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By using an iteration matrix formalism we calculate the transmission coefficient of
GaAs/Al„Ga|-„As double-barrier heterostructures under crossed magnetic and electric fields. A
dispersion relation for the total energy of the electron is proposed from which the diamagnetic
shift is derived. We extend our calculations to compare with experimental results in a single

quantum well [N. J. Pulsford, J. Singleton, R. J. Nicholas, and C. T. B. Foxon, J. Phys. (Paris)
Colloq. 4$, C5-231 (1987)l. This method can also be used to compute the transport properties in

resonant tunneling devices under a strong magnetic field.

GaAs/Al, Ga( —,As tunneling heterostructures im-
mersed in a magnetic field perpendicular to the growth
direction have provided a source of interesting physical
problems. '

In this paper we treat the problem of a magnetic field
perpendicular to the current in a double-barrier resonant-
tunneling structure. An applied magnetic field parallel to
a two-dimensional electron gas (2D EG) produces a di-
amagnetic shift of the quantized energy levels. This effect
and the cyclotron resonance have been intensively studied
in the 2D EG formed at the interface of a heterostructure
as well as in single square quantum wells. ' Our work
gives a new way of calculating this diamagnetic shift in
quantum wells, based on the transmission coefficient
through a double-barrier resonant-tunneling structure in
the presence of electric and magnetic fields.

The Hamiltonian for the double barrier under the ac-
tion of a magnetic field B perpendicular to the electric
field F is given by

H (1/2m )(p —eA) +V„(x)—eFx, (1)
where we have taken the gauge A (0, —Bx,0). V„(x) is

I

—(h 2/2m, '),' +SI(x)tlr, -Ey, , (3)

where j 0, 1, . . . ,M(3)+1 is the index of each step po-
tential,

the double-barrier square potential.
By using the effective-mass approximation we can write

the Schrodinger equation as

d2—(h'/2m') ~ + [(m'0'/2) (x —x()) '
X

+ V„(x) —eF„]tir E)lr, (2)

in one dimension, where xo —(AEr/eB) and 0
-eB/m'.

We can obtain an approximate solution by taking the
real potential to be a sequential step function, as shown in

Fig. 1. This method converges very quickly as it has been
demonstrated by Mendez and verified by us. We also
consider that the emitter and collector are doped enough
to neglect the field effect in these regions. Thus, at each
constant potential part we have the Schrodinger equation

0, x & 0, j 0,
S.(x) [U, (xj+()+U„(xj)]/2, XM(„()& xj &Xsr(„), [M(n —1)+1]~j~ M(n),

eFXsr(3), x &—Xsr(3), j M(3)+1,
(4)

and n 1,2, 3 is the index of each barrier and well as in

Fig. 1. [M(n) —M(n —1)] is the number of steps in each
given region n and X~~„i is the position of each interface.
The real potential U„(x) is given by

I

where

i[(2mj /It )(E—S )]' ' E &SJ,
k.

, [(2mj /Il )(SJ—E)] ' ' E & S .

U.(x)- eFx+(rn—g 0 /2)(x —xo), n even,

,Uo eFx+(rntt 0 /2)(x —xo), n odd,

By verifying the boundary conditions at each interface,
we can find a matrix relation connecting the emitter and
collector wave-function coefficients,

where Uo, m~ and m~ are, respectively, the potential
height of the barrier and the well and barrier effective
masses. The general solution for Eq. (3) is given by

(tr (x ) AJ e ' +BJe (6)

&o M(3) &sr(3)+ (

Bo Q I., Bsr(3)+(, '

/~0

where LJ. is the iteration matrix given by
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(1+ 8J )exp[(k~+ t
—kj )xj ] (1 —

8J )exp[ —(k/y ~+ k~ )x~]

(1 —8J )exp[(kj+ &+kj)xj] (1+8J )exp[(kj kJ+ / )x J ]

and 8, (m,*k,+ i/m, + ikJ )
By substituting Ap 1, Bp R, A t&)+& T, and

8~(3)+ '[ 0 we have
»

&ii &i2
(10)

21 22

with X QJ-(II)LJ. R and T are, respectively, the reflec
tion and transmission amplitudes. The transmission co-
efficient is then given by

T T(E,K»,F,B) (k~(3)+ i/kp) 11/Lii 1

The numerical results of ln(T T) vs K» are shown in
Fig. 2. For zero magnetic field [Fig. 2(a)] the curve is ex-
actly symmetric. We can see six resonant peaks for an en-
ergy E 0.22 eV and an electric field F 0.2&106 V/m.
The other parameters are given in the caption. When the
magnetic field is nonzero, the symmetry is lost [Fig. 2(b)].
The numerical results show a displacement in the K» posi-
tion of each peak as the magnetic field is increased. We
also observe that the distance between each correlated
pair of peaks [peaks 1-2, 3-4, and 5-6 in Fig. 2(b)] de-
creases with increasing 8. The amplitudes of each corre-
lated pair of peaks are different, in contrast with the
zero-magnetic-field case. To explain these results we pro-

pose the following dispersion relation for the total energy
of an electron in a double barrier system with applied
electric and magnetic field

E EI (F)+(ft /2m/)(K»+ IKpF(8)1) +fF(8). (12)

This relation is schematized in Fig. 3. EP(F) is the 1th
subband energy in the well when only the electric field is
applied. The El (F) can be found by considering the ex-
act wave function in terms of the Airy functions as done in

a previous work. Kpp(8) is the shift of the parabola
center due to the magnetic field. There is a peak in the
transmission coefficient at the values of K» for which the
parabola intersects the total energy E. KpF is then simply
given by the average position between the peaks. fF (8) is
the diamagnetic shift. For a zero magnetic field KpF and

fp vanish and we recover the classical dispersion relation
E EP(F)+ (h, /2mtv)K».

