 20%, respectively. The
maximum discrepancy in y is only 20% and is less than
10% for most points. It is reasonable that the energy is
less accurate than y because, as may be seen in Eq. (59},
the latter weights the small k phonons more heavily.
These long wavelength, small-k phonon degrees of free-
dom are more accurately described as independent simple
harmonic oscillators than are the phonons near the zone
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boundary. In either case, it is remarkable that even semi-
quantitative agreement may be obtained with this very
crude approximation.

The Debye model predictions of the thermal excitation
5E suggest an alternate and more convenient way to com-
pute the free energy in the solid. One may start at a den-
sity po high enough so that F(po)=E(po) (5E=O) and
perform simulations at lower densities as well, and finally
integrate the pressure in Eq. (39) to obtain the free ener-

gy. This procedure is more convenient than that used
here (the transformation to an Einstein crystal in Sec.
III C) since it does not require an additional program to
simulate the hard-sphere system with harmonic attrac-
tion to each lattice position [Eq. (35)). This alternate pro-
cedure may not be more computationally efficient, how-
ever. As the density increases the number of time slices
M must be increased to maintain accurate results, there-
by increasing both the computer time per pass and the
autocorrelation of observables. On the other hand, as the
harmonic coupling constant A, is increased the quantum
paths decouple from one another, the acceptance ap-
proaches 100%, and the autocorrelation becomes small.
Which of the two methods is the more efficient depends
on the circumstances (for example, the temperature} and
degree of accuracy desired.

The elastic constant study performed here demon-
strates that one may achieve at least semiquantitatively
accurate results for the quantum hard-sphere solid within
the Debye phonon theory. The computation of 8D for
He and He using the hard-sphere elastic properties

reach a similar level of accuracy. It should be noted that
the quantitative Debye theory computations presented
here required Monte Carlo simulation to determine the
C~p.

V. PERTURBATIVK STUDY OF HELIUM

It is of interest to use the hard-sphere results to make
predictions about actual systems in nature. In classical
systems it has long been known that a successful theory
of Lennard-Jones systems results from "perturbing"
about the hard-sphere system. Kalos et al. 3 have also
come to the conclusion that hard-sphere perturbation
theory works well when studying the ground state of a
Lennard-Jones model of He. We arrive at a similar con-
clusion for finite temperature from our computation of
the equations of state of He and He.

The helium pair potential is strongly repulsive at short
range and weakly attractive at long range; with a
minimum of approximately 10.8 K occurring at a pair
separation near 2.95 A. In this work we use the model
pair potential of Aziz et al. To develop the theory one
takes the standard view that the repulsive core largely
determines the structure of the solid or fiuid and the at-
tractive part may be treated as a perturbation. One
divides the potentia1 into a sum of repulsive and attrac-
tive contributions

u(r}+e, r &r

v„„(r)=

f (p, T) =f' '(p, T)+f '"(p, T), (61)

and c is the magnitude of the potential at its minimum
r . The perturbative study done here involves two
separate approximations. The first is to simply truncate
the quantum statistical mechanical perturbation expan-
sion of the free energy of the system of interest [v (r))
about that of the repulsive reference system [v„(r)]after
the first-order correction. The second, independent, ap-
proximation is to argue that the free energy and the pair-
distribution function of the repulsive reference system are
given accurately by those of an appropriately chosen
hard-sphere system with the same mass, temperature, and
density as the reference system. In other words, one ad-
justs the hard-sphere diameter at each temperature and
density to "best" describe the reference system. This
second approximation, or more precisely the problem of
how to optimize the hard-sphere diameter, is on a much
weaker theoretical foundation than its classical counter-
part. In light of the absence of theoretical guidance, and
in an effort to keep the number of adjustable parameters
small, we have used the same, rather simple, hard-sphere
model of the reference system as in the T =0 work of
Ref. 3. The hard-sphere diameter is chosen so that its s-
wave scattering length is equal to that of the reference
system. This choice of diameter is thus independent of p
and T. Initially, we considered matching the second viri-
al coefficients of the two systems at each temperature
[thereby making the equations of state of the two systems
agree to 0 (p ) as p~O for all T ). The two prescriptions
turned out to be very nearly the same for the tempera-
tures considered in this work. Clearly, either choice be-
comes poorer as the density is increased. As an extreme
case, in very high density solid He when the nearest
neighbor distance is less than the above hard-sphere di-
ameter the reference system certainly does not describe
the He system at all. We are presently attempting a
quantum version of what has been done in the classical
case, namely, to construct a hard-sphere diameter
cr(p, T) that takes into account some of the many-body
correlations and is therefore more accurate than the
reference system used in this work. We wi11 see below
that the simple choice of hard-sphere reference system
nevertheless provides rather accurate results for the
Helmholtz free energy of He and He, except at the
highest densities we have studied. It also gives a reason-
able description of the freezing phenomenon and liquid-
vapor coexistence in the helium systems.

The free energy per particle f (p, T) for the system of
interest is approximated by

v(r}=v„~(r)+u,«,(r},

where

(60)

where f ' '(p, T) is the free energy of the reference system,

f"'(p, T}=2npf v,«, (r)g' '(r;p, T)r dr, (62)

and g' ' is the pair distribution function of the reference
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system. Equations (61) and (62) define f exactly to first
order in the perturbation U,«, . As described in the previ-
ous paragraph, we make the additional approximations,

and

f'"(p»=fHs(p T) (63a)

(p T) =gHS(p T) (63b)

where fHs and gHs are the free energy and pair-
distribution function of the hard-sphere system with di-
ameter e equal to the scattering length of U„~. We have
computed f'"(p, T) (using g„s) at all the (p, T) points of
this study with the scattering lengths of U„z for both He
and He. Let the two scattering lengths be o 3 and cr4. By
integrating the two-body Schrodinger equation with zero
angular momentum in the low-energy limit we find

3f)0)+f(i) y (
—)I

l=o

in the solid, and

5f"'+f'"=fd(p T)+ X dip'

(65a)

(65b)

in the fiuid. The coefficients ci and d& appear in the lower
half of Table VIII. Note that the free energies of He and
He are reduced by the unit fi /mo with the values rn

and o of the corresponding isotope.
In Figs. 6(a), 6(b), and 6(c) we display the free energy

computed by the perturbation theory for He at tempera-
tures 4, 10, and 20 K, along with the experimentally
determined values from McCarty in the fluid and
Driessen et a/. in the solid. The "zeroth-order" theory
may be defined by f=f' '=fHs. From the figures one
can see that the zeroth-order approximation is rather
inaccurate, although the position of the fluid and solid
free energy crossing is well represented. The inclusion of
the first-order term f ' " removes almost all of the
discrepancy from the experimental results, except at high
density along the 20 K isotherm. It is remarkable that
the simple choice of hard-sphere reference system gives
quite accurate results over a rather wide range of condi-
tions. If we had used the exact values of f' ' and g' '

rather than the hard-sphere approximations to them,
then the estimate f ' '+f ' " is a rigorous upper bound on
f. ' The use offHs and gHs apparently does not destroy
the upper-bound character for the cases considered here.
Since the pressure is the slope of the free-energy curve;
P =p (df/Bp); we see that the first-order correction
brings the pressure into good agreement with experiment.
We find that for p &0.2 the maximum deviations of the
pressure from experiment are roughly 15, 15, and 25%
for the 4, 10, and 20 K isotherms, respectively. We ex-
pect similar results for He although a lack of experimen-
tal data prevents us from performing a detailed compar-