By comparison of the classical dispersion relation and
Eq. (12), for a given total energy and electric field, we can
find an expression of the diamagnetic shift

f,(8) -(f '/2m~) [K,'F(8-0)
—[IKpF(8) I

—Kpp(8)] ] (13)
where Kpp is simply given by the peak position in the
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FIG. 1. Double-barrier potential approximated by sequential
step functions. The system is under the action of a magnetic
field 8 perpendicular to the electric field F.

FIG. 2. ln T*T vs K» curve for a 54 x 120x 54
Al04Ga06As-GaAs double-barrier heterostructure (a) for zero
magnetic field; (b) 8 5 T. The other parameters are as fol-
lows: F 0.2 x 10 U/m, E 0.22 eV, Uo 0.314 eV,
mg 0.067mo, mg 0.100mo, and x 0.40.
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FIG. 3. Scheme of the parabola displacement with increasing
of the magnetic field (82) 8~ )80). fF(8) is the diamagnetic
shift and KsF(B) is the parabola center position.

0.0
0 10 20

B (r')

ln(T T) vs K» curve, ateither sides of Ko(8).
Each correlated pair of peaks is related to an energy

subband in the well. Thus, the increase in fF(B) and
Kop(8) with 8 leads to a change in the positions where
the parabola of each subband intersect the total energy E.

150

FIG. 5. fF(8) vs 8 curve. The double-barrier system and

the parameters are the same as those of Fig. 4.

This explains the variation of the peak positions in the
ln(T T) vs K» curve with the magnetic field.

Up to now we have focused on the qualitative results
concerning the diamagnetic shift fF(8) and the displace-
ment KoF(8) of the minimum parabola center. The
quantitative results are shown in Figs. 4 and 5. The linear
behavior of KoF(8) with the magnetic field and the linear
dependence of fF(B) with the square magnetic field are
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FIG. 4. KOF(8) vs 8 curve for three different subbands in a
54 A-120 A-54 A double-barrier system in presence of an elec-
tric field F O. l x10 V/m. The other parameters are as fol-
lows: Uo 0.314 eV, mg 0.067rno, mg 0.100m 0, and
x 0.40.
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FIG. 6. The numerical first-level diamagnetic shift for two
different single-well widths without electric field. The parame-
ters are given in the text.
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achieved. These numerical results are in agreement with
the perturbational theory contented in Ref. 6. Following
these references, the linear coefficients for KOF(8) vs 8
and fF(B) vs 8 curves are given, respectively, by

(elmw)&a and pF (e I2mw) I (X )a (Xa)' I.
Xa and (X )a are expectation values of the respective

operators for the unperturbated wave functions and I is
the eigenvalue index. In our case, both quantities should
be calculated considering the unperturbated system is a
double barrier under the action of an electric field. Then
for each l subband in the well, the corresponding unper-
turbated wave function has different behavior. The expec-
tation values Xa and (X )a will be different. This quali-
tatively explains our results for different slopes, in the
fF (8) and KOF(8) curves, obtained for the three subband
energies in the welL

Finally, we have computed the diamagnetic shift for 77-
and 117-A single quantum wells in the absence of electric
field to compare with the experimental el-hhi electron-
hole transition performed by Pulsford etal 3W. e have
considered the wide barrier limit in our model. A sys-
tematic study has shown that a barrier width of 100 A for
electrons and 60 A for holes are enough to isolate the well.
Our numerical results for the total diamagnetic shift due
to electrons and holes are shown in Fig. 6. We have taken
an aluminum concentration x 0.36. The other parame-
ters' are Uo 0.296 eV, mg 0.067mo, mg 0.087mo
for electrons (e); Uo 0.1796 eV, mg 0.62mo, ma

0.67mo for heavy-holes (hh), in the 60:40 band-
bending.

At 15 T magnetic field we found the diamagnetic shifts
of 2.4 and 1.3 meV, respectively, for 117- and 77-A single

quantum wells in contrast with the 2. 1 and 1.2 meV ex-
perimental ones. This good agreement demonstrates the
viability of our model.

In conclusion we have developed a new formalism to
compute numerically the diamagnetic shift in double-
barrier tunneling devices and in a single-square-well het-
erostructure under crossed electric and magnetic fields.
The proposed dispersion relation [Eq. (12)) which
comprises the displacement KDF(B) of the parabola center
and the diamagnetic shift fF(B) explains the behavior of
the lnT T vs K» curve with increasing magnetic field 8.
Comparison with the experimental results in a single
quantum well in the absence of electric field shows a
good agreement which confirms the valuability of our
method. We have also obtained the expected linear be-
havior of KpF(8) and fF(8) with 8 and 8, respectively,
for three different subbands in a double-barrier hetero-
structure in the presence of an electric field. These results
agree qualitatively well with the analytic perturbational
theory that describes an accumulation layer of electrons at
the Si interface. 6

By utilizing our expression for the transmission
coefficient it is possible to derive a current density formula
to compute the transport properties by resonant tunneling
in a double-barrier device. This will be made in a future
work where the J-V and J-8 curves will be analyzed.
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