CT3 2. 1634 A, o4 ——2.2033 A ~

Rather than present tables off'" we choose to provide
least-squares fits to f' '+f '" as a function of p for each
isotherm. The fit is

ison as is done for He in Fig. 6.
Table XVII contains the melting-freezing parameters

using the zeroth- and first-order perturbation theories for
He and He along with the experimentally determined

values of Grilly and Mills. We first note that the coex-
isting densities, p, and pf, are fairly well determined by
the zeroth-order approximation. In this case for both
He and He along the T=1.6 and 4.0 isotherms the

coexisting densities are no more than 4% in error, while
for T =8.0 they are roughly 10%%uo too small. The zeroth-
order theory overestimates the coexistence pressure P
The first-order theory removes much of the discrepancy
in P, at least for T =1.6 and 4.0. This is expected be-
cause the inclusion of the attractive part of the pair po-
tential reduces the pressure substantially. At the lowest
temperature the first-order perturbation brings the width
of the transition hp =p, —pf into agreement with experi-
ment, although this does not take place at the higher
temperatures. In fact, the inclusion of the first-order
correction does little to improve the densities p, and pf.
We view this as a defect in the choice of hard-sphere di-
ameter at densities near the transition region. It will be
interesting to see if a more accurate hard-sphere mapping
can be devised and to what extent it improves the equa-
tion of state and melting-freezing parameters.

One can see in Fig. 6(a) that the first-order theory for
He at T =4 K has an unstable region (P &0, dP/dp &0)

in the fiuid branch. This is an indication of the liquid-
vapor phase transition. In Fig. 7 we replot the fluid free
energy as a function of molar volume ( —1/p) to show
the effect more clearly. Our perturbative free energies for
He at 10 and 20 K do not have an unstable region,

which is quite reasonable because the liquid-vapor critical
temperature for He is T, =5.2 K: there is no transition
above this temperature. ' Furthermore, the He critical
point is at 3.3 K and we observe no unstable region in
any of our 3He isotherms (5.5, 13.8, and 27.6 K). We
have used the Maxwell double-tangent construction to lo-
cate the liquid-vapor coexistence at T=4 K for He.
This construction does not require any data in the unsta-
ble region, rather, it matches pressures and chemical po-
tentials of the stable liquid and the stable vapor. The
solid straight line in Fig. 7 is the resulting two-phase re-
gion and may be compared to the experimental values
denoted by the dashed line. We find that the coex-
istence volumes of the liquid and vapor are 28.9 and 355
cm, respectively, and the pressure is 0.827 atm. Experi-
mentally, the values for these three quantities are 31.0
cm, 297 cm, and 0.808 atm, respectively. The agree-
ment between simulation and experiment is very good.
Note that this transition is quite close to the familiar boil-
ing point of He at T =4.2 K under atmospheric pres-
sure.

VI. SUMMARY AND CONCLUSIONS

In this study we have shown the practicality of per-
forming Monte Carlo free-energy calculations in
quantum-mechanical many-body systems by path in-
tegrals. While we have computed the free energy for the
hard-sphere system only, the several free-energy methods
presented here are readily adaptable to other Hamiltoni-
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ans of interest. The transition probability based on nor-
mal modes that we use to sample paths in the MRRTT
algorithm is equally adaptable to other systems. We be-
lieve that with minor modifications (such as breaking up
each path into "subpaths") this transition probability
may be used effectively to study Boltzmann quantum sys-
tems at any temperature and density. As another techni-
cal point, we note that this work has demonstrated the
utility and convergence properties of the image approxi-
mation to the high-temperature density matrix for

many-body systems consisting of hard particles.
The free-energy computations allowed us to determine

the two-phase coexistence between the solid and Quid at
three temperatures. These data provide additional infor-
mation about the hard-sphere phase diagram where pre-
viously only the T =0 and classical ( T~ ao ) points were
known. We have applied the hard-sphere perturbation
theory to finite temperatures in the quantum regime and,
by the use of a simple scattering length model, we have
found good to excellent agreement with the experimental
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FIG. 6. (a) Comparison of the zeroth- and first-order hard-sphere perturbation-theory free energies and the experimental values
for He at a temperature of 4 K. Reduced units are used as explained in the text. For all three free energies both the fluid (low-
density) and solid (high-density) branches are shown. The upper solid curves correspond to the zeroth-order theory that is the free
energy of the hard-sphere system alone. The dashed curves are the hard-sphere free energy plus the first-order correction discussed
in Sec. V. The lower solid curves are the experimental values for He from the equations of state from Refs. 54 and 55. (b) Same as
(a) except at 10 K. (c) Same as (a) except at 20 K; a sizable discrepancy between the hard-sphere perturbation theory (dashed curves)
and the He experimental values (lower solid curves) develops at high-density p in both the fluid and solid branches.
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TABLE XVII. Perturbation theory parameters of the melting-freezing transition. The solid and
Quid densities are p, and pf, respectively, of He and He for the three reduced temperatures T. The
coexistence pressure is P and hp is p, —pf. HS(0) denotes the predictions of the zeroth-order theory
using the hard-sphere free energy alone. HS(1) corresponds to the first-order hard-sphere perturbation
theory described in Sec. V. "expt." is the experimentally determined values of Grilly and Mills in Ref.
35. All quantities are in the reduced units of the text.

HS(0)
4He HS(1)
He expt.

'He HS(1)
He expt.

1.6

ps

0.360
0.365
0.373
0.357
0.374

Pf

0.347
0.341
0.352
0.339
0.357

12.2
3.7
4.1

5.3
6.0

0.013
0.022
0.021
0.018
0.017

HS(0)
He HS(1)
He expt.

'He HS(1)
3He expt.

4.0 0.465
0.461
0.477
0.460
0.481

0.442
0.432
0.453
0.434
0.461

31.3
16.8
18.7
20.2
22.8

0.023
0.029
0.024
0.026
0.021

HS(0)
He HS(1)
He expt.

'He HS(1)
He expt.

8.0 0.537
0.537
0.581
0.538
0.592

0.503
0.496
0.555
0.498
0.568

59.5
41.0
55.8
45.7
64.6

0.034
0.041
0.026
0.041
0.024

results for solid and fiuid He and He in the equation of
state, solid-fluid and liquid-vapor coexistence, and the
elastic properties of the solid. It should be possible to
find a more accurate hard-sphere mapping to improve
further the agreement with experiment.

Our elastic study of the hard-sphere solid provides the

0

T=4K

—5—

6
0 100 200 300 400

Molar volume (cm )
FIG. 7. Free energy vs molar volume near the liquid-vapor

coexistence region at 4 K for He. The solid curve is the result
of the first-order hard-sphere perturbation theory. The solid
line denotes the liquid-vapor coexistence as found by the
Maxwell double-tangent construction. The straight dashed line
is the experimental coexistence region for He from Ref. 54.
The free energy is in the reduced units of the text.

first exact Monte Carlo determination of the elastic con-
stants for a quantum solid (i.e., one dominated by zero-
point motion}. The results for the Debye temperatures of
solid He and He are in fairly goad agreement with ex-
periment and we have shown that the experimentally ob-
served ratio 83/8~=1. 18 can be described well by the
combination of the scattering length model of helium, the
scaling with mass of the hard-sphere system, and the
Monte Carlo result for the hard-sphere Gruneisen con-
stant. This result has a much stronger theoretical foun-
dation than the standard explanation following from the
harmonic approximation. We have demonstrated that
the amount of thermal excitation in the solid at the densi-
ties and temperatures of this wark can be semiquantita-
tively predicted from the Debye model (for a finite sys-
tem) using the acoustic wave propagation velocities de-
rived from the elastic constants we have computed. We
have also shawn that surprisingly good values for the to-
tal energy and Lindemann ratio are obtained from the
substitution of our model phonon spectrum into the stan-
dard expressions of the harmonic theory.
